- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Institute of Electrical and Electronics Engineers (IEEE) Liu, Jingbin; Hyyppä, Juha; Yu, Xiaowei; Jaakkola, Anttoni; Kukko, Antero; Kaartinen, Harri; Zhu, Lingli; Liang, Xinlian; Wang, Yunsheng; Hyyppä; Hannu;One of the biggest challenges in forestry research is the effective and accurate measuring and monitoring of forest variables, as the exploitation potential of forest inventory products largely depends on the accuracy of estimates and on the cost of data collection. This paper presented a novel computational method of low-cost forest inventory using global navigation satellite system (GNSS) signals in a crowdsourcing approach. Statistical features of GNSS signals were extracted from widely available GNSS devices and were used for predicting forest attributes, including tree height, diameter at breast height, basal area, stem volume, and above-ground biomass, in boreal forest conditions. The basic evidence of the predictions is the physical correlations between forest variables and the responses of GNSS signals penetrating through the forest. The random forest algorithm was applied to the predictions. GNSS-derived prediction accuracies were comparable with those of the most accurate 2-D remote sensing techniques, and the predictions can be improved further by integration with other publicly available data sources without additional cost. This type of crowdsourcing technique enables the collection of up-to-date forest data at low cost, and it significantly contributes to the development of new reference data collection techniques for forest inventory. Currently, field reference can account for half of the total costs of forest inventory.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Geoscience and Remote SensingArticle . 2017 . Peer-reviewedLicense: IEEE Open AccessData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tgrs.2017.2650944&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Geoscience and Remote SensingArticle . 2017 . Peer-reviewedLicense: IEEE Open AccessData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tgrs.2017.2650944&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Institute of Electrical and Electronics Engineers (IEEE) Liu, Jingbin; Hyyppä, Juha; Yu, Xiaowei; Jaakkola, Anttoni; Kukko, Antero; Kaartinen, Harri; Zhu, Lingli; Liang, Xinlian; Wang, Yunsheng; Hyyppä; Hannu;One of the biggest challenges in forestry research is the effective and accurate measuring and monitoring of forest variables, as the exploitation potential of forest inventory products largely depends on the accuracy of estimates and on the cost of data collection. This paper presented a novel computational method of low-cost forest inventory using global navigation satellite system (GNSS) signals in a crowdsourcing approach. Statistical features of GNSS signals were extracted from widely available GNSS devices and were used for predicting forest attributes, including tree height, diameter at breast height, basal area, stem volume, and above-ground biomass, in boreal forest conditions. The basic evidence of the predictions is the physical correlations between forest variables and the responses of GNSS signals penetrating through the forest. The random forest algorithm was applied to the predictions. GNSS-derived prediction accuracies were comparable with those of the most accurate 2-D remote sensing techniques, and the predictions can be improved further by integration with other publicly available data sources without additional cost. This type of crowdsourcing technique enables the collection of up-to-date forest data at low cost, and it significantly contributes to the development of new reference data collection techniques for forest inventory. Currently, field reference can account for half of the total costs of forest inventory.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Geoscience and Remote SensingArticle . 2017 . Peer-reviewedLicense: IEEE Open AccessData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tgrs.2017.2650944&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Geoscience and Remote SensingArticle . 2017 . Peer-reviewedLicense: IEEE Open AccessData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tgrs.2017.2650944&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu