- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Wiley Authors: Lars Christian Henriksen; Morten Hartvig Hansen; Carlo Tibaldi; Christian Bak;doi: 10.1002/we.1898
AbstractWind turbine multidisciplinary design optimization is currently the focus of several investigations because it has showed potential in reducing the cost of energy. This design approach requires fast methods to evaluate wind turbine loads with a sufficiently high level of fidelity. This paper presents a method to estimate wind turbine fatigue damage suited for optimization design applications. The method utilizes a high‐order linear wind turbine model. The model comprehends a detailed description of the wind turbine and the controller. The fatigue is computed with a spectral method applied to power spectral densities of wind turbine sensor responses to turbulent wind. In this paper, the model is validated both in time domain and frequency domain with a nonlinear aeroservoelastic model. The approach is compared quantitatively against fatigue damage obtained from the power spectra of time series evaluated with nonlinear aeroservoelastic simulations and qualitatively against rainflow counting. Results are presented for three cases: load evaluation at normal operation in the full wind speed range, load change evaluation due to two different controller tunings at normal operation at three different wind speeds above rated and load dependency on the number of turbulence seeds used for their evaluation. For the full‐range normal operation, the maximum difference between the two frequency domain‐based estimates of the tower base lateral fatigue moments is 36%, whereas the differences for the other sensors are less than 15%. For the load variation evaluation, the maximum difference of the tower base longitudinal bending moment variation is 22%. Such large difference occurs only when the change in controller tuning has a low effect on the loads. Furthermore, results show that loads evaluated with the presented method are less dependent on the turbulent wind realization; therefore, less turbulence seeds are required compared with time‐domain simulations to remove the dependency on the wind realization used to estimate loads. Copyright © 2015 John Wiley & Sons, Ltd.
Wind Energy arrow_drop_down Wind EnergyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.1898&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Wind Energy arrow_drop_down Wind EnergyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.1898&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Wiley Carlo Tibaldi; F. Sanz; Taeseong Kim; Flemming Rasmussen; Torben J. Larsen; R. de Rocca Serra;doi: 10.1002/we.1869
AbstractWind turbine resonant vibrations are investigated based on aeroelastic simulations both in frequency and time domain. The investigation focuses on three different aspects: the need of a precise modeling when a wind turbine is operating close to resonant conditions; the importance of estimating wind turbine loads also at low turbulence intensity wind conditions to identify the presence of resonances; and the wind turbine response because of external excitations. In the first analysis, three different wind turbine models are analysed with respect to the frequency and damping of the aeroelastic modes. Fatigue loads on the same models are then investigated with two different turbulence intensities to analyse the wind turbine response. In the second analysis, a wind turbine model is excited with an external force. This analysis helps in identifying the modes that might be excited, and therefore, the frequencies at which minimal excitation should be present during operations. The study shows that significant edgewise blade vibrations can occur on modern wind turbines even if the aeroelastic damping of the edgewise modes is positive. When operating close to resonant conditions, small differences in the modeling can have a large influence on the vibration level. The edgewise vibrations are less visible in high turbulent conditions. Using simulations with low‐level turbulence intensity will ease this identification and could avoid a redesign. Furthermore, depending on the external excitation, different aeroelastic modes can be excited. The investigation is performed using aeroelastic models corresponding to a 1.5 MW class wind turbine with slight variations in blade properties. Copyright © 2015 John Wiley & Sons, Ltd.
Wind Energy arrow_drop_down Wind EnergyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.1869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Wind Energy arrow_drop_down Wind EnergyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.1869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 ItalyPublisher:Wiley Authors: BOTTASSO, CARLO LUIGI; CAMPAGNOLO, FILIPPO; CROCE, ALESSANDRO; C. Tibaldi;doi: 10.1002/we.1543
handle: 11311/683398
ABSTRACTThis work is concerned with the design of wind turbine blades with bend‐twist‐to‐feather coupling that self‐react to wind fluctuations by reducing the angle of attack, thereby inducing a load mitigation effect. This behavior is obtained here by exploiting the orthotropic properties of composite materials by rotating the fibers away from the pitch axis.The first part of this study investigates the possible configurations for achieving bend‐twist coupling. At first, fully coupled blades are designed by rotating the fibers for the whole blade span, and a best compromise solution is found to limit weight increase by rotations both in the spar caps and in the skin. Next, partially coupled blades are designed where fibers are rotated only on the outboard part of the blade, this way achieving good load mitigation capabilities together with weight savings. All blades are designed with a multilevel constrained optimization procedure, on the basis of combined cross‐sectional, multibody aero‐servo‐elastic and three‐dimensional finite element models.Finally, the best configuration of the passive coupled blade is combined with an active individual pitch controller. The synergistic use of passive and active load mitigation technologies is shown to allow for significant load reductions while limiting the increase in actuator duty cycle, thanks to the opposite effects on this performance metric of the passive and active control solutions. Copyright © 2012 John Wiley & Sons, Ltd.
Wind Energy arrow_drop_down Wind EnergyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.1543&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 95 citations 95 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Wind Energy arrow_drop_down Wind EnergyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.1543&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Wiley Authors: Lars Christian Henriksen; Morten Hartvig Hansen; Carlo Tibaldi; Christian Bak;doi: 10.1002/we.1898
AbstractWind turbine multidisciplinary design optimization is currently the focus of several investigations because it has showed potential in reducing the cost of energy. This design approach requires fast methods to evaluate wind turbine loads with a sufficiently high level of fidelity. This paper presents a method to estimate wind turbine fatigue damage suited for optimization design applications. The method utilizes a high‐order linear wind turbine model. The model comprehends a detailed description of the wind turbine and the controller. The fatigue is computed with a spectral method applied to power spectral densities of wind turbine sensor responses to turbulent wind. In this paper, the model is validated both in time domain and frequency domain with a nonlinear aeroservoelastic model. The approach is compared quantitatively against fatigue damage obtained from the power spectra of time series evaluated with nonlinear aeroservoelastic simulations and qualitatively against rainflow counting. Results are presented for three cases: load evaluation at normal operation in the full wind speed range, load change evaluation due to two different controller tunings at normal operation at three different wind speeds above rated and load dependency on the number of turbulence seeds used for their evaluation. For the full‐range normal operation, the maximum difference between the two frequency domain‐based estimates of the tower base lateral fatigue moments is 36%, whereas the differences for the other sensors are less than 15%. For the load variation evaluation, the maximum difference of the tower base longitudinal bending moment variation is 22%. Such large difference occurs only when the change in controller tuning has a low effect on the loads. Furthermore, results show that loads evaluated with the presented method are less dependent on the turbulent wind realization; therefore, less turbulence seeds are required compared with time‐domain simulations to remove the dependency on the wind realization used to estimate loads. Copyright © 2015 John Wiley & Sons, Ltd.
Wind Energy arrow_drop_down Wind EnergyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.1898&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Wind Energy arrow_drop_down Wind EnergyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.1898&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Wiley Carlo Tibaldi; F. Sanz; Taeseong Kim; Flemming Rasmussen; Torben J. Larsen; R. de Rocca Serra;doi: 10.1002/we.1869
AbstractWind turbine resonant vibrations are investigated based on aeroelastic simulations both in frequency and time domain. The investigation focuses on three different aspects: the need of a precise modeling when a wind turbine is operating close to resonant conditions; the importance of estimating wind turbine loads also at low turbulence intensity wind conditions to identify the presence of resonances; and the wind turbine response because of external excitations. In the first analysis, three different wind turbine models are analysed with respect to the frequency and damping of the aeroelastic modes. Fatigue loads on the same models are then investigated with two different turbulence intensities to analyse the wind turbine response. In the second analysis, a wind turbine model is excited with an external force. This analysis helps in identifying the modes that might be excited, and therefore, the frequencies at which minimal excitation should be present during operations. The study shows that significant edgewise blade vibrations can occur on modern wind turbines even if the aeroelastic damping of the edgewise modes is positive. When operating close to resonant conditions, small differences in the modeling can have a large influence on the vibration level. The edgewise vibrations are less visible in high turbulent conditions. Using simulations with low‐level turbulence intensity will ease this identification and could avoid a redesign. Furthermore, depending on the external excitation, different aeroelastic modes can be excited. The investigation is performed using aeroelastic models corresponding to a 1.5 MW class wind turbine with slight variations in blade properties. Copyright © 2015 John Wiley & Sons, Ltd.
Wind Energy arrow_drop_down Wind EnergyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.1869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Wind Energy arrow_drop_down Wind EnergyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.1869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 ItalyPublisher:Wiley Authors: BOTTASSO, CARLO LUIGI; CAMPAGNOLO, FILIPPO; CROCE, ALESSANDRO; C. Tibaldi;doi: 10.1002/we.1543
handle: 11311/683398
ABSTRACTThis work is concerned with the design of wind turbine blades with bend‐twist‐to‐feather coupling that self‐react to wind fluctuations by reducing the angle of attack, thereby inducing a load mitigation effect. This behavior is obtained here by exploiting the orthotropic properties of composite materials by rotating the fibers away from the pitch axis.The first part of this study investigates the possible configurations for achieving bend‐twist coupling. At first, fully coupled blades are designed by rotating the fibers for the whole blade span, and a best compromise solution is found to limit weight increase by rotations both in the spar caps and in the skin. Next, partially coupled blades are designed where fibers are rotated only on the outboard part of the blade, this way achieving good load mitigation capabilities together with weight savings. All blades are designed with a multilevel constrained optimization procedure, on the basis of combined cross‐sectional, multibody aero‐servo‐elastic and three‐dimensional finite element models.Finally, the best configuration of the passive coupled blade is combined with an active individual pitch controller. The synergistic use of passive and active load mitigation technologies is shown to allow for significant load reductions while limiting the increase in actuator duty cycle, thanks to the opposite effects on this performance metric of the passive and active control solutions. Copyright © 2012 John Wiley & Sons, Ltd.
Wind Energy arrow_drop_down Wind EnergyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.1543&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 95 citations 95 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Wind Energy arrow_drop_down Wind EnergyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.1543&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu