- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 SpainPublisher:MDPI AG Authors: Daniel Sanin-Villa; Oscar Danilo Montoya; Walter Gil-González; Luis Fernando Grisales-Noreña; +1 AuthorsDaniel Sanin-Villa; Oscar Danilo Montoya; Walter Gil-González; Luis Fernando Grisales-Noreña; Alberto-Jesus Perea-Moreno;doi: 10.3390/en16114304
handle: 10396/25519
Thermoelectric generators (TEGs) have the potential to convert waste heat into electrical energy, making them attractive for energy harvesting applications. However, accurately estimating TEG parameters from industrial systems is a complex problem due to the mathematical complex non-linearities and numerous variables involved in the TEG modeling. This paper addresses this research gap by presenting a comparative evaluation of three optimization methods, Particle Swarm Optimization (PSO), Salps Search Algorithm (SSA), and Vortex Search Algorithm (VSA), for TEG parameter estimation. The proposed integrated approach is significant as it overcomes the limitations of existing methods and provides a more accurate and rapid estimation of TEG parameters. The performance of each optimization method is evaluated in terms of root mean square error (RMSE), standard deviation, and processing time. The results indicate that all three methods perform similarly, with average RMSE errors ranging from 0.0019 W to 0.0021 W, and minimum RMSE errors ranging from 0.0017 W to 0.0018 W. However, PSO has a higher standard deviation of the RMSE errors compared to the other two methods. In addition, we present the optimized parameters achieved through the proposed optimization methods, which serve as a reference for future research and enable the comparison of various optimization strategies. The disparities observed in the optimized outcomes underscore the intricacy of the issue and underscore the importance of the integrated approach suggested for precise TEG parameter estimation.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/11/4304/pdfData sources: Multidisciplinary Digital Publishing InstituteHelvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2023License: CC BYFull-Text: https://doi.org/10.3390/en16114304Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16114304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/11/4304/pdfData sources: Multidisciplinary Digital Publishing InstituteHelvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2023License: CC BYFull-Text: https://doi.org/10.3390/en16114304Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16114304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ColombiaPublisher:MDPI AG Authors: Cristian Cepeda; Cesar Orozco-Henao; Winston Percybrooks; Juan Diego Pulgarín-Rivera; +3 AuthorsCristian Cepeda; Cesar Orozco-Henao; Winston Percybrooks; Juan Diego Pulgarín-Rivera; Oscar Danilo Montoya; Walter Gil-González; Juan Carlos Vélez;doi: 10.3390/en13051223
handle: 20.500.12585/9371
The dynamic features of microgrid operation, such as on-grid/off-grid operation mode, the intermittency of distributed generators, and its dynamic topology due to its ability to reconfigure itself, cause misfiring of conventional protection schemes. To solve this issue, adaptive protection schemes that use robust communication systems have been proposed for the protection of microgrids. However, the cost of this solution is significantly high. This paper presented an intelligent fault detection (FD) system for microgrids on the basis of local measurements and machine learning (ML) techniques. This proposed FD system provided a smart level to intelligent electronic devices (IED) installed on the microgrid through the integration of ML models. This allowed each IED to autonomously determine if a fault occurred on the microgrid, eliminating the requirement of robust communication infrastructure between IEDs for microgrid protection. Additionally, the proposed system presented a methodology composed of four stages, which allowed its implementation in any microgrid. In addition, each stage provided important recommendations for the proper use of ML techniques on the protection problem. The proposed FD system was validated on the modified IEEE 13-nodes test feeder. This took into consideration typical features of microgrids such as the load imbalance, reconfiguration, and off-grid/on-grid operation modes. The results demonstrated the flexibility and simplicity of the FD system in determining the best accuracy performance among several ML models. The ease of design’s implementation, formulation of parameters, and promising test results indicated the potential for real-life applications.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/5/1223/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13051223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/5/1223/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13051223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ColombiaPublisher:Elsevier BV Authors: Gil-González, Walter; Montoya, O.D.;handle: 20.500.12585/9235 , 20.500.12585/8732
The active and reactive power conditioning using superconducting magnetic energy storage (SMES) systems for low-voltage distribution networks via feedback nonlinear control is proposed in this paper. The SMES system is interconnected to ac grid using a pulsed-width modulated current source converter (PWM-CSC). The dynamical model of the system exhibits a nonlinear structure, which is eliminated by the application of a nonlinear feedback controller based of the expected behavior of the closed-loop system. The steady state analysis under time-domain reference frame to verify the stability properties on the proposed controller is used. The general control rules allow improving different objectives. The robustness and applicability of the proposed controller is tested considering unbalance and harmonic distortion in the voltage provided by the ac grid. It is also considered the possibility to use the SMES system with the proposed controller to compensate the active power oscillations of a wind-generator system. Keywords: Active and reactive power compensation
Ain Shams Engineerin... arrow_drop_down Ain Shams Engineering JournalArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.asej.2019.01.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ain Shams Engineerin... arrow_drop_down Ain Shams Engineering JournalArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.asej.2019.01.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ColombiaPublisher:Elsevier BV Authors: Montoya O.D.; Gil-González W.; Grisales-Noreña L.F.;handle: 20.500.12585/9246
This paper addresses the classical problem of optimal location and sizing of distributed generators (DGs) in radial distribution networks by presenting a mixed-integer nonlinear programming (MINLP) model. To solve such model, we employ the General Algebraic Modeling System (GAMS) in conjunction with the BONMIN solver, presenting its characteristics in a tutorial style. To operate all the DGs, we assume they are dispatched with a unity power factor. Test systems with 33 and 69 buses are employed to validate the proposed solution methodology by comparing its results with multiple approaches previously reported in the specialized literature. A 27-node test system is also used for locating photovoltaic (PV) sources considering the power capacity of the Caribbean region in Colombia during a typical sunny day. Numerical results confirm the efficiency and accuracy of the MINLP model and its solution is validated through the GAMS package.
Ain Shams Engineerin... arrow_drop_down Ain Shams Engineering JournalArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.asej.2019.08.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 81 citations 81 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ain Shams Engineerin... arrow_drop_down Ain Shams Engineering JournalArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.asej.2019.08.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ColombiaPublisher:MDPI AG O. D. Montoya; W. Gil-González; J. C. Hernández; D. A. Giral-Ramírez; A. Medina-Quesada;doi: 10.3390/en13174440
handle: 20.500.12585/9943 , 20.500.12585/9559
This paper deals with the optimal reconfiguration problem of DC distribution networks by proposing a new mixed-integer nonlinear programming (MINLP) formulation. This MINLP model focuses on minimising the power losses in the distribution lines by reformulating the classical power balance equations through a branch-to-node incidence matrix. The general algebraic modelling system (GAMS) is chosen as a solution tool, showing in tutorial form the implementation of the proposed MINLP model in a 6-nodes test feeder with 10 candidate lines. The validation of the MINLP formulation is performed in two classical 10-nodes DC test feeders. These are typically used for power flow and optimal power flow analyses. Numerical results demonstrate that power losses are reduced by about 16% when the optimal reconfiguration plan is found. The numerical validations are made in the GAMS software licensed by Universidad Tecnológica de Bolívar.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/17/4440/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13174440&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/17/4440/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13174440&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ColombiaPublisher:MDPI AG Authors: Walter Gil-González; Alexander Molina-Cabrera; Oscar Danilo Montoya; Luis Fernando Grisales-Noreña;doi: 10.3390/app10217681
handle: 20.500.12585/9948
This paper deals with a classical problem in power system analysis regarding the optimal location and sizing of distributed generators (DGs) in direct current (DC) distribution networks using the mathematical optimization. This optimization problem is divided into two sub-problems as follows: the optimal location of DGs is a problem, with those with a binary structure being the first sub-problem; and the optimal sizing of DGs with a nonlinear programming (NLP) structure is the second sub-problem. These problems originate from a general mixed-integer nonlinear programming model (MINLP), which corresponds to an NP-hard optimization problem. It is not possible to provide the global optimum with conventional programming methods. A mixed-integer semidefinite programming (MI-SDP) model is proposed to address this problem, where the binary part is solved via the branch and bound (B&B) methods and the NLP part is solved via convex optimization (i.e., SDP). The main advantage of the proposed MI-SDP model is the possibility of guaranteeing a global optimum solution if each of the nodes in the B&B search is convex, as is ensured by the SDP method. Numerical validations in two test feeders composed of 21 and 69 nodes demonstrate that in all of these problems, the optimal global solution is reached by the MI-SDP approach, compared to the classical metaheuristic and hybrid programming models reported in the literature. All the simulations have been carried out using the MATLAB software with the CVX tool and the Mosek solver.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/21/7681/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10217681&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/21/7681/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10217681&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ColombiaPublisher:Elsevier BV Authors: Grisales-Noreña L.F.; Montoya O.D.; Gil-González W.;handle: 20.500.12585/9050
Abstract This paper presents a method to find the optimal location, selection, and operation of energy storage systems (ESS- batteries-) and capacitors banks (CB) in distribution systems (DS). A mixed-integer non-linear programming model is proposed to formulate the problem. In this model, the minimization of energy loss in the DS is selected as an objective function. As constraints are considered: the active and reactive energy balance, voltage regulation, the total number energy storage devices that can be installed into network, as well as the operative bounds associated with the ESS (time of charge-discharge and energy capabilities). Three operating scenarios for the DS are analyzed by adopting the method proposed in this work. The first scenario is an evaluation of the base case (without batteries and CB), in which the initial conditions of the DS are determined. The second scenario considers the location of the ESS composed by redox flow batteries. Finally, the third scenario includes the installation of REDOX flow batteries with CB in parallel to correct operating problems generated by battery charging, and improve their impact on the grid. A master-slave strategy is adopted to solve the problem here discussed, implementing a Chu & Beasley genetic algorithm in both stages as an optimization technique. The proposed method is tested in a 69-node test feeder, where numerical results demonstrate its effectiveness.
Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2019.100891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2019.100891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Oscar Danilo Montoya; Oscar David Florez-Cediel; Walter Gil-González;This paper utilizes convex optimization to implement a day-ahead scheduling strategy for operating a photovoltaic distribution static compensator (PV-STATCOM) in medium-voltage distribution networks. The nonlinear non-convex programming model of the day-ahead scheduling strategy is transformed into a convex optimization model using the second-order cone programming approach in the complex domain. The main goal of efficiently operating PV-STATCOMs in distribution networks is to dynamically compensate for the active and reactive power generated by renewable energy resources such as photovoltaic plants. This is achieved by controlling power electronic converters, usually voltage source converters, to manage reactive power with lagging or leading power factors. Numerical simulations were conducted to analyze the effects of different power factors on the IEEE 33- and 69-bus systems. The simulations considered operations with a unity power factor (active power injection only), a zero power factor (reactive power injection only), and a variable power factor (active and reactive power injections). The results demonstrated the benefits of dynamic, active and reactive power compensation in reducing grid power losses, voltage profile deviations, and energy purchasing costs at the substation terminals. These simulations were conducted using the CVX tool and the Gurobi solver in the MATLAB programming environment.
Computers arrow_drop_down ComputersOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-431X/12/7/142/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/computers12070142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Computers arrow_drop_down ComputersOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-431X/12/7/142/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/computers12070142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2017Publisher:IEEE Authors: Walter Gil-González; Oscar Danilo Montoya; Gerardo Espinosa-Pérez; Alejandro Garces;This paper presents an interconnection and damping assignment passivity-based control (IDA-PBC) applied to three-phase superconducting magnetic energy storage systems (SMES) that supports active power distribution grids with high penetration of renewable energies. The SMES is integrated to the grid using a pulse-width-modulated current source converter (PWM-CSC) which is an straightforward alternative to conventional topologies due to its intrinsic current characteristic. Dynamics of this converter is modeled by using an averaged model which considers the modulation indexes as control inputs. A hyperboloid Hamiltonian function is selected to design the closed-loop control law in the 0dq reference frame. A sensitivity analysis is performed on the proposed control. Results demonstrate the stability and efficiency of the proposed control on a medium-voltage grid under different operative conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/greentech.2017.19&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/greentech.2017.19&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2019 ColombiaPublisher:IOP Publishing Authors: Montoya O.D.; Gil-González W.; Holguín M.;handle: 20.500.12585/9230
Abstract Colombian power system is experienced important changes due to the large scale integration of renewable power generation based on solar and wind power; added to the fact that direct current networks have taken important attention, since they are efficient in terms of power loss and voltage profile at distribution or transmission levels For addressing this problem, this paper presents the application of an emerging bio-inspired metaheuristic optimization technique known as elephant swarm water search algorithm to the optimal power flow problem in direct current networks. A master-slave hybrid optimization strategy for optimal power flow analysis is addressed in this paper by decoupling this problem in two optimizing issues. The first problem corresponds to the selection of the power generated by all non-voltage controlled distributed generators; While the second problem lies in the solution of the classical power flow equations in direct current networks. The solution of the master problem (first problem) is made by applying the elephant swarm water search algorithm, while the second problem (slave problem) is solved by a conventional Gauss-Seidel numerical method. The proposed hybrid methodology allows solving the power flow problem by using any basic programming language with minimum computational effort and well-precision when is compared with optimizing packages such as general algebraic modeling system/CONOPT solver and conventional metaheuristic techniques such as genetic algorithms.
Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/1403/1/012010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/1403/1/012010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 SpainPublisher:MDPI AG Authors: Daniel Sanin-Villa; Oscar Danilo Montoya; Walter Gil-González; Luis Fernando Grisales-Noreña; +1 AuthorsDaniel Sanin-Villa; Oscar Danilo Montoya; Walter Gil-González; Luis Fernando Grisales-Noreña; Alberto-Jesus Perea-Moreno;doi: 10.3390/en16114304
handle: 10396/25519
Thermoelectric generators (TEGs) have the potential to convert waste heat into electrical energy, making them attractive for energy harvesting applications. However, accurately estimating TEG parameters from industrial systems is a complex problem due to the mathematical complex non-linearities and numerous variables involved in the TEG modeling. This paper addresses this research gap by presenting a comparative evaluation of three optimization methods, Particle Swarm Optimization (PSO), Salps Search Algorithm (SSA), and Vortex Search Algorithm (VSA), for TEG parameter estimation. The proposed integrated approach is significant as it overcomes the limitations of existing methods and provides a more accurate and rapid estimation of TEG parameters. The performance of each optimization method is evaluated in terms of root mean square error (RMSE), standard deviation, and processing time. The results indicate that all three methods perform similarly, with average RMSE errors ranging from 0.0019 W to 0.0021 W, and minimum RMSE errors ranging from 0.0017 W to 0.0018 W. However, PSO has a higher standard deviation of the RMSE errors compared to the other two methods. In addition, we present the optimized parameters achieved through the proposed optimization methods, which serve as a reference for future research and enable the comparison of various optimization strategies. The disparities observed in the optimized outcomes underscore the intricacy of the issue and underscore the importance of the integrated approach suggested for precise TEG parameter estimation.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/11/4304/pdfData sources: Multidisciplinary Digital Publishing InstituteHelvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2023License: CC BYFull-Text: https://doi.org/10.3390/en16114304Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16114304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/11/4304/pdfData sources: Multidisciplinary Digital Publishing InstituteHelvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2023License: CC BYFull-Text: https://doi.org/10.3390/en16114304Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16114304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ColombiaPublisher:MDPI AG Authors: Cristian Cepeda; Cesar Orozco-Henao; Winston Percybrooks; Juan Diego Pulgarín-Rivera; +3 AuthorsCristian Cepeda; Cesar Orozco-Henao; Winston Percybrooks; Juan Diego Pulgarín-Rivera; Oscar Danilo Montoya; Walter Gil-González; Juan Carlos Vélez;doi: 10.3390/en13051223
handle: 20.500.12585/9371
The dynamic features of microgrid operation, such as on-grid/off-grid operation mode, the intermittency of distributed generators, and its dynamic topology due to its ability to reconfigure itself, cause misfiring of conventional protection schemes. To solve this issue, adaptive protection schemes that use robust communication systems have been proposed for the protection of microgrids. However, the cost of this solution is significantly high. This paper presented an intelligent fault detection (FD) system for microgrids on the basis of local measurements and machine learning (ML) techniques. This proposed FD system provided a smart level to intelligent electronic devices (IED) installed on the microgrid through the integration of ML models. This allowed each IED to autonomously determine if a fault occurred on the microgrid, eliminating the requirement of robust communication infrastructure between IEDs for microgrid protection. Additionally, the proposed system presented a methodology composed of four stages, which allowed its implementation in any microgrid. In addition, each stage provided important recommendations for the proper use of ML techniques on the protection problem. The proposed FD system was validated on the modified IEEE 13-nodes test feeder. This took into consideration typical features of microgrids such as the load imbalance, reconfiguration, and off-grid/on-grid operation modes. The results demonstrated the flexibility and simplicity of the FD system in determining the best accuracy performance among several ML models. The ease of design’s implementation, formulation of parameters, and promising test results indicated the potential for real-life applications.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/5/1223/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13051223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/5/1223/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13051223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ColombiaPublisher:Elsevier BV Authors: Gil-González, Walter; Montoya, O.D.;handle: 20.500.12585/9235 , 20.500.12585/8732
The active and reactive power conditioning using superconducting magnetic energy storage (SMES) systems for low-voltage distribution networks via feedback nonlinear control is proposed in this paper. The SMES system is interconnected to ac grid using a pulsed-width modulated current source converter (PWM-CSC). The dynamical model of the system exhibits a nonlinear structure, which is eliminated by the application of a nonlinear feedback controller based of the expected behavior of the closed-loop system. The steady state analysis under time-domain reference frame to verify the stability properties on the proposed controller is used. The general control rules allow improving different objectives. The robustness and applicability of the proposed controller is tested considering unbalance and harmonic distortion in the voltage provided by the ac grid. It is also considered the possibility to use the SMES system with the proposed controller to compensate the active power oscillations of a wind-generator system. Keywords: Active and reactive power compensation
Ain Shams Engineerin... arrow_drop_down Ain Shams Engineering JournalArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.asej.2019.01.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ain Shams Engineerin... arrow_drop_down Ain Shams Engineering JournalArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.asej.2019.01.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ColombiaPublisher:Elsevier BV Authors: Montoya O.D.; Gil-González W.; Grisales-Noreña L.F.;handle: 20.500.12585/9246
This paper addresses the classical problem of optimal location and sizing of distributed generators (DGs) in radial distribution networks by presenting a mixed-integer nonlinear programming (MINLP) model. To solve such model, we employ the General Algebraic Modeling System (GAMS) in conjunction with the BONMIN solver, presenting its characteristics in a tutorial style. To operate all the DGs, we assume they are dispatched with a unity power factor. Test systems with 33 and 69 buses are employed to validate the proposed solution methodology by comparing its results with multiple approaches previously reported in the specialized literature. A 27-node test system is also used for locating photovoltaic (PV) sources considering the power capacity of the Caribbean region in Colombia during a typical sunny day. Numerical results confirm the efficiency and accuracy of the MINLP model and its solution is validated through the GAMS package.
Ain Shams Engineerin... arrow_drop_down Ain Shams Engineering JournalArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.asej.2019.08.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 81 citations 81 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ain Shams Engineerin... arrow_drop_down Ain Shams Engineering JournalArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.asej.2019.08.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ColombiaPublisher:MDPI AG O. D. Montoya; W. Gil-González; J. C. Hernández; D. A. Giral-Ramírez; A. Medina-Quesada;doi: 10.3390/en13174440
handle: 20.500.12585/9943 , 20.500.12585/9559
This paper deals with the optimal reconfiguration problem of DC distribution networks by proposing a new mixed-integer nonlinear programming (MINLP) formulation. This MINLP model focuses on minimising the power losses in the distribution lines by reformulating the classical power balance equations through a branch-to-node incidence matrix. The general algebraic modelling system (GAMS) is chosen as a solution tool, showing in tutorial form the implementation of the proposed MINLP model in a 6-nodes test feeder with 10 candidate lines. The validation of the MINLP formulation is performed in two classical 10-nodes DC test feeders. These are typically used for power flow and optimal power flow analyses. Numerical results demonstrate that power losses are reduced by about 16% when the optimal reconfiguration plan is found. The numerical validations are made in the GAMS software licensed by Universidad Tecnológica de Bolívar.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/17/4440/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13174440&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/17/4440/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13174440&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ColombiaPublisher:MDPI AG Authors: Walter Gil-González; Alexander Molina-Cabrera; Oscar Danilo Montoya; Luis Fernando Grisales-Noreña;doi: 10.3390/app10217681
handle: 20.500.12585/9948
This paper deals with a classical problem in power system analysis regarding the optimal location and sizing of distributed generators (DGs) in direct current (DC) distribution networks using the mathematical optimization. This optimization problem is divided into two sub-problems as follows: the optimal location of DGs is a problem, with those with a binary structure being the first sub-problem; and the optimal sizing of DGs with a nonlinear programming (NLP) structure is the second sub-problem. These problems originate from a general mixed-integer nonlinear programming model (MINLP), which corresponds to an NP-hard optimization problem. It is not possible to provide the global optimum with conventional programming methods. A mixed-integer semidefinite programming (MI-SDP) model is proposed to address this problem, where the binary part is solved via the branch and bound (B&B) methods and the NLP part is solved via convex optimization (i.e., SDP). The main advantage of the proposed MI-SDP model is the possibility of guaranteeing a global optimum solution if each of the nodes in the B&B search is convex, as is ensured by the SDP method. Numerical validations in two test feeders composed of 21 and 69 nodes demonstrate that in all of these problems, the optimal global solution is reached by the MI-SDP approach, compared to the classical metaheuristic and hybrid programming models reported in the literature. All the simulations have been carried out using the MATLAB software with the CVX tool and the Mosek solver.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/21/7681/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10217681&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/21/7681/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app10217681&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ColombiaPublisher:Elsevier BV Authors: Grisales-Noreña L.F.; Montoya O.D.; Gil-González W.;handle: 20.500.12585/9050
Abstract This paper presents a method to find the optimal location, selection, and operation of energy storage systems (ESS- batteries-) and capacitors banks (CB) in distribution systems (DS). A mixed-integer non-linear programming model is proposed to formulate the problem. In this model, the minimization of energy loss in the DS is selected as an objective function. As constraints are considered: the active and reactive energy balance, voltage regulation, the total number energy storage devices that can be installed into network, as well as the operative bounds associated with the ESS (time of charge-discharge and energy capabilities). Three operating scenarios for the DS are analyzed by adopting the method proposed in this work. The first scenario is an evaluation of the base case (without batteries and CB), in which the initial conditions of the DS are determined. The second scenario considers the location of the ESS composed by redox flow batteries. Finally, the third scenario includes the installation of REDOX flow batteries with CB in parallel to correct operating problems generated by battery charging, and improve their impact on the grid. A master-slave strategy is adopted to solve the problem here discussed, implementing a Chu & Beasley genetic algorithm in both stages as an optimization technique. The proposed method is tested in a 69-node test feeder, where numerical results demonstrate its effectiveness.
Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2019.100891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2019.100891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Oscar Danilo Montoya; Oscar David Florez-Cediel; Walter Gil-González;This paper utilizes convex optimization to implement a day-ahead scheduling strategy for operating a photovoltaic distribution static compensator (PV-STATCOM) in medium-voltage distribution networks. The nonlinear non-convex programming model of the day-ahead scheduling strategy is transformed into a convex optimization model using the second-order cone programming approach in the complex domain. The main goal of efficiently operating PV-STATCOMs in distribution networks is to dynamically compensate for the active and reactive power generated by renewable energy resources such as photovoltaic plants. This is achieved by controlling power electronic converters, usually voltage source converters, to manage reactive power with lagging or leading power factors. Numerical simulations were conducted to analyze the effects of different power factors on the IEEE 33- and 69-bus systems. The simulations considered operations with a unity power factor (active power injection only), a zero power factor (reactive power injection only), and a variable power factor (active and reactive power injections). The results demonstrated the benefits of dynamic, active and reactive power compensation in reducing grid power losses, voltage profile deviations, and energy purchasing costs at the substation terminals. These simulations were conducted using the CVX tool and the Gurobi solver in the MATLAB programming environment.
Computers arrow_drop_down ComputersOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-431X/12/7/142/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/computers12070142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Computers arrow_drop_down ComputersOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-431X/12/7/142/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/computers12070142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2017Publisher:IEEE Authors: Walter Gil-González; Oscar Danilo Montoya; Gerardo Espinosa-Pérez; Alejandro Garces;This paper presents an interconnection and damping assignment passivity-based control (IDA-PBC) applied to three-phase superconducting magnetic energy storage systems (SMES) that supports active power distribution grids with high penetration of renewable energies. The SMES is integrated to the grid using a pulse-width-modulated current source converter (PWM-CSC) which is an straightforward alternative to conventional topologies due to its intrinsic current characteristic. Dynamics of this converter is modeled by using an averaged model which considers the modulation indexes as control inputs. A hyperboloid Hamiltonian function is selected to design the closed-loop control law in the 0dq reference frame. A sensitivity analysis is performed on the proposed control. Results demonstrate the stability and efficiency of the proposed control on a medium-voltage grid under different operative conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/greentech.2017.19&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/greentech.2017.19&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2019 ColombiaPublisher:IOP Publishing Authors: Montoya O.D.; Gil-González W.; Holguín M.;handle: 20.500.12585/9230
Abstract Colombian power system is experienced important changes due to the large scale integration of renewable power generation based on solar and wind power; added to the fact that direct current networks have taken important attention, since they are efficient in terms of power loss and voltage profile at distribution or transmission levels For addressing this problem, this paper presents the application of an emerging bio-inspired metaheuristic optimization technique known as elephant swarm water search algorithm to the optimal power flow problem in direct current networks. A master-slave hybrid optimization strategy for optimal power flow analysis is addressed in this paper by decoupling this problem in two optimizing issues. The first problem corresponds to the selection of the power generated by all non-voltage controlled distributed generators; While the second problem lies in the solution of the classical power flow equations in direct current networks. The solution of the master problem (first problem) is made by applying the elephant swarm water search algorithm, while the second problem (slave problem) is solved by a conventional Gauss-Seidel numerical method. The proposed hybrid methodology allows solving the power flow problem by using any basic programming language with minimum computational effort and well-precision when is compared with optimizing packages such as general algebraic modeling system/CONOPT solver and conventional metaheuristic techniques such as genetic algorithms.
Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/1403/1/012010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/1403/1/012010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu