- home
- Advanced Search
Filters
Year range
-chevron_right GOSource
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:American Association for the Advancement of Science (AAAS) Chunwu Zhu; Kazuhiko Kobayashi; Irakli Loladze; Jianguo Zhu; Qian Jiang; Xi Xu; Gang Liu; Saman Seneweera; Kristie L. Ebi; Adam Drewnowski; Naomi K. Fukagawa; Lewis H. Ziska;Rising CO 2 levels may induce nutritional deficits (protein, minerals, and vitamins) in the highest rice-consuming countries.
University of Southe... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aaq1012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 303 citations 303 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert University of Southe... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aaq1012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Publisher:Wiley James J. Elser; Qi Deng; Qi Deng; Irakli Loladze; Sam Dennis; Dafeng Hui; Ying-Ping Wang; Quanfa Zhang; Yiqi Luo;pmid: 26909440
Increasing atmospheric CO2 concentrations generally alter element stoichiometry in plants. However, a comprehensive evaluation of the elevated CO2 impact on plant nitrogen : phosphorus (N:P) ratios and the underlying mechanism has not been conducted. We synthesized the results from 112 previously published studies using meta‐analysis to evaluate the effects of elevated CO2 on the N:P ratio of terrestrial plants and to explore the underlying mechanism based on plant growth and soil P dynamics. Our results show that terrestrial plants grown under elevated CO2 had lower N:P ratios in both above‐ and belowground biomass across different ecosystem types. The response ratio for plant N:P was negatively correlated with the response ratio for plant growth in croplands and grasslands, and showed a stronger relationship for P than for N. In addition, the CO2‐induced down‐regulation of plant N:P was accompanied by 19.3% and 4.2% increases in soil phosphatase activity and labile P, respectively, and a 10.1% decrease in total soil P. Our results show that down‐regulation of plant N:P under elevated CO2 corresponds with accelerated soil P cycling. These findings should be useful for better understanding of terrestrial plant stoichiometry in response to elevated CO2 and of the underlying mechanisms affecting nutrient dynamics under climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/15-0217.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/15-0217.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Publisher:American Institute of Mathematical Sciences (AIMS) Authors: Loladze, Irakli;In the classical chemostat, the output of the system has no effect on its input. This contrasts with many ecological systems, where the output at the end of a growing season affects nutrient inputs for subsequent seasons. Here, an iterative-continuous modelling framework is introduced that retains the structure of classical ecological models within each iteration but accounts for nutrient feedbacks between iterations. As an example, the framework is applied to the classical chemostat model, where nutrient outputs affect the supply ratio at each iteration. Furthermore, the biotic parameters in the model, including organismal demands for nitrogen (N) and phosphorus (P), are linked to core biogenic processes—protein and rRNA synthesis. This biosynthesis is further deconstructed into 11 biological constants and rates, most of which are deeply shared among all organisms. By linking the fundamental macromolecular machinery to the cycling of nutrients on the ecosystem scale, the framework enables to rigorously formulate qualitative and quantitative questions about the evolution of nutrient ratios and the existence of stoichiometric attractors, such as the puzzling persistence of the Redfield N:P ratio of 16 in the ocean. While the framework presented here is theoretical, it readily permits setting up empirical experiments for testing its predictions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/mbe.2019046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/mbe.2019046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:The Royal Society Ziska, Lewis H.; Pettis, Jeffery S.; Edwards, Joan; Hancock, Jillian E.; Tomecek, Martha B.; Clark, Andrew; Dukes, Jeffrey S.; Loladze, Irakli; Polley, H. Wayne;At present, there is substantive evidence that the nutritional content of agriculturally important food crops will decrease in response to rising levels of atmospheric carbon dioxide,Ca. However, whetherCa-induced declines in nutritional quality are also occurring for pollinator food sources is unknown. Flowering late in the season, goldenrod (Solidagospp.) pollen is a widely available autumnal food source commonly acknowledged by apiarists to be essential to native bee (e.g.Bombusspp.) and honeybee (Apis mellifera) health and winter survival. Using floral collections obtained from the Smithsonian Natural History Museum, we quantifiedCa-induced temporal changes in pollen protein concentration of Canada goldenrod (Solidago canadensis), the most widespreadSolidagotaxon, from hundreds of samples collected throughout the USA and southern Canada over the period 1842–2014 (i.e. aCafrom approx. 280 to 398 ppm). In addition, we conducted a 2 yearin situtrial ofS. canadensispopulations grown along a continuousCagradient from approximately 280 to 500 ppm. The historical data indicated a strong significant correlation between recent increases inCaand reductions in pollen protein concentration (r2= 0.81). Experimental data confirmed this decrease in pollen protein concentration, and indicated that it would be ongoing asCacontinues to rise in the near term, i.e. to 500 ppm (r2= 0.88). While additional data are needed to quantify the subsequent effects of reduced protein concentration for Canada goldenrod on bee health and population stability, these results are the first to indicate that increasingCacan reduce protein content of a floral pollen source widely used by North American bees.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2016Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2016.0414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 81 citations 81 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2016Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2016.0414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:American Association for the Advancement of Science (AAAS) Chunwu Zhu; Kazuhiko Kobayashi; Irakli Loladze; Jianguo Zhu; Qian Jiang; Xi Xu; Gang Liu; Saman Seneweera; Kristie L. Ebi; Adam Drewnowski; Naomi K. Fukagawa; Lewis H. Ziska;Rising CO 2 levels may induce nutritional deficits (protein, minerals, and vitamins) in the highest rice-consuming countries.
University of Southe... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aaq1012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 303 citations 303 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert University of Southe... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.aaq1012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Publisher:Wiley James J. Elser; Qi Deng; Qi Deng; Irakli Loladze; Sam Dennis; Dafeng Hui; Ying-Ping Wang; Quanfa Zhang; Yiqi Luo;pmid: 26909440
Increasing atmospheric CO2 concentrations generally alter element stoichiometry in plants. However, a comprehensive evaluation of the elevated CO2 impact on plant nitrogen : phosphorus (N:P) ratios and the underlying mechanism has not been conducted. We synthesized the results from 112 previously published studies using meta‐analysis to evaluate the effects of elevated CO2 on the N:P ratio of terrestrial plants and to explore the underlying mechanism based on plant growth and soil P dynamics. Our results show that terrestrial plants grown under elevated CO2 had lower N:P ratios in both above‐ and belowground biomass across different ecosystem types. The response ratio for plant N:P was negatively correlated with the response ratio for plant growth in croplands and grasslands, and showed a stronger relationship for P than for N. In addition, the CO2‐induced down‐regulation of plant N:P was accompanied by 19.3% and 4.2% increases in soil phosphatase activity and labile P, respectively, and a 10.1% decrease in total soil P. Our results show that down‐regulation of plant N:P under elevated CO2 corresponds with accelerated soil P cycling. These findings should be useful for better understanding of terrestrial plant stoichiometry in response to elevated CO2 and of the underlying mechanisms affecting nutrient dynamics under climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/15-0217.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/15-0217.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Publisher:American Institute of Mathematical Sciences (AIMS) Authors: Loladze, Irakli;In the classical chemostat, the output of the system has no effect on its input. This contrasts with many ecological systems, where the output at the end of a growing season affects nutrient inputs for subsequent seasons. Here, an iterative-continuous modelling framework is introduced that retains the structure of classical ecological models within each iteration but accounts for nutrient feedbacks between iterations. As an example, the framework is applied to the classical chemostat model, where nutrient outputs affect the supply ratio at each iteration. Furthermore, the biotic parameters in the model, including organismal demands for nitrogen (N) and phosphorus (P), are linked to core biogenic processes—protein and rRNA synthesis. This biosynthesis is further deconstructed into 11 biological constants and rates, most of which are deeply shared among all organisms. By linking the fundamental macromolecular machinery to the cycling of nutrients on the ecosystem scale, the framework enables to rigorously formulate qualitative and quantitative questions about the evolution of nutrient ratios and the existence of stoichiometric attractors, such as the puzzling persistence of the Redfield N:P ratio of 16 in the ocean. While the framework presented here is theoretical, it readily permits setting up empirical experiments for testing its predictions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/mbe.2019046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3934/mbe.2019046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:The Royal Society Ziska, Lewis H.; Pettis, Jeffery S.; Edwards, Joan; Hancock, Jillian E.; Tomecek, Martha B.; Clark, Andrew; Dukes, Jeffrey S.; Loladze, Irakli; Polley, H. Wayne;At present, there is substantive evidence that the nutritional content of agriculturally important food crops will decrease in response to rising levels of atmospheric carbon dioxide,Ca. However, whetherCa-induced declines in nutritional quality are also occurring for pollinator food sources is unknown. Flowering late in the season, goldenrod (Solidagospp.) pollen is a widely available autumnal food source commonly acknowledged by apiarists to be essential to native bee (e.g.Bombusspp.) and honeybee (Apis mellifera) health and winter survival. Using floral collections obtained from the Smithsonian Natural History Museum, we quantifiedCa-induced temporal changes in pollen protein concentration of Canada goldenrod (Solidago canadensis), the most widespreadSolidagotaxon, from hundreds of samples collected throughout the USA and southern Canada over the period 1842–2014 (i.e. aCafrom approx. 280 to 398 ppm). In addition, we conducted a 2 yearin situtrial ofS. canadensispopulations grown along a continuousCagradient from approximately 280 to 500 ppm. The historical data indicated a strong significant correlation between recent increases inCaand reductions in pollen protein concentration (r2= 0.81). Experimental data confirmed this decrease in pollen protein concentration, and indicated that it would be ongoing asCacontinues to rise in the near term, i.e. to 500 ppm (r2= 0.88). While additional data are needed to quantify the subsequent effects of reduced protein concentration for Canada goldenrod on bee health and population stability, these results are the first to indicate that increasingCacan reduce protein content of a floral pollen source widely used by North American bees.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2016Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2016.0414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 81 citations 81 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2016 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2016Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2016.0414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu