- home
- Advanced Search
- Energy Research
- Open Access
- Energy Research
- Open Access
description Publicationkeyboard_double_arrow_right Article , Journal 2014 France, United States, United States, France, France, Spain, GermanyPublisher:Wiley Authors:Claas Nendel;
Simona Bassu; Nadine Brisson;Claas Nendel
Claas Nendel in OpenAIREMarc Corbeels;
+36 AuthorsMarc Corbeels
Marc Corbeels in OpenAIREClaas Nendel;
Simona Bassu; Nadine Brisson;Claas Nendel
Claas Nendel in OpenAIREMarc Corbeels;
Marc Corbeels
Marc Corbeels in OpenAIREEckart Priesack;
Eckart Priesack
Eckart Priesack in OpenAIREKatharina Waha;
Katharina Waha
Katharina Waha in OpenAIREEdmar Teixeira;
Delphine Deryng; Jerry L. Hatfield; Iurii Shcherbak; Iurii Shcherbak;Edmar Teixeira
Edmar Teixeira in OpenAIRESoo-Hyung Kim;
Maria Virginia Pravia;Soo-Hyung Kim
Soo-Hyung Kim in OpenAIREBruno Basso;
Bruno Basso;Bruno Basso
Bruno Basso in OpenAIREFulu Tao;
Federico Sau; Jean-Louis Durand; R.E.E. Jongschaap; Patricio Grassini; K. Christian Kersebaum;Fulu Tao
Fulu Tao in OpenAIREArmen R. Kemanian;
Christian Biernath; Alex C. Ruane;Armen R. Kemanian
Armen R. Kemanian in OpenAIREMyriam Adam;
Naresh S. Kumar;Myriam Adam
Myriam Adam in OpenAIREChristian Baron;
Christian Baron
Christian Baron in OpenAIRESebastian Gayler;
Sebastian Gayler
Sebastian Gayler in OpenAIREChristoph Müller;
Christoph Müller
Christoph Müller in OpenAIRECesar Izaurralde;
Cesar Izaurralde
Cesar Izaurralde in OpenAIREKenneth J. Boote;
Kenneth J. Boote
Kenneth J. Boote in OpenAIREGiacomo De Sanctis;
James W. Jones; David Makowski; H.L. Boogaard;Giacomo De Sanctis
Giacomo De Sanctis in OpenAIREDennis Timlin;
Steven Hoek; Cynthia Rosenzweig;Dennis Timlin
Dennis Timlin in OpenAIRESjaak Conijn;
Jon I. Lizaso;Sjaak Conijn
Sjaak Conijn in OpenAIREAbstractPotential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania). While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data for calibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly −0.5 Mg ha−1 per °C. Doubling [CO2] from 360 to 720 μmol mol−1 increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2] among models. Model responses to temperature and [CO2] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information.
Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverGlobal Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 535 citations 535 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverGlobal Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Finland, France, Netherlands, FrancePublisher:Elsevier BV Authors:Sebastian Gayler;
Sebastian Gayler
Sebastian Gayler in OpenAIRECarolina Barreda;
Carolina Barreda
Carolina Barreda in OpenAIREGerrit Hoogenboom;
Gerrit Hoogenboom
Gerrit Hoogenboom in OpenAIRETommaso Stella;
+26 AuthorsTommaso Stella
Tommaso Stella in OpenAIRESebastian Gayler;
Sebastian Gayler
Sebastian Gayler in OpenAIRECarolina Barreda;
Carolina Barreda
Carolina Barreda in OpenAIREGerrit Hoogenboom;
Gerrit Hoogenboom
Gerrit Hoogenboom in OpenAIRETommaso Stella;
Herman Berguijs;Tommaso Stella
Tommaso Stella in OpenAIREKarine Vandermeiren;
Pepijn A.J. van Oort; Claudio O. Stöckle;Karine Vandermeiren
Karine Vandermeiren in OpenAIREBruno Condori;
Bruno Condori
Bruno Condori in OpenAIREPaolo Merante;
Joost Wolf; Pytrik Reidsma;Paolo Merante
Paolo Merante in OpenAIREEline Vanuytrecht;
Eline Vanuytrecht;Eline Vanuytrecht
Eline Vanuytrecht in OpenAIREVirpi Vorne;
Virpi Vorne
Virpi Vorne in OpenAIREKenneth J. Boote;
Johan Ninanya; Andreas Fangmeier;Kenneth J. Boote
Kenneth J. Boote in OpenAIREClaas Nendel;
João Vasco Silva;Claas Nendel
Claas Nendel in OpenAIREMarco Bindi;
Marco Bindi
Marco Bindi in OpenAIREDirk Raes;
David H. Fleisher; Frits K. van Evert;Dirk Raes
Dirk Raes in OpenAIREIwan Supit;
Roberto Ferrise;Iwan Supit
Iwan Supit in OpenAIREHåkan Pleijel;
David A. Ramírez; Rubi Raymundo;Håkan Pleijel
Håkan Pleijel in OpenAIREJim Craigon;
Jim Craigon
Jim Craigon in OpenAIREhandle: 10568/113223
Abstract A multi-model inter-comparison study was conducted to evaluate the performance of ten potato crop models to accurately predict potato yield in response to elevated CO2 (Ce) when calibrated with ambient CO2 data (Ca). Experimental data from seven open-top chambers (OTC) and free-air−CO2-enrichment (FACE) facilities across continental Europe were used. Model ensemble percent errors averaged over all datasets for simulated yields were 26.5 % for Ca and 27.2 % Ce data. Metrics such as Wilmott’s index of agreement (IA) and root mean square relative error (RMSRE) ranged broadly among individual models and locations, such that four of the ten models outperformed the median or mean of the ensemble for about half of the Ce datasets. These top performing models were representative of three different model structural groups, including radiation use efficiency, transpiration efficiency, or leaf-level based approaches. Relative response to an increase in CO2 was more accurately modeled than absolute yield responses when averaged across all locations, and within 3.3 kg ppm−1 (or 5%) of observed values. Specific targets in the model structure needed for improvement were not identified due to large and inconsistent variation in the accuracy of yield predictions across locations. However, models with the lowest calibration errors tended to be top performers for Ce predictions as well. Such results suggest calibration is at least as important as model structure. Where possible, modelers using potato models to estimate Ce responses should use Ce calibration data to improve confidence in such predictions.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/113223Data sources: Bielefeld Academic Search Engine (BASE)European Journal of AgronomyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2021.126265&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/113223Data sources: Bielefeld Academic Search Engine (BASE)European Journal of AgronomyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2021.126265&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Netherlands, Denmark, Germany, FinlandPublisher:Elsevier BV Funded by:EC | IMPRESSIONSEC| IMPRESSIONSAuthors: Julien Minet;Kurt Christian Kersebaum;
Françoise Ruget;Kurt Christian Kersebaum
Kurt Christian Kersebaum in OpenAIREA.J.W. de Wit;
+37 AuthorsA.J.W. de Wit
A.J.W. de Wit in OpenAIREJulien Minet;Kurt Christian Kersebaum;
Françoise Ruget;Kurt Christian Kersebaum
Kurt Christian Kersebaum in OpenAIREA.J.W. de Wit;
A.J.W. de Wit
A.J.W. de Wit in OpenAIREC. Nendel;
C. Nendel
C. Nendel in OpenAIRETaru Palosuo;
Taru Palosuo
Taru Palosuo in OpenAIREMarco Bindi;
Holger Hoffmann;Marco Bindi
Marco Bindi in OpenAIREZacharias Steinmetz;
Zacharias Steinmetz
Zacharias Steinmetz in OpenAIREPiotr Baranowski;
Piotr Baranowski
Piotr Baranowski in OpenAIRENina Pirttioja;
Pierre Stratonovitch; Iwan Supit;Nina Pirttioja
Nina Pirttioja in OpenAIREF. Ewert;
Davide Cammarano;F. Ewert
F. Ewert in OpenAIREMikhail A. Semenov;
Mikhail A. Semenov
Mikhail A. Semenov in OpenAIRERoberto Ferrise;
Roberto Ferrise
Roberto Ferrise in OpenAIREReimund P. Rötter;
Reimund P. Rötter
Reimund P. Rötter in OpenAIREMargarita Ruiz-Ramos;
Margarita Ruiz-Ramos
Margarita Ruiz-Ramos in OpenAIREManuel Montesino;
Manuel Montesino
Manuel Montesino in OpenAIREFulu Tao;
František Jurečka; František Jurečka;Fulu Tao
Fulu Tao in OpenAIRESamuel Buis;
Samuel Buis
Samuel Buis in OpenAIREAlfredo Rodríguez;
Alfredo Rodríguez; Marcos Lana;Alfredo Rodríguez
Alfredo Rodríguez in OpenAIREStefan Fronzek;
John R. Porter; Jukka Höhn;Stefan Fronzek
Stefan Fronzek in OpenAIREBenjamin Dumont;
Benjamin Dumont
Benjamin Dumont in OpenAIREAltaaf Mechiche-Alami;
Altaaf Mechiche-Alami
Altaaf Mechiche-Alami in OpenAIREIgnacio J. Lorite;
Yi Chen;Ignacio J. Lorite
Ignacio J. Lorite in OpenAIREThomas Gaiser;
Thomas Gaiser
Thomas Gaiser in OpenAIREJaromir Krzyszczak;
Jaromir Krzyszczak
Jaromir Krzyszczak in OpenAIRETimothy R. Carter;
Timothy R. Carter
Timothy R. Carter in OpenAIREMiroslav Trnka;
Miroslav Trnka;Miroslav Trnka
Miroslav Trnka in OpenAIREP. Hlavinka;
P. Hlavinka;P. Hlavinka
P. Hlavinka in OpenAIREClimate change is expected to severely affect cropping systems and food production in many parts of the world unless local adaptation can ameliorate these impacts. Ensembles of crop simulation models can be useful tools for assessing if proposed adaptation options are capable of achieving target yields, whilst also quantifying the share of uncertainty in the simulated crop impact resulting from the crop models themselves. Although some studies have analysed the influence of ensemble size on model outcomes, the effect of ensemble composition has not yet been properly appraised. Moreover, results and derived recommendations typically rely on averaged ensemble simulation results without accounting sufficiently for the spread of model outcomes. Therefore, we developed an Ensemble Outcome Agreement (EOA) index, which analyses the effect of changes in composition and size of a multi-model ensemble (MME) to evaluate the level of agreement between MME outcomes with respect to a given hypothesis (e.g. that adaptation measures result in positive crop responses). We analysed the recommendations of a previous study performed with an ensemble of 17 crop models and testing 54 adaptation options for rainfed winter wheat (Triticum aestivum L.) at Lleida (NE Spain) under perturbed conditions of temperature, precipitation and atmospheric CO2 concentration. Our results confirmed that most adaptations recommended in the previous study have a positive effect. However, we also showed that some options did not remain recommendable in specific conditions if different ensembles were considered. Using EOA, we were able to identify the adaptation options for which there is high confidence in their effectiveness at enhancing yields, even under severe climate perturbations. These include substituting spring wheat for winter wheat combined with earlier sowing dates and standard or longer duration cultivars, or introducing supplementary irrigation, the latter increasing EOA values in all cases. There is low confidence in recovering yields to baseline levels, although this target could be attained for some adaptation options under moderate climate perturbations. Recommendations derived from such robust results may provide crucial information for stakeholders seeking to implement adaptation measures.
Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefAgricultural and Forest MeteorologyArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Publikationenserver der Georg-August-Universität GöttingenArticle . 2019 . Peer-reviewedWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2018.09.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefAgricultural and Forest MeteorologyArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Publikationenserver der Georg-August-Universität GöttingenArticle . 2019 . Peer-reviewedWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2018.09.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Spain, France, Australia, Finland, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | AGREENSKILLSEC| AGREENSKILLSAuthors: Ann-Kristin Koehler; Peter J. Thorburn;Margarita Garcia-Vila;
Margarita Garcia-Vila; +62 AuthorsMargarita Garcia-Vila
Margarita Garcia-Vila in OpenAIREAnn-Kristin Koehler; Peter J. Thorburn;Margarita Garcia-Vila;
Margarita Garcia-Vila; L. A. Hunt; L. A. Hunt; Bruce A. Kimball;Margarita Garcia-Vila
Margarita Garcia-Vila in OpenAIREEhsan Eyshi Rezaei;
Ehsan Eyshi Rezaei
Ehsan Eyshi Rezaei in OpenAIREDavide Cammarano;
Davide Cammarano;Davide Cammarano
Davide Cammarano in OpenAIREMikhail A. Semenov;
Michael J. Ottman; Curtis D. Jones;Mikhail A. Semenov
Mikhail A. Semenov in OpenAIREFrank Ewert;
Gerard W. Wall; Garry O'Leary;Frank Ewert
Frank Ewert in OpenAIREPierre Martre;
Pierre Martre
Pierre Martre in OpenAIREJordi Doltra;
Jordi Doltra
Jordi Doltra in OpenAIRETaru Palosuo;
Daniel Wallach; Mohamed Jabloun;Taru Palosuo
Taru Palosuo in OpenAIREIurii Shcherbak;
Iurii Shcherbak;Iurii Shcherbak
Iurii Shcherbak in OpenAIREMatthew P. Reynolds;
Matthew P. Reynolds
Matthew P. Reynolds in OpenAIREReimund P. Rötter;
Reimund P. Rötter
Reimund P. Rötter in OpenAIREAndrew J. Challinor;
Andrew J. Challinor; Dominique Ripoche;Andrew J. Challinor
Andrew J. Challinor in OpenAIREBruno Basso;
Phillip D. Alderman; Phillip D. Alderman; Jeffrey W. White; Andrea Maiorano;Bruno Basso
Bruno Basso in OpenAIREKatharina Waha;
Katharina Waha;Katharina Waha
Katharina Waha in OpenAIREJørgen E. Olesen;
Jørgen E. Olesen
Jørgen E. Olesen in OpenAIRESenthold Asseng;
Pierre Stratonovitch;Senthold Asseng
Senthold Asseng in OpenAIREZhigan Zhao;
Zhigan Zhao; Elias Fereres; Elias Fereres;Zhigan Zhao
Zhigan Zhao in OpenAIREKurt Christian Kersebaum;
Claudio O. Stöckle;Kurt Christian Kersebaum
Kurt Christian Kersebaum in OpenAIRERoberto C. Izaurralde;
Jakarat Anothai; Jakarat Anothai;Roberto C. Izaurralde
Roberto C. Izaurralde in OpenAIREGiacomo De Sanctis;
Yan Zhu; Pramod K. Aggarwal;Giacomo De Sanctis
Giacomo De Sanctis in OpenAIREClaas Nendel;
Claas Nendel
Claas Nendel in OpenAIREThilo Streck;
Thilo Streck
Thilo Streck in OpenAIREFulu Tao;
Fulu Tao
Fulu Tao in OpenAIRESebastian Gayler;
Sebastian Gayler
Sebastian Gayler in OpenAIREEckart Priesack;
Eckart Priesack
Eckart Priesack in OpenAIREEnli Wang;
Zhimin Wang;Enli Wang
Enli Wang in OpenAIREIwan Supit;
Christian Biernath; Soora Naresh Kumar; Alex C. Ruane; Leilei Liu; Joost Wolf;Iwan Supit
Iwan Supit in OpenAIREChristoph Müller;
Christoph Müller
Christoph Müller in OpenAIREGerrit Hoogenboom;
Gerrit Hoogenboom;Gerrit Hoogenboom
Gerrit Hoogenboom in OpenAIREIncreasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for >50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 °C to 33 °C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.
Nature Plants arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverQueensland University of Technology: QUT ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nplants.2017.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 206 citations 206 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 28visibility views 28 download downloads 23 Powered bymore_vert Nature Plants arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverQueensland University of Technology: QUT ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nplants.2017.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors:Beate Zimmermann;
Beate Zimmermann
Beate Zimmermann in OpenAIRESarah Kruber;
Sarah Kruber
Sarah Kruber in OpenAIREClaas Nendel;
Claas Nendel
Claas Nendel in OpenAIREHenry Munack;
+1 AuthorsHenry Munack
Henry Munack in OpenAIREBeate Zimmermann;
Beate Zimmermann
Beate Zimmermann in OpenAIRESarah Kruber;
Sarah Kruber
Sarah Kruber in OpenAIREClaas Nendel;
Claas Nendel
Claas Nendel in OpenAIREHenry Munack;
Henry Munack
Henry Munack in OpenAIREChristian Hildmann;
Christian Hildmann
Christian Hildmann in OpenAIREpmid: 38991348
Atmospheric heat has become a major public concern in a rapidly warming world. Evapotranspiration, however, provides effective land surface cooling during the vegetation period. Adversely, modern cultural landscapes - due to both water and potential evapotranspiration pathways lacking - are increasingly incapable of offering this important benefit. We hypothesised that concerted measures for a revived landscape water retention can fuel plant transpiration, especially during dry periods, and thus contribute to climate change adaptation by stabilising the regional climate. Seeking nature-based ways to an improved landscape water retention, we used the land surface temperature (LST) as a proxy for landscape mesoclimate. For our drought-prone rural study area, we identified potential candidate environmental predictors for which we established statistical relationships to LST. We then, from a set of potential climate change adaptation measures, mapped selected items to potential locations of implementation. Building on that, we evaluated a certain measures' probable cooling effect using (i) the fitted model and (ii) the expected expression of predictors before and after a hypothetical measure implementation. In the modelling, we took into account the spatial and temporal autocorrelation of the LST data and thus achieved realistic parameter estimates. Using the candidate predictor set and the model, we were able to establish a ranking of the effectiveness of climate adaptation measures. However, due to the spatial variability of the predictors, the modelled LST is site-specific. This results in a spatial differentiation of a measure's benefit. Furthermore, seasonal variations occur, such as those caused by plant growth. On average, the afforestation of arable land or urban brownfields, and the rewetting of former wet meadows have the largest cooling capacities of up to 3.5 K. We conclude that heat countermeasures based on fostering both evapotranspiration and landscape water retention, even in rural regions, offer promising adaptation ways to atmospheric warming.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2024.121595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2024.121595&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 India, India, France, South Africa, Australia, Finland, FrancePublisher:Wiley Authors:Gatien N. Falconnier;
Gatien N. Falconnier
Gatien N. Falconnier in OpenAIREMarc Corbeels;
Marc Corbeels
Marc Corbeels in OpenAIREKenneth J. Boote;
Kenneth J. Boote
Kenneth J. Boote in OpenAIREFrançois Affholder;
+52 AuthorsFrançois Affholder
François Affholder in OpenAIREGatien N. Falconnier;
Gatien N. Falconnier
Gatien N. Falconnier in OpenAIREMarc Corbeels;
Marc Corbeels
Marc Corbeels in OpenAIREKenneth J. Boote;
Kenneth J. Boote
Kenneth J. Boote in OpenAIREFrançois Affholder;
François Affholder
François Affholder in OpenAIREMyriam Adam;
Myriam Adam
Myriam Adam in OpenAIREDilys S. MacCarthy;
Dilys S. MacCarthy
Dilys S. MacCarthy in OpenAIREAlex C. Ruane;
Alex C. Ruane
Alex C. Ruane in OpenAIREClaas Nendel;
Claas Nendel
Claas Nendel in OpenAIREAnthony M. Whitbread;
Anthony M. Whitbread
Anthony M. Whitbread in OpenAIREÉric Justes;
Lajpat R. Ahuja;Éric Justes
Éric Justes in OpenAIREFolorunso M. Akinseye;
Folorunso M. Akinseye
Folorunso M. Akinseye in OpenAIREIsaac N. Alou;
Isaac N. Alou
Isaac N. Alou in OpenAIREKokou A. Amouzou;
Kokou A. Amouzou
Kokou A. Amouzou in OpenAIRESaseendran S. Anapalli;
Saseendran S. Anapalli
Saseendran S. Anapalli in OpenAIREChristian Baron;
Christian Baron
Christian Baron in OpenAIREBruno Basso;
Bruno Basso
Bruno Basso in OpenAIREFrédéric Baudron;
Patrick Bertuzzi;Frédéric Baudron
Frédéric Baudron in OpenAIREAndrew J. Challinor;
Yi Chen;Andrew J. Challinor
Andrew J. Challinor in OpenAIREDelphine Deryng;
Delphine Deryng
Delphine Deryng in OpenAIREMaha L. Elsayed;
Babacar Faye;Maha L. Elsayed
Maha L. Elsayed in OpenAIREThomas Gaiser;
Thomas Gaiser
Thomas Gaiser in OpenAIREMarcelo Galdos;
Marcelo Galdos
Marcelo Galdos in OpenAIRESebastian Gayler;
Edward Gerardeaux;Sebastian Gayler
Sebastian Gayler in OpenAIREMichel Giner;
Michel Giner
Michel Giner in OpenAIREBrian Grant;
Brian Grant
Brian Grant in OpenAIREGerrit Hoogenboom;
Gerrit Hoogenboom
Gerrit Hoogenboom in OpenAIREEsther S. Ibrahim;
Esther S. Ibrahim
Esther S. Ibrahim in OpenAIREBahareh Kamali;
Bahareh Kamali
Bahareh Kamali in OpenAIREKurt Christian Kersebaum;
Kurt Christian Kersebaum
Kurt Christian Kersebaum in OpenAIRESoo‐Hyung Kim;
Soo‐Hyung Kim
Soo‐Hyung Kim in OpenAIREMichael van der Laan;
Michael van der Laan
Michael van der Laan in OpenAIRELouise Leroux;
Louise Leroux
Louise Leroux in OpenAIREJon I. Lizaso;
Jon I. Lizaso
Jon I. Lizaso in OpenAIREBernardo Maestrini;
Bernardo Maestrini
Bernardo Maestrini in OpenAIREElizabeth A. Meier;
Elizabeth A. Meier
Elizabeth A. Meier in OpenAIREFasil Mequanint;
Alain Ndoli;Fasil Mequanint
Fasil Mequanint in OpenAIRECheryl H. Porter;
Cheryl H. Porter
Cheryl H. Porter in OpenAIREEckart Priesack;
Eckart Priesack
Eckart Priesack in OpenAIREDominique Ripoche;
Dominique Ripoche
Dominique Ripoche in OpenAIRETesfaye S. Sida;
Tesfaye S. Sida
Tesfaye S. Sida in OpenAIREUpendra Singh;
Upendra Singh
Upendra Singh in OpenAIREWard N. Smith;
Ward N. Smith
Ward N. Smith in OpenAIREAmit Srivastava;
Sumit Sinha;Amit Srivastava
Amit Srivastava in OpenAIREFulu Tao;
Fulu Tao
Fulu Tao in OpenAIREPeter J. Thorburn;
Peter J. Thorburn
Peter J. Thorburn in OpenAIREDennis Timlin;
Dennis Timlin
Dennis Timlin in OpenAIREBouba Traore;
Bouba Traore
Bouba Traore in OpenAIRETracy Twine;
Tracy Twine
Tracy Twine in OpenAIREHeidi Webber;
Heidi Webber
Heidi Webber in OpenAIREAbstractSmallholder farmers in sub‐Saharan Africa (SSA) currently grow rainfed maize with limited inputs including fertilizer. Climate change may exacerbate current production constraints. Crop models can help quantify the potential impact of climate change on maize yields, but a comprehensive multimodel assessment of simulation accuracy and uncertainty in these low‐input systems is currently lacking. We evaluated the impact of varying [CO2], temperature and rainfall conditions on maize yield, for different nitrogen (N) inputs (0, 80, 160 kg N/ha) for five environments in SSA, including cool subhumid Ethiopia, cool semi‐arid Rwanda, hot subhumid Ghana and hot semi‐arid Mali and Benin using an ensemble of 25 maize models. Models were calibrated with measured grain yield, plant biomass, plant N, leaf area index, harvest index and in‐season soil water content from 2‐year experiments in each country to assess their ability to simulate observed yield. Simulated responses to climate change factors were explored and compared between models. Calibrated models reproduced measured grain yield variations well with average relative root mean square error of 26%, although uncertainty in model prediction was substantial (CV = 28%). Model ensembles gave greater accuracy than any model taken at random. Nitrogen fertilization controlled the response to variations in [CO2], temperature and rainfall. Without N fertilizer input, maize (a) benefited less from an increase in atmospheric [CO2]; (b) was less affected by higher temperature or decreasing rainfall; and (c) was more affected by increased rainfall because N leaching was more critical. The model intercomparison revealed that simulation of daily soil N supply and N leaching plays a crucial role in simulating climate change impacts for low‐input systems. Climate change and N input interactions have strong implications for the design of robust adaptation approaches across SSA, because the impact of climate change in low input systems will be modified if farmers intensify maize production with balanced nutrient management.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2020Full-Text: https://hal.inrae.fr/hal-03127406/documentData sources: Hyper Article en LigneCIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.inrae.fr/hal-03127406Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 72 citations 72 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2020Full-Text: https://hal.inrae.fr/hal-03127406/documentData sources: Hyper Article en LigneCIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.inrae.fr/hal-03127406Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 FinlandPublisher:Elsevier BV Authors:Tao, Fulu;
Tao, Fulu
Tao, Fulu in OpenAIRERötter, Reimund P.;
Rötter, Reimund P.
Rötter, Reimund P. in OpenAIREPalosuo, Taru;
Palosuo, Taru
Palosuo, Taru in OpenAIREDiaz-Ambrona, C. G. H.;
+17 AuthorsDiaz-Ambrona, C. G. H.
Diaz-Ambrona, C. G. H. in OpenAIRETao, Fulu;
Tao, Fulu
Tao, Fulu in OpenAIRERötter, Reimund P.;
Rötter, Reimund P.
Rötter, Reimund P. in OpenAIREPalosuo, Taru;
Palosuo, Taru
Palosuo, Taru in OpenAIREDiaz-Ambrona, C. G. H.;
Diaz-Ambrona, C. G. H.
Diaz-Ambrona, C. G. H. in OpenAIREMinguez, M. Ines;
Minguez, M. Ines
Minguez, M. Ines in OpenAIRESemenov, Mikhail A.;
Semenov, Mikhail A.
Semenov, Mikhail A. in OpenAIREKersebaum, Kurt Christian;
Kersebaum, Kurt Christian
Kersebaum, Kurt Christian in OpenAIRENendel, Claas;
Nendel, Claas
Nendel, Claas in OpenAIRECammarano, Davide;
Hoffmann, Holger;Cammarano, Davide
Cammarano, Davide in OpenAIREEwert, Frank;
Dambreville, Anaelle;Ewert, Frank
Ewert, Frank in OpenAIREMartre, Pierre;
Rodriguez, Lucia;Martre, Pierre
Martre, Pierre in OpenAIRERuiz-Ramos, Margarita;
Ruiz-Ramos, Margarita
Ruiz-Ramos, Margarita in OpenAIREGaiser, Thomas;
Höhn, Jukka G.;Gaiser, Thomas
Gaiser, Thomas in OpenAIRESalo, Tapio;
Salo, Tapio
Salo, Tapio in OpenAIREFerrise, Roberto;
Ferrise, Roberto
Ferrise, Roberto in OpenAIREBindi, Marco;
Bindi, Marco
Bindi, Marco in OpenAIRESchulman, Alan H.;
Schulman, Alan H.
Schulman, Alan H. in OpenAIREAbstract Climate change and its associated higher frequency and severity of adverse weather events require genotypic adaptation. Process-based ecophysiological modelling offers a powerful means to better target and accelerate development of new crop cultivars. Barley ( Hordeum vulgare L.) is an important crop throughout the world, and a good model for study of the genetics of stress adaptation because many quantitative trait loci and candidate genes for biotic and abiotic stress tolerance have been identified in it. Here, we developed a new approach to design future crop ideotypes using an ensemble of eight barley simulation models (i.e. APSIM, CropSyst, HERMES, MCWLA, MONICA, SIMPLACE, SiriusQuality , and WOFOST), and applied it to design climate-resilient barley ideotypes for Boreal and Mediterranean climatic zones in Europe. The results showed that specific barley genotypes, represented by sets of cultivar parameters in the crop models, could be promising under future climate change conditions, resulting in increased yields and low inter-annual yield variability. In contrast, other genotypes could result in substantial yield declines. The most favorable climate-zone-specific barley ideotypes were further proposed, having combinations of several key genetic traits in terms of phenology, leaf growth, photosynthesis, drought tolerance, and grain formation. For both Boreal and Mediterranean climatic zones, barley ideotypes under future climatic conditions should have a longer reproductive growing period, lower leaf senescence rate, larger radiation use efficiency or maximum assimilation rate, and higher drought tolerance. Such characteristics can produce substantial positive impacts on yields under contrasting conditions. Moreover, barley ideotypes should have a low photoperiod and high vernalization sensitivity for the Boreal climatic zone; for the Mediterranean, in contrast, it should have a low photoperiod and low vernalization sensitivity. The drought-tolerance trait is more beneficial for the Mediterranean than for the Boreal climatic zone. Our study demonstrates a sound approach to design future barley ideotypes based on an ensemble of well-tested, diverse crop models and on integration of knowledge from multiple disciplines. The robustness of model-aided ideotypes design can be further enhanced by continuously improving crop models and enhancing information exchange between modellers, agro-meteorologists, geneticists, physiologists, and plant breeders.
Hyper Article en Lig... arrow_drop_down European Journal of AgronomyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2016.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 91 citations 91 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down European Journal of AgronomyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2016.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 South AfricaPublisher:Elsevier BV Authors:Kritika Kothari;
Kritika Kothari
Kritika Kothari in OpenAIRERafael Battisti;
Rafael Battisti
Rafael Battisti in OpenAIREKenneth J. Boote;
Kenneth J. Boote
Kenneth J. Boote in OpenAIRESotirios Archontoulis;
+24 AuthorsSotirios Archontoulis
Sotirios Archontoulis in OpenAIREKritika Kothari;
Kritika Kothari
Kritika Kothari in OpenAIRERafael Battisti;
Rafael Battisti
Rafael Battisti in OpenAIREKenneth J. Boote;
Kenneth J. Boote
Kenneth J. Boote in OpenAIRESotirios Archontoulis;
Sotirios Archontoulis
Sotirios Archontoulis in OpenAIREAdriana Confalone;
Adriana Confalone
Adriana Confalone in OpenAIREJulie Constantin;
Julie Constantin
Julie Constantin in OpenAIRESantiago Vianna Cuadra;
Santiago Vianna Cuadra
Santiago Vianna Cuadra in OpenAIREPhilippe Debaeke;
Philippe Debaeke
Philippe Debaeke in OpenAIREBabacar Faye;
Babacar Faye
Babacar Faye in OpenAIREBrian Grant;
Brian Grant
Brian Grant in OpenAIREGerrit Hoogenboom;
Gerrit Hoogenboom
Gerrit Hoogenboom in OpenAIREQi Jing;
Qi Jing
Qi Jing in OpenAIREMichael van der Laan;
Michael van der Laan
Michael van der Laan in OpenAIREFernando Antônio Macena da Silva;
Fernando Antônio Macena da Silva
Fernando Antônio Macena da Silva in OpenAIREFábio Ricardo Marin;
Fábio Ricardo Marin
Fábio Ricardo Marin in OpenAIREAlireza Nehbandani;
Alireza Nehbandani
Alireza Nehbandani in OpenAIREClaas Nendel;
Claas Nendel
Claas Nendel in OpenAIRELarry C. Purcell;
Larry C. Purcell
Larry C. Purcell in OpenAIREBudong Qian;
Budong Qian
Budong Qian in OpenAIREAlex C. Ruane;
Alex C. Ruane
Alex C. Ruane in OpenAIRECéline Schoving;
Céline Schoving
Céline Schoving in OpenAIREEvandro Henrique Figueiredo Moura da Silva;
Evandro Henrique Figueiredo Moura da Silva
Evandro Henrique Figueiredo Moura da Silva in OpenAIREWard Smith;
Ward Smith
Ward Smith in OpenAIREAfshin Soltani;
Afshin Soltani
Afshin Soltani in OpenAIREAmit Kumar Srivastava;
Amit Kumar Srivastava
Amit Kumar Srivastava in OpenAIRENilson Aparecido Vieira;
Nilson Aparecido Vieira
Nilson Aparecido Vieira in OpenAIREStacey Slone;
Stacey Slone
Stacey Slone in OpenAIREMontserrat Salmerón;
Montserrat Salmerón
Montserrat Salmerón in OpenAIREUne estimation précise du rendement des cultures dans les scénarios de changement climatique est essentielle pour quantifier notre capacité à nourrir une population croissante et à développer des adaptations agronomiques pour répondre à la demande alimentaire future. Une évaluation coordonnée des simulations de rendement à partir de modèles écophysiologiques basés sur les processus pour l'évaluation de l'impact du changement climatique fait toujours défaut pour le soja, la légumineuse à grains la plus cultivée et la principale source de protéines dans notre chaîne alimentaire. Dans cette première étude multimodèle sur le soja, nous avons utilisé dix modèles de premier plan capables de simuler le rendement du soja sous différentes températures et concentrations atmosphériques de CO2 [CO2] pour quantifier l'incertitude dans les simulations de rendement du soja en réponse à ces facteurs. Les modèles ont d'abord été paramétrés avec des données mesurées de haute qualité provenant de cinq environnements contrastés. Nous avons trouvé une variabilité considérable entre les modèles dans les réponses de rendement simulées à l'augmentation de la température et du [CO2]. Par exemple, en cas d'augmentation de la température de + 3 °C dans notre endroit le plus frais en Argentine, certains modèles ont simulé que le rendement diminuerait jusqu'à 24 %, tandis que d'autres simulaient une augmentation du rendement allant jusqu'à 29 %. Dans notre emplacement le plus chaud au Brésil, les modèles ont simulé une réduction du rendement allant d'une diminution de 38 % sous + 3 °C à une augmentation de la température sans effet sur le rendement. De même, en augmentant le [CO2] de 360 à 540 ppm, les modèles ont simulé une augmentation du rendement allant de 6% à 31%. L'étalonnage du modèle n'a pas réduit la variabilité entre les modèles, mais a eu un effet inattendu sur la modification des réponses du rendement à la température pour certains des modèles. La forte incertitude dans les réponses des modèles indique l'applicabilité limitée des modèles individuels pour les projections alimentaires du changement climatique. Cependant, la moyenne d'ensemble des simulations à travers les modèles était un outil efficace pour réduire la forte incertitude dans les simulations de rendement du soja associées aux modèles individuels et à leur paramétrage. Les réponses du rendement moyen de l'ensemble à la température et au [CO2] étaient similaires à celles rapportées dans la littérature. Notre étude est la première démonstration des avantages obtenus en utilisant un ensemble de modèles de légumineuses à grains pour les projections alimentaires du changement climatique, et souligne qu'un développement plus poussé du modèle du soja avec des expériences sous des [CO2] et des températures élevées est nécessaire pour réduire l'incertitude des modèles individuels. Una estimación precisa del rendimiento de los cultivos en escenarios de cambio climático es esencial para cuantificar nuestra capacidad para alimentar a una población en crecimiento y desarrollar adaptaciones agronómicas para satisfacer la demanda futura de alimentos. Todavía falta una evaluación coordinada de las simulaciones de rendimiento a partir de modelos ecofisiológicos basados en procesos para la evaluación del impacto del cambio climático para la soja, la leguminosa de grano más cultivada y la principal fuente de proteínas en nuestra cadena alimentaria. En este primer estudio multimodelo de soja, utilizamos diez modelos prominentes capaces de simular el rendimiento de la soja a diferentes temperaturas y concentraciones de CO2 atmosférico [CO2] para cuantificar la incertidumbre en las simulaciones de rendimiento de soja en respuesta a estos factores. Los modelos se parametrizaron por primera vez con datos medidos de alta calidad de cinco entornos contrastantes. Encontramos una variabilidad considerable entre los modelos en las respuestas de rendimiento simuladas al aumento de la temperatura y [CO2]. Por ejemplo, bajo un aumento de temperatura de + 3 ° C en nuestra ubicación más fresca en Argentina, algunos modelos simularon que el rendimiento se reduciría hasta un 24%, mientras que otros simularon aumentos de rendimiento de hasta un 29%. En nuestra ubicación más cálida en Brasil, los modelos simularon una reducción del rendimiento que va desde una disminución del 38% con un aumento de temperatura de + 3 ° C hasta ningún efecto en el rendimiento. Del mismo modo, al aumentar [CO2] de 360 a 540 ppm, los modelos simularon un aumento del rendimiento que osciló entre el 6% y el 31%. La calibración del modelo no redujo la variabilidad entre los modelos, pero tuvo un efecto inesperado en la modificación de las respuestas de rendimiento a la temperatura para algunos de los modelos. La alta incertidumbre en las respuestas de los modelos indica la aplicabilidad limitada de los modelos individuales para las proyecciones alimentarias del cambio climático. Sin embargo, la media del conjunto de simulaciones entre modelos fue una herramienta efectiva para reducir la alta incertidumbre en las simulaciones de rendimiento de soja asociadas con modelos individuales y su parametrización. Las respuestas de rendimiento medio del conjunto a la temperatura y [CO2] fueron similares a las informadas en la literatura. Nuestro estudio es la primera demostración de los beneficios logrados al utilizar un conjunto de modelos de leguminosas de grano para las proyecciones de alimentos del cambio climático, y destaca que se necesita un mayor desarrollo del modelo de soja con experimentos bajo [CO2] y temperatura elevadas para reducir la incertidumbre de los modelos individuales. An accurate estimation of crop yield under climate change scenarios is essential to quantify our ability to feed a growing population and develop agronomic adaptations to meet future food demand. A coordinated evaluation of yield simulations from process-based eco-physiological models for climate change impact assessment is still missing for soybean, the most widely grown grain legume and the main source of protein in our food chain. In this first soybean multi-model study, we used ten prominent models capable of simulating soybean yield under varying temperature and atmospheric CO2 concentration [CO2] to quantify the uncertainty in soybean yield simulations in response to these factors. Models were first parametrized with high quality measured data from five contrasting environments. We found considerable variability among models in simulated yield responses to increasing temperature and [CO2]. For example, under a + 3 °C temperature rise in our coolest location in Argentina, some models simulated that yield would reduce as much as 24%, while others simulated yield increases up to 29%. In our warmest location in Brazil, the models simulated a yield reduction ranging from a 38% decrease under + 3 °C temperature rise to no effect on yield. Similarly, when increasing [CO2] from 360 to 540 ppm, the models simulated a yield increase that ranged from 6% to 31%. Model calibration did not reduce variability across models but had an unexpected effect on modifying yield responses to temperature for some of the models. The high uncertainty in model responses indicates the limited applicability of individual models for climate change food projections. However, the ensemble mean of simulations across models was an effective tool to reduce the high uncertainty in soybean yield simulations associated with individual models and their parametrization. Ensemble mean yield responses to temperature and [CO2] were similar to those reported from the literature. Our study is the first demonstration of the benefits achieved from using an ensemble of grain legume models for climate change food projections, and highlights that further soybean model development with experiments under elevated [CO2] and temperature is needed to reduce the uncertainty from the individual models. يعد التقدير الدقيق لمحصول المحاصيل في ظل سيناريوهات تغير المناخ أمرًا ضروريًا لتحديد قدرتنا على إطعام عدد متزايد من السكان وتطوير التكيفات الزراعية لتلبية الطلب على الغذاء في المستقبل. لا يزال التقييم المنسق لمحاكاة الغلة من النماذج الفسيولوجية البيئية القائمة على العمليات لتقييم تأثير تغير المناخ مفقودًا بالنسبة لفول الصويا، وهو بقول الحبوب الأكثر زراعة على نطاق واسع والمصدر الرئيسي للبروتين في سلسلتنا الغذائية. في هذه الدراسة الأولى متعددة النماذج لفول الصويا، استخدمنا عشرة نماذج بارزة قادرة على محاكاة محصول فول الصويا تحت درجات حرارة متفاوتة وتركيز ثاني أكسيد الكربون في الغلاف الجوي [CO2] لقياس عدم اليقين في محاكاة محصول فول الصويا استجابة لهذه العوامل. تم قياس النماذج أولاً ببيانات مقاسة عالية الجودة من خمس بيئات متباينة. وجدنا تباينًا كبيرًا بين النماذج في استجابات العائد المحاكاة لزيادة درجة الحرارة و [CO2]. على سبيل المثال، في ظل ارتفاع درجة الحرارة بمقدار + 3 درجات مئوية في أروع موقع لنا في الأرجنتين، قامت بعض النماذج بمحاكاة أن العائد سيقلل بنسبة تصل إلى 24 ٪، بينما يزيد العائد المحاكى الآخر بنسبة تصل إلى 29 ٪. في موقعنا الأكثر دفئًا في البرازيل، قامت النماذج بمحاكاة انخفاض العائد الذي يتراوح بين انخفاض بنسبة 38 ٪ تحت + ارتفاع درجة حرارة 3 درجات مئوية إلى عدم التأثير على العائد. وبالمثل، عند زيادة [ثاني أكسيد الكربون] من 360 إلى 540 جزء في المليون، قامت النماذج بمحاكاة زيادة العائد التي تراوحت من 6 ٪ إلى 31 ٪. لم تقلل معايرة النموذج من التباين عبر النماذج ولكن كان لها تأثير غير متوقع على تعديل استجابات الخضوع لدرجة الحرارة لبعض النماذج. يشير عدم اليقين الشديد في الاستجابات النموذجية إلى التطبيق المحدود للنماذج الفردية للتوقعات الغذائية لتغير المناخ. ومع ذلك، كان المتوسط الجماعي للمحاكاة عبر النماذج أداة فعالة للحد من عدم اليقين العالي في محاكاة غلة فول الصويا المرتبطة بالنماذج الفردية ومعلماتها. كانت استجابات متوسط العائد على درجة الحرارة و [CO2] متشابهة مع تلك الواردة في الأدبيات. دراستنا هي أول عرض توضيحي للفوائد التي تحققت من استخدام مجموعة من نماذج البقوليات لتوقعات تغير المناخ الغذائية، وتسلط الضوء على الحاجة إلى مزيد من تطوير نموذج فول الصويا مع التجارب تحت [CO2] ودرجة الحرارة المرتفعة لتقليل عدم اليقين من النماذج الفردية.
UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2022.126482&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2022.126482&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 France, France, Finland, France, Germany, France, United States, FrancePublisher:Elsevier BV Authors: INRA, URP3F, France ( host institution ); Durand, Jean-Louis ( author ); Delusca, Kenel ( author ); Boote, Ken ( UF author ); +34 AuthorsINRA, URP3F, France ( host institution ); Durand, Jean-Louis ( author ); Delusca, Kenel ( author ); Boote, Ken ( UF author ); Lizaso, Jon ( author );Manderscheid, Remy ( author );
Weigel, Hans Johachim ( author ); Ruane, Alex C ( author ); Rosenzweig, Cynthia ( author ); Jones, Jim ( UF author ); Ahuja, Laj ( author ); Anapalli, Saseendran ( author );Manderscheid, Remy ( author )
Manderscheid, Remy ( author ) in OpenAIREBasso, Bruno ( author );
Basso, Bruno ( author )
Basso, Bruno ( author ) in OpenAIREBaron, Christian ( author );
Bertuzzi, Patrick ( author ); Biernath, Christian ( author ); Deryng, Delphine ( author );Baron, Christian ( author )
Baron, Christian ( author ) in OpenAIREEwert, Frank ( author );
Ewert, Frank ( author )
Ewert, Frank ( author ) in OpenAIREGaiser, Thomas ( author );
Gaiser, Thomas ( author )
Gaiser, Thomas ( author ) in OpenAIREGayler, Sebastian ( author );
Heinlein, Florian ( author );Gayler, Sebastian ( author )
Gayler, Sebastian ( author ) in OpenAIREKersebaum, Kurt Christian ( author );
Kersebaum, Kurt Christian ( author )
Kersebaum, Kurt Christian ( author ) in OpenAIREKim, Soo-Hyung ( author );
Kim, Soo-Hyung ( author )
Kim, Soo-Hyung ( author ) in OpenAIREMüller, Christoph ( author );
Müller, Christoph ( author )
Müller, Christoph ( author ) in OpenAIRENendel, Claas ( author );
Nendel, Claas ( author )
Nendel, Claas ( author ) in OpenAIREOlioso, Albert ( author );
Olioso, Albert ( author )
Olioso, Albert ( author ) in OpenAIREPriesack, Eckart ( author );
Villegas, Julian Ramirez ( author ); Ripoche, Dominique ( author );Priesack, Eckart ( author )
Priesack, Eckart ( author ) in OpenAIRERötter, Reimund P. ( author );
Seidel, Sabine I ( author ); Srivastava, Amit ( author );Rötter, Reimund P. ( author )
Rötter, Reimund P. ( author ) in OpenAIRETao, Fulu ( author );
Tao, Fulu ( author )
Tao, Fulu ( author ) in OpenAIRETimlin, Dennis ( author );
Timlin, Dennis ( author )
Timlin, Dennis ( author ) in OpenAIRETwine, Tracy ( author );
Wang, Enli ( author );Twine, Tracy ( author )
Twine, Tracy ( author ) in OpenAIREWebber, Heidi ( author );
Webber, Heidi ( author )
Webber, Heidi ( author ) in OpenAIREZhao, Zhigan ( author );
Zhao, Zhigan ( author )
Zhao, Zhigan ( author ) in OpenAIREhandle: 10568/79936
This study assesses the ability of 21 crop models to capture the impact of elevated CO2 concentration ([CO2]) on maize yield and water use as measured in a 2-year Free Air Carbon dioxide Enrichment experiment conducted at the Thunen Institute in Braunschweig, Germany (Manderscheid et al., 2014). Data for ambient [CO2] and irrigated treatments were provided to the 21 models for calibrating plant traits, including weather, soil and management data as well as yield, grain number, above ground biomass, leaf area index, nitrogen concentration in biomass and grain, water use and soil water content. Models differed in their representation of carbon assimilation and evapotranspiration processes. The models reproduced the absence of yield response to elevated [CO2] under well-watered conditions, as well as the impact of water deficit at ambient [CO2], with 50% of models within a range of +/−1 Mg ha−1 around the mean. The bias of the median of the 21 models was less than 1 Mg ha−1. However under water deficit in one of the two years, the models captured only 30% of the exceptionally high [CO2] enhancement on yield observed. Furthermore the ensemble of models was unable to simulate the very low soil water content at anthesis and the increase of soil water and grain number brought about by the elevated [CO2] under dry conditions. Overall, we found models with explicit stomatal control on transpiration tended to perform better. Our results highlight the need for model improvement with respect to simulating transpirational water use and its impact on water status during the kernel-set phase.
University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 2017License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00590868/00001Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2017Full-Text: https://hdl.handle.net/10568/79936Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverEuropean Journal of AgronomyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2017.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 79 citations 79 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 2017License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00590868/00001Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2017Full-Text: https://hdl.handle.net/10568/79936Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverEuropean Journal of AgronomyArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2017.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Stefan Sieber; C. Paul; D. Deumlich; Dagmar Balla; Angelika Wurbs; A. Starick;Peter Zander;
Peter Zander
Peter Zander in OpenAIRER. Dannowski;
R. Dannowski
R. Dannowski in OpenAIREKatharina Helming;
Ulrich Stachow; Andrea Knierim; Andrea Knierim;Katharina Helming
Katharina Helming in OpenAIREClaas Nendel;
Wilfried Mirschel;Claas Nendel
Claas Nendel in OpenAIREMichael Glemnitz;
C. Gutzler; Ralf Wieland;Michael Glemnitz
Michael Glemnitz in OpenAIREAbstractDecisions for agricultural management are taken at farm scale. However, such decisions may well impact upon regional sustainability. Two of the likely agricultural management responses to future challenges are extended use of irrigation and increased production of energy crops. The drivers for these are high commodity prices and subsidy policies for renewable energy. However, the impacts of these responses upon regional sustainability are unknown. Thus, we conducted integrated impact assessments for agricultural intensification scenarios in the federal state of Brandenburg, Germany, for 2025. One Irrigation scenario and one Energy scenario were contrasted with the Business As Usual (BAU) scenario. We applied nine indicators to analyze the economic, social and environmental effects at the regional, in this case district scale, which is the smallest administrative unit in Brandenburg. Assessment results were discussed in a stakeholder workshop involving 16 experts from the state government.The simulated area shares of silage maize for fodder and energy were 29%, 37% and 49% for the BAU, Irrigation, and Energy scenarios, respectively. The Energy scenario increased bio-electricity production to 41% of the demand of Brandenburg, and it resulted in CO2 savings of up to 3.5milliontons. However, it resulted in loss of biodiversity, loss of landscape scenery, increased soil erosion risk, and increased area demand for water protection requirements. The Irrigation scenario led to yield increases of 7% (rapeseed), 18% (wheat, sugar beet), and 40% (maize) compared to the BAU scenario. It also reduced the year-to-year yield variability. Water demand for irrigation was found to be in conflict with other water uses for two of the 14 districts. Spatial differentiation of scenario impacts showed that districts with medium to low yield potentials were more affected by negative impacts than districts with high yield potentials.In this first comprehensive sustainability impact assessment of agricultural intensification scenarios at regional level, we showed that a considerable potential for agricultural intensification exists. The intensification is accompanied by adverse environmental and socio-economic impacts. The novelty lies in the multiscale integration of comprehensive, agricultural management simulations with regional level impact assessment, which was achieved with the adequate use of indicators. It provided relevant evidence for policy decision making. Stakeholders appreciated the integrative approach of the assessment, which substantiated ongoing discussions among the government bodies. The assessment approach and the Brandenburg case study may stay exemplary for other regions in the world where similar economic and policy driving forces are likely to lead to agricultural intensification.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2014.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 124 citations 124 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2014.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu