- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Russian FederationPublisher:MDPI AG Authors: Elizaveta A. Chunzhuk; Anatoly V. Grigorenko; Nadezhda I. Chernova; Sofya V. Kiseleva; +8 AuthorsElizaveta A. Chunzhuk; Anatoly V. Grigorenko; Nadezhda I. Chernova; Sofya V. Kiseleva; Kirill G. Ryndin; Oleg S. Popel; Sergey Ya Malaniy; Olga V. Slavkina; Fabio de Farias Neves; Lijian Leng; Vinod Kumar; Mikhail S. Vlaskin;doi: 10.3390/en16020822
Direct study of CO2 capture efficiency during microalgae Arthrospira platensis cultivation at high CO2 concentrations was carried out. Microalgae were grown in a 90 L photobioreactor on Zarrouk’s medium prepared with distilled water. Three 15-day experiments were carried out with different initial CO2 concentrations: 1, 5, and 9 vol.%. During the experiments, both the change in the optical density of the microalgae suspension and the direct change in the CO2 concentration in the chamber were measured. The maximum decrease in CO2 concentration due to the growth of microalgae was 0.10 vol.% (CO2)/day in the experiment with an initial CO2 concentration of 5 vol.%. Growth rate of biomass density was 79.4, 76.3, and 48.4 (mg/L)/day at 1, 5, and 9 vol.% CO2 concentrations, respectively. During the experiment with initial CO2 concentrations of 1 and 5 vol.%., pH of the culture medium was increased, but pH was decreased from 9.2 to 8.8 at 9 vol.%. In general, good viability (high quality of biomass and high rate of its growth) of Arthrospira platensis was established at 1 and 5 vol. (CO2)%, while massive death of Arthrospira platensis cells was observed in the experiment with 9 vol. (CO2)%. Biochemical analysis of the resulting biomass revealed a decrease in the content of lipids and proteins with an increase in CO2 concentration.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/2/822/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/2/822/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Russian FederationPublisher:MDPI AG Authors: Elizaveta A. Chunzhuk; Anatoly V. Grigorenko; Nadezhda I. Chernova; Sofya V. Kiseleva; +8 AuthorsElizaveta A. Chunzhuk; Anatoly V. Grigorenko; Nadezhda I. Chernova; Sofya V. Kiseleva; Kirill G. Ryndin; Oleg S. Popel; Sergey Ya Malaniy; Olga V. Slavkina; Fabio de Farias Neves; Lijian Leng; Vinod Kumar; Mikhail S. Vlaskin;doi: 10.3390/en16020822
Direct study of CO2 capture efficiency during microalgae Arthrospira platensis cultivation at high CO2 concentrations was carried out. Microalgae were grown in a 90 L photobioreactor on Zarrouk’s medium prepared with distilled water. Three 15-day experiments were carried out with different initial CO2 concentrations: 1, 5, and 9 vol.%. During the experiments, both the change in the optical density of the microalgae suspension and the direct change in the CO2 concentration in the chamber were measured. The maximum decrease in CO2 concentration due to the growth of microalgae was 0.10 vol.% (CO2)/day in the experiment with an initial CO2 concentration of 5 vol.%. Growth rate of biomass density was 79.4, 76.3, and 48.4 (mg/L)/day at 1, 5, and 9 vol.% CO2 concentrations, respectively. During the experiment with initial CO2 concentrations of 1 and 5 vol.%., pH of the culture medium was increased, but pH was decreased from 9.2 to 8.8 at 9 vol.%. In general, good viability (high quality of biomass and high rate of its growth) of Arthrospira platensis was established at 1 and 5 vol. (CO2)%, while massive death of Arthrospira platensis cells was observed in the experiment with 9 vol. (CO2)%. Biochemical analysis of the resulting biomass revealed a decrease in the content of lipids and proteins with an increase in CO2 concentration.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/2/822/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/2/822/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu