- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Informa UK Limited Funded by:AKA | Lifestyles Integrated Spa...AKA| Lifestyles Integrated Spatial Planning for Sustainable Human Settlements (LISSU)Heinonen, Jukka; Junnonen, Juha Matti; Junnila; Seppo; Säynäjoki, Antti;Buildings are a major contributor to climate change. Use phase has traditionally been the focus area, but the importance of construction-phase has increased with the emergence of energy-efficient buildings. Life-cycle assessment (LCA) is arguably the best method to assess and analyze the emissions caused by buildings. However, within LCA there are two very different approaches – process LCA and input–output (IO) LCA – which lead to different results. When looking at the scale of published LCA results, it is evident that IO LCAs are placed at the top end, and process LCAs at the bottom end. It is thus questionable whether LCA can provide data that can be used for decision-making and policy formation. This study takes a step toward filling this gap by presenting a comparison of process and IO LCA results of the pre-use phase of a residential concrete element building in Finland. Exactly the same scope is utilized in order to maximize comparability. The results depict how the two main LCA methods produce significantly different results. The implications of acknowledging this are discussed. The results fall in midway between the extremes published using the two methods but still deviate from each other by a multiplier of almost 2.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17583004.2017.1309200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17583004.2017.1309200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 FinlandPublisher:MDPI AG Emami, Nargessadat; Heinonen, Jukka; Marteinsson, Björn; Säynäjoki, Antti; Junnonen, Juha Matti; Laine, Jani; Junnila; Seppo;Traditionally, the emissions embodied in construction materials have not been considered important; however, they are becoming crucial due to the short time-frame in which the emissions should be reduced. Moreover, evaluating the environmental burden of construction materials has proven problematic and the reliability of the reported impact estimates is questionable. More reliable information from the construction sector is thus urgently needed to back and guide decision-making. Currently, the building sector environmental impact assessments predominantly employ commercial software with environmental impact databases and report results without knowledge about the impact of the software/database choice on the results. In this study, estimates for the embodied environmental impacts of residential construction from the two most widely used life cycle assessment (LCA) database-software combinations, ecoinvent with SimaPro software and GaBi, are compared to recognize the uniformities and inconsistencies. The impacts caused by two residential buildings of different types, a concrete-element multi-story residential building and a detached wooden house, both located in Finland, were assessed, including all building systems with a high level of detail. Based on the ReCiPe Midpoint method, fifteen impact categories were estimated and compared. The results confirm that the tool choice significantly affects the outcome. For the whole building, the difference is significant, around 15%, even in the most widely assessed category of Climate Change, and yields results that lean in different directions for the two cases. In the others, the estimates are entirely different, 40% or more in the majority of the categories and up to several thousand percentages of difference. The main conclusion is that extensive work is still urgently needed to improve the reliability of LCA tools in the building sector in order to provide reliable and trustworthy information for policy-making.
Buildings arrow_drop_down BuildingsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2075-5309/9/1/20/pdfData sources: Multidisciplinary Digital Publishing InstituteTampere University: TrepoArticle . 2019License: CC BYFull-Text: https://trepo.tuni.fi/handle/10024/216247Data sources: Bielefeld Academic Search Engine (BASE)Trepo - Institutional Repository of Tampere UniversityArticle . 2019 . Peer-reviewedData sources: Trepo - Institutional Repository of Tampere UniversityAaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings9010020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 91 citations 91 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Buildings arrow_drop_down BuildingsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2075-5309/9/1/20/pdfData sources: Multidisciplinary Digital Publishing InstituteTampere University: TrepoArticle . 2019License: CC BYFull-Text: https://trepo.tuni.fi/handle/10024/216247Data sources: Bielefeld Academic Search Engine (BASE)Trepo - Institutional Repository of Tampere UniversityArticle . 2019 . Peer-reviewedData sources: Trepo - Institutional Repository of Tampere UniversityAaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings9010020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Säynäjoki, Antti; Junnonen, Juha Matti; Pöyry, Amalia; Junnila; Seppo; Heinonen, Jukka;Abstract Both the construction and use of buildings cause significant environmental pressures. The greenhouse gas (GHG) emissions imposed by buildings have been studied rather extensively, but less is known about other impacts. Still, climate change is only one harmful impact driven by buildings. Furthermore, no studies exist about how the other impacts are correlated with GHG emissions in the building context, and thus to what extent GHGs could be utilized as a more general environmental performance indicator. This paper fills these gaps by presenting a life cycle assessment of the pre-use phase of a modern concrete-element residential building with a very comprehensive life cycle inventory (LCI). The focus of the study is on the comparison of the accumulation of different environmental impacts relative to GHGs. The accumulation is analyzed from two perspectives common to building LCAs: building systems and different construction materials. The ReCiPe midpoint assessment method is utilized to reach wide impact category coverage. The study shows how GHGs act as a relatively good indicator for eight impact categories, but not for the others. The study also depicts that a very high coverage in the LCI must be reached to capture the majority of the different impacts. Many materials and building systems are considered non-relevant and are often excluded from building LCAs, which are in fact of great importance in many impact categories.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2015.09.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 74 citations 74 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2015.09.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Informa UK Limited Funded by:AKA | Lifestyles Integrated Spa...AKA| Lifestyles Integrated Spatial Planning for Sustainable Human Settlements (LISSU)Heinonen, Jukka; Junnonen, Juha Matti; Junnila; Seppo; Säynäjoki, Antti;Buildings are a major contributor to climate change. Use phase has traditionally been the focus area, but the importance of construction-phase has increased with the emergence of energy-efficient buildings. Life-cycle assessment (LCA) is arguably the best method to assess and analyze the emissions caused by buildings. However, within LCA there are two very different approaches – process LCA and input–output (IO) LCA – which lead to different results. When looking at the scale of published LCA results, it is evident that IO LCAs are placed at the top end, and process LCAs at the bottom end. It is thus questionable whether LCA can provide data that can be used for decision-making and policy formation. This study takes a step toward filling this gap by presenting a comparison of process and IO LCA results of the pre-use phase of a residential concrete element building in Finland. Exactly the same scope is utilized in order to maximize comparability. The results depict how the two main LCA methods produce significantly different results. The implications of acknowledging this are discussed. The results fall in midway between the extremes published using the two methods but still deviate from each other by a multiplier of almost 2.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17583004.2017.1309200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17583004.2017.1309200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 FinlandPublisher:MDPI AG Emami, Nargessadat; Heinonen, Jukka; Marteinsson, Björn; Säynäjoki, Antti; Junnonen, Juha Matti; Laine, Jani; Junnila; Seppo;Traditionally, the emissions embodied in construction materials have not been considered important; however, they are becoming crucial due to the short time-frame in which the emissions should be reduced. Moreover, evaluating the environmental burden of construction materials has proven problematic and the reliability of the reported impact estimates is questionable. More reliable information from the construction sector is thus urgently needed to back and guide decision-making. Currently, the building sector environmental impact assessments predominantly employ commercial software with environmental impact databases and report results without knowledge about the impact of the software/database choice on the results. In this study, estimates for the embodied environmental impacts of residential construction from the two most widely used life cycle assessment (LCA) database-software combinations, ecoinvent with SimaPro software and GaBi, are compared to recognize the uniformities and inconsistencies. The impacts caused by two residential buildings of different types, a concrete-element multi-story residential building and a detached wooden house, both located in Finland, were assessed, including all building systems with a high level of detail. Based on the ReCiPe Midpoint method, fifteen impact categories were estimated and compared. The results confirm that the tool choice significantly affects the outcome. For the whole building, the difference is significant, around 15%, even in the most widely assessed category of Climate Change, and yields results that lean in different directions for the two cases. In the others, the estimates are entirely different, 40% or more in the majority of the categories and up to several thousand percentages of difference. The main conclusion is that extensive work is still urgently needed to improve the reliability of LCA tools in the building sector in order to provide reliable and trustworthy information for policy-making.
Buildings arrow_drop_down BuildingsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2075-5309/9/1/20/pdfData sources: Multidisciplinary Digital Publishing InstituteTampere University: TrepoArticle . 2019License: CC BYFull-Text: https://trepo.tuni.fi/handle/10024/216247Data sources: Bielefeld Academic Search Engine (BASE)Trepo - Institutional Repository of Tampere UniversityArticle . 2019 . Peer-reviewedData sources: Trepo - Institutional Repository of Tampere UniversityAaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings9010020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 91 citations 91 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Buildings arrow_drop_down BuildingsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2075-5309/9/1/20/pdfData sources: Multidisciplinary Digital Publishing InstituteTampere University: TrepoArticle . 2019License: CC BYFull-Text: https://trepo.tuni.fi/handle/10024/216247Data sources: Bielefeld Academic Search Engine (BASE)Trepo - Institutional Repository of Tampere UniversityArticle . 2019 . Peer-reviewedData sources: Trepo - Institutional Repository of Tampere UniversityAaltodoc Publication ArchiveArticle . 2019 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings9010020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Säynäjoki, Antti; Junnonen, Juha Matti; Pöyry, Amalia; Junnila; Seppo; Heinonen, Jukka;Abstract Both the construction and use of buildings cause significant environmental pressures. The greenhouse gas (GHG) emissions imposed by buildings have been studied rather extensively, but less is known about other impacts. Still, climate change is only one harmful impact driven by buildings. Furthermore, no studies exist about how the other impacts are correlated with GHG emissions in the building context, and thus to what extent GHGs could be utilized as a more general environmental performance indicator. This paper fills these gaps by presenting a life cycle assessment of the pre-use phase of a modern concrete-element residential building with a very comprehensive life cycle inventory (LCI). The focus of the study is on the comparison of the accumulation of different environmental impacts relative to GHGs. The accumulation is analyzed from two perspectives common to building LCAs: building systems and different construction materials. The ReCiPe midpoint assessment method is utilized to reach wide impact category coverage. The study shows how GHGs act as a relatively good indicator for eight impact categories, but not for the others. The study also depicts that a very high coverage in the LCI must be reached to capture the majority of the different impacts. Many materials and building systems are considered non-relevant and are often excluded from building LCAs, which are in fact of great importance in many impact categories.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2015.09.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 74 citations 74 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2015.09.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu