- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Conference object , Article , Preprint , Other literature type , Journal 2018Embargo end date: 01 Jan 2016Publisher:Begellhouse Yingying Zhang; Yingying Zhang; Dengke Ma; Dengke Ma; Yi Zang; Yi Zang; Xiaojia Wang; Nuo Yang; Nuo Yang;The acoustic mismatch model and the diffuse mismatch model have been widely used to predict the thermal interface conductance. However, the acoustic mismatch model (diffuse mismatch model) is based on the hypothesis of a perfectly smooth (completely disordered) interface. Here, we present a new modified model, named as the mixed mismatch model, which considers the roughness/bonding at the interface. By taking partially specular and partially diffuse transmissions into account, the mixed mismatch model can predict the thermal interface conductance with arbitrary roughness. The proportions of specular and diffuse transmission are determined by the interface roughness which is described by the interfacial density of states. It shows that the predicted results of the mixed mismatch model match well with the values of molecular dynamics simulation and experimental data. 20 pages, 9 figures, 1 table
Frontiers in Energy ... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1615/ihtc16.mpe.022429&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Frontiers in Energy ... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1615/ihtc16.mpe.022429&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Funded by:NSF | University of Minnesota M...NSF| University of Minnesota MRSECQing Hao; Xiaojia Wang; Quan Wang; Bo Xiao; Hongbo Zhao; Dongchao Xu; Jie Zhu; Xiaoliang Wang; Xuewang Wu;In recent year, nanoporous Si thin films have been widely studied for their potential applications in thermoelectrics, in which high thermoelectric performance can be obtained by combining both the dramatically reduced lattice thermal conductivity and bulk-like electrical properties. Along this line, a high thermoelectric figure of merit (ZT) is also anticipated for other nanoporous thin films, whose bulk counterparts possess superior electrical properties but also high lattice thermal conductivities. Numerous thermoelectric studies have been carried out on Si-based nanoporous thin films, whereas cost-effective nitrides and oxides are not systematically studied for similar thermoelectric benefits. In this work, the cross-plane thermal conductivities of nanoporous In0.1Ga0.9N thin films with varied porous patterns were measured with the time-domain thermoreflectance technique. These alloys are suggested to have better electrical properties than conventional Si x Ge1–x alloys; however, a high ZT is hindered by their intrinsically high lattice thermal conductivity, which can be addressed by introducing nanopores to scatter phonons. In contrast to previous studies using dry-etched nanopores with amorphous pore edges, the measured nanoporous thin films of this work are directly grown on a patterned sapphire substrate to minimize the structural damage by dry etching. This removes the uncertainty in the phonon transport analysis due to amorphous pore edges. Based on the measurement results, remarkable phonon size effects can be found for a thin film with periodic 300-nm-diameter pores of different patterns. This indicates that a significant amount of heat inside these alloys is still carried by phonons with ~300 nm or longer mean free paths. Our studies provide important guidance for ZT enhancement in alloys of nitrides and similar oxides.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11708-018-0519-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11708-018-0519-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 United StatesPublisher:AIP Publishing Wang, X. J.; Wang, L. P.; Adewuyi, O. S.; Cola, Baratunde A.; Zhang, Zhuomin;doi: 10.1063/1.3502597
handle: 1853/47099
Specular black materials have important applications, such as in absolute cryogenic radiometers, space-borne spectroradiometers, and some energy conversion devices. While vertically aligned carbon nanotubes (VACNT) can have close-to-unity absorptance, so far the reported reflection has been essentially diffuse. This letter describes a highly specular black absorber made of VACNT. Both the bidirectional reflectance distribution function and specular reflectance were measured at the wavelength λ=635 nm using a laser scatterometer. The ordinary and extraordinary optical constants were obtained by fitting the specular reflectance, calculated from modified reflectance formulae for light incident from air to a uniaxial medium, considering surface roughness. Furthermore, the absorptance at λ=635 nm was shown to be 0.994±0.002, based on the measured directional-hemispherical reflectance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.3502597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.3502597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Conference object , Article , Preprint , Other literature type , Journal 2018Embargo end date: 01 Jan 2016Publisher:Begellhouse Yingying Zhang; Yingying Zhang; Dengke Ma; Dengke Ma; Yi Zang; Yi Zang; Xiaojia Wang; Nuo Yang; Nuo Yang;The acoustic mismatch model and the diffuse mismatch model have been widely used to predict the thermal interface conductance. However, the acoustic mismatch model (diffuse mismatch model) is based on the hypothesis of a perfectly smooth (completely disordered) interface. Here, we present a new modified model, named as the mixed mismatch model, which considers the roughness/bonding at the interface. By taking partially specular and partially diffuse transmissions into account, the mixed mismatch model can predict the thermal interface conductance with arbitrary roughness. The proportions of specular and diffuse transmission are determined by the interface roughness which is described by the interfacial density of states. It shows that the predicted results of the mixed mismatch model match well with the values of molecular dynamics simulation and experimental data. 20 pages, 9 figures, 1 table
Frontiers in Energy ... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1615/ihtc16.mpe.022429&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Frontiers in Energy ... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2016License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1615/ihtc16.mpe.022429&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Funded by:NSF | University of Minnesota M...NSF| University of Minnesota MRSECQing Hao; Xiaojia Wang; Quan Wang; Bo Xiao; Hongbo Zhao; Dongchao Xu; Jie Zhu; Xiaoliang Wang; Xuewang Wu;In recent year, nanoporous Si thin films have been widely studied for their potential applications in thermoelectrics, in which high thermoelectric performance can be obtained by combining both the dramatically reduced lattice thermal conductivity and bulk-like electrical properties. Along this line, a high thermoelectric figure of merit (ZT) is also anticipated for other nanoporous thin films, whose bulk counterparts possess superior electrical properties but also high lattice thermal conductivities. Numerous thermoelectric studies have been carried out on Si-based nanoporous thin films, whereas cost-effective nitrides and oxides are not systematically studied for similar thermoelectric benefits. In this work, the cross-plane thermal conductivities of nanoporous In0.1Ga0.9N thin films with varied porous patterns were measured with the time-domain thermoreflectance technique. These alloys are suggested to have better electrical properties than conventional Si x Ge1–x alloys; however, a high ZT is hindered by their intrinsically high lattice thermal conductivity, which can be addressed by introducing nanopores to scatter phonons. In contrast to previous studies using dry-etched nanopores with amorphous pore edges, the measured nanoporous thin films of this work are directly grown on a patterned sapphire substrate to minimize the structural damage by dry etching. This removes the uncertainty in the phonon transport analysis due to amorphous pore edges. Based on the measurement results, remarkable phonon size effects can be found for a thin film with periodic 300-nm-diameter pores of different patterns. This indicates that a significant amount of heat inside these alloys is still carried by phonons with ~300 nm or longer mean free paths. Our studies provide important guidance for ZT enhancement in alloys of nitrides and similar oxides.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11708-018-0519-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11708-018-0519-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 United StatesPublisher:AIP Publishing Wang, X. J.; Wang, L. P.; Adewuyi, O. S.; Cola, Baratunde A.; Zhang, Zhuomin;doi: 10.1063/1.3502597
handle: 1853/47099
Specular black materials have important applications, such as in absolute cryogenic radiometers, space-borne spectroradiometers, and some energy conversion devices. While vertically aligned carbon nanotubes (VACNT) can have close-to-unity absorptance, so far the reported reflection has been essentially diffuse. This letter describes a highly specular black absorber made of VACNT. Both the bidirectional reflectance distribution function and specular reflectance were measured at the wavelength λ=635 nm using a laser scatterometer. The ordinary and extraordinary optical constants were obtained by fitting the specular reflectance, calculated from modified reflectance formulae for light incident from air to a uniaxial medium, considering surface roughness. Furthermore, the absorptance at λ=635 nm was shown to be 0.994±0.002, based on the measured directional-hemispherical reflectance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.3502597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.3502597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu