- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2007 DenmarkPublisher:Elsevier BV Authors: Birgisdottir, Harpa; Bhander, Gurbakhash Singh; Hauschild, Michael Zwicky; Christensen, Thomas Højlund;pmid: 17416511
Two disposal methods for MSWI bottom ash were assessed in a new life cycle assessment (LCA) model for road construction and disposal of residues. The two scenarios evaluated in the model were: (i) landfilling of bottom ash in a coastal landfill in Denmark and (ii) recycling of bottom ash as subbase layer in an asphalted secondary road. The LCA included resource and energy consumption, and emissions associated with upgrading of bottom ash, transport, landfilling processes, incorporation of bottom ash in road, substitution of natural gravel as road construction material and leaching of heavy metals and salts from bottom ash in road as well as in landfill. Environmental impacts associated with emissions to air, fresh surface water, marine surface water, groundwater and soil were aggregated into 12 environmental impact categories: Global Warming, Photochemical Ozone Formation, Nutrient Enrichment, Acidification, Stratospheric Ozone Depletion, Human Toxicity via air/water/soil, Ecotoxicity in water/soil, and a new impact category, Stored Ecotoxicity to water/soil that accounts for the presence of heavy metals and very persistent organic compounds that in the long-term might leach. Leaching of heavy metals and salts from bottom ash was estimated from a series of laboratory leaching tests. For both scenarios, Ecotoxicity(water) was, when evaluated for the first 100 yr, the most important among the twelve impact categories involved in the assessment. Human Toxicity(soil) was also important, especially for the Road scenario. When the long-term leaching of heavy metals from bottom ash was evaluated, based on the total content of heavy metals in bottom ash, all impact categories became negligible compared to the potential Stored Ecotoxicity, which was two orders of magnitudes greater than Ecotoxicity(water). Copper was the constituent that gave the strongest contributions to the ecotoxicities. The most important resources consumed were clay as liner in landfill and the groundwater resource which was potentially spoiled due to leaching of salts from bottom ash in road. The difference in environmental impacts between landfilling and utilization of bottom ash in road was marginal when these alternatives were assessed in a life cycle perspective.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2007.02.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu130 citations 130 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2007.02.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 DenmarkPublisher:MDPI AG Authors: Regitze Kjær Zimmermann; Simone Bruhn; Harpa Birgisdóttir;doi: 10.3390/su13105455
The climate debate necessitates reducing greenhouse gas emissions from buildings. A common and standardized method of assessing this is life cycles assessment (LCA); however, time and costs are a barrier. Large efficiency potentials are associated with using data from building information models (BIM) for the LCA, but development is still at an early stage. This study investigates the industry practice and needs for BIM–LCA, and if these are met through a prototype for the Danish context, using IFC and a 3D view. Eight qualitative in-depth interviews were conducted with medium and large architect, engineering, and contractor companies, covering a large part of the Danish AEC industry. The companies used a quantity take-off approach, and a few were developing plug-in approaches. Challenges included the lack of quality in the models, thus most companies supplemented model data with other data sources. Features they found valuable for BIM–LCA included visual interface, transparency of data, automation, design evaluation, and flexibility. The 3D view of the prototype met some of the needs, however, there were mixed responses on the use of IFC, due to different workflow needs in the companies. Future BIM–LCA development should include considerations on the lack of quality in models and should support different workflows.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/10/5455/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13105455&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/10/5455/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13105455&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006Publisher:SAGE Publications Authors: Kirkeby, Janus Torsten; Birgisdottir, Harpa; Hansen, Trine Lund; Christensen, Thomas Højlund; +2 AuthorsKirkeby, Janus Torsten; Birgisdottir, Harpa; Hansen, Trine Lund; Christensen, Thomas Højlund; Bhander, Gurbakhash Singh; Hauschild, Michael Zwicky;pmid: 16496867
A new computer based life cycle assessment model (EASE-WASTE) was used to evaluate a municipal solid waste system with the purpose of identifying environmental benefits and disadvantages by anaerobic digestion of source-separated household waste and incineration. The most important processes that were included in the study are optical sorting and pre-treatment, anaerobic digestion with heat and power recovery, incineration with heat and power recovery, use of digested biomass on arable soils and finally, an estimated surplus consumption of plastic in order to achieve a higher quality and quantity of organic waste to the biogas plant. Results showed that there were no significant differences in most of the assessed environmental impacts for the two scenarios. However, the use of digested biomass may cause a potential toxicity impact on human health due to the heavy metal content of the organic waste. A sensitivity analysis showed that the results are sensitive to the energy recovery efficiencies, to the extra plastic consumption for waste bags and to the content of heavy metals in the waste. A model such as EASE-WASTE is very suitable for evaluating the overall environmental consequences of different waste management strategies and technologies, and can be used for most waste material fractions existing in household waste.
Research at ASB arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0734242x06062598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu76 citations 76 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Research at ASB arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0734242x06062598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Contribution for newspaper or weekly magazine , Journal 2016 Denmark, Norway, NorwayPublisher:Elsevier BV Schlanbusch, Reidun Dahl; Fufa, Selamawit Mamo; Häkkinen, Tarja; Vares, Sirje; Birgisdottir, Harpa; Ylmén; Peter;handle: 11250/2427768
"NORNET - Innovative use of LCA in the development of sustainable building and refurbishment strategies" is a Nordic network aiming at extended and improved use of LCA in the Nordic building sector. The NORNET LCA network has studied the challenges and needs of the Nordic building industry in the development in Building Life Cycle Assessment (LCA). The study applied a semi-structured interview technique with 57 interviewees from the Danish, Finnish, Norwegian and Swedish building sector. The study was conducted using a combination of in-depth phone interviews, email interviews and an online multiple-choice questionnaire. The interviewees represented different stakeholders in the Nordic building industry with varying knowledge of LCA, including building product manufacturers, entrepreneurs, building owners, architects, consultants, organizations and research institutes. The interviewees emphasized the need for a better understanding of the relative significance of different factors and building parts and the need to refine and harmonize the existing building LCA tools and databases. The results from this study provides valuable insight in how the Nordic Building Industry experiences the use of LCA. The results also raises awareness of the issues that are needed to be addressed in order for the industry to accelerate and expand the application of LCA in the near future.
Energy Procedia arrow_drop_down Aalborg University Research PortalContribution for newspaper or weekly magazine . 2016Data sources: Aalborg University Research PortalDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2016 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.09.106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 44 citations 44 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Procedia arrow_drop_down Aalborg University Research PortalContribution for newspaper or weekly magazine . 2016Data sources: Aalborg University Research PortalDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2016 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.09.106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 DenmarkPublisher:Ubiquity Press, Ltd. Authors: Simon Sjökvist; Nicolas Francart; Maria Balouktsi; Harpa Birgisdottir;doi: 10.5334/bc.478
The urgent need to reduce greenhouse gas emissions and the increasing share of embodied carbon in life-cycle impacts underscore the necessity of mitigating construction and demolition impacts to align with the Paris Agreement. Urban planning significantly influences material flows, with a substantial portion of construction occurring in planned urban development areas (UDAs), such as 76% in Copenhagen, Denmark. However, research on UDAs is limited, with most life-cycle assessments (LCAs) focusing on individual buildings. This study examines the embodied CO2e emissions from buildings and infrastructure in a newly developed UDA, using an archetype-based LCA approach that combines both on-site and average data, which can serve as a stepping stone for a more comprehensive analysis. The study shows that most emissions in the studied UDA occur upfront and are attributed to new building construction. The studied UDA featured several refurbished buildings, repurposed into housing and offices, but their reuse only made a small difference when considering embodied emissions for the entire UDA. Other UDAs may exhibit a different emission profile. Lastly, the study compares neighbourhood and city-scale impacts to absolute environmental boundaries, highlighting the significant climate impacts of urban planning, particularly in UDAs. Policy relevance Urban planning has a significant influence on climate impacts. The substantial amounts of embodied CO2e attributed to planned UDAs, particularly emissions occurring upfront and relative to absolute environmental boundaries, suggest the need to rethink current urban planning frameworks to better align with absolute environmental boundaries and the goals of the Paris Agreement. The results offer insights for developing contextual mitigation measures; the large share of CO2e emitted by new buildings underscores the potential of low-carbon technologies and materials and the broader impact of regulatory targets. Moreover, the limited relative impact of reuse in the studied UDA suggests the need for planning models that prioritise existing building inventories over new construction. Ultimately, the findings may also suggest the need to reconsider the overall scale of permissible building rights altogether.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5334/bc.478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5334/bc.478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 DenmarkPublisher:Elsevier BV Tove Malmqvist; Marie Nehasilova; Alice Moncaster; Harpa Birgisdottir; Freja Nygaard Rasmussen; Aoife Houlihan Wiberg; José Potting;The dominance of operational energy and related greenhouse gas (GHG) emissions of most existing build- ings is decreasing in new construction, when primary fossil energy of building operation decreases as re- sult of the implementation of energy efficiency measures as well as a decarbonisation of national energy mixes. Stakeholders therefore have a growing interest in understanding the possibilities for reducing em- bodied impacts in buildings. In the IEA EBC project ‘Annex 57’ a broad call for case studies was launched with the aim to identify design strategies for reducing embodied energy and GHG emissions (EEG) from buildings. The aim of this paper is to identify and provide a collected and comprehensive overview of quantitative reduction potentials of the particular EEG reduction strategies which should be considered by the stakeholders engaged in, and with the capacity to influence the outcome of, individual building projects. This is done by a systematic analysis of the Annex 57 case study collection as well as additional scientific literature. While it should be noted that the actual EEG savings at building level illustrated in this collection of studies are only applicable to each specific case, importantly this multiple cross-case analysis has provided rigorous evidence of the considerable potential to reduce embodied impacts in the design and construction of new and refurbished buildings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.01.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 104 citations 104 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.01.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Germany, DenmarkPublisher:Elsevier BV Birgisdottir, H.; Moncaster, A.; Houlihan Wiberg, A.; Chae, C.; Yokoyama, K.; Balouktsi, M.; Seo, S.; Oka, T.; Lützkendorf, T.; Malmqvist, T.;The current regulations to reduce energy consumption and greenhouse gas emissions (GHG) from buildings have focused on operational energy consumption. Thus legislation excludes measurement and reduction of the embodied energy and embodied GHG emissions over the building life cycle. Embodied impacts are a significant and growing proportion and it is increasingly recognized that the focus on reducing operational energy consumption needs to be accompanied by a parallel focus on reducing embodied impacts. Over the last six years the Annex 57 has addressed this issue, with researchers from 15 countries working together to develop a detailed understanding of the multiple calculation methods and the interpretation of their results. Based on an analysis of 80 case studies, Annex 57 showed various inconsistencies in current methodological approaches, which inhibit comparisons of results and difficult development of robust reduction strategies. Reinterpreting the studies through an understanding of the methodological differences enabled the cases to be used to demonstrate a number of important strategies for the reduction of embodied impacts. Annex 57 has also produced clear recommendations for uniform definitions and templates which improve the description of system boundaries, completeness of inventory and quality of data, and consequently the transparency of embodied impact assessments.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2017Full-Text: http://oro.open.ac.uk/50807/9/50807.pdfData sources: CORE (RIOXX-UK Aggregator)KITopen (Karlsruhe Institute of Technologie)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.08.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 117 citations 117 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2017Full-Text: http://oro.open.ac.uk/50807/9/50807.pdfData sources: CORE (RIOXX-UK Aggregator)KITopen (Karlsruhe Institute of Technologie)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.08.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Denmark, NetherlandsPublisher:MDPI AG Authors: Leonora Charlotte Malabi Eberhardt; Anne van Stijn; Liv Kristensen Stranddorf; Morten Birkved; +1 AuthorsLeonora Charlotte Malabi Eberhardt; Anne van Stijn; Liv Kristensen Stranddorf; Morten Birkved; Harpa Birgisdottir;doi: 10.3390/su13105621
Transitioning to a circular built environment can reduce the environmental impacts, resource consumption and waste generation emanating from buildings. However, there are many options to design circular building components, and limited knowledge on which options lead to the best environmental performance. Few guidelines exist and they build on conventional environmental performance assessments that focus on single life cycles, whereas the circular economy (CE) focuses on a sequence of multiple use- and life cycles. In this article, environmental design guidelines for circular building components were developed in five steps. First, examples of circular variants of a building structure were synthesized. Second, the environmental performance of these variants was compared with a business-as-usual variant through Life Cycle Assessments (LCA) and Material Flow Analysis (MFA) respectively. Circular parameters of these variants were tested using a scenario-specific approach. Third, from 24 LCAs and MFAs, a scorecard, rules-of-thumb and nine environmental design guidelines for designing circular building components were developed that provide guidance on which circular pathways and variants lead to the best environmental performance. For components with a long functional–technical lifespan, the following are promoted: resource efficiency, longer use through adaptable design, low-impact biomaterials and facilitating multiple cycles after and of use. Fourth, the design guidelines were evaluated by 49 experts from academia, industry and government in seven expert sessions. Further research is needed to validate the generalizability of the design guidelines. However, this research makes an important step in supporting the development of circular building components and, subsequently, the transition to a circular built environment.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/10/5621/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline Research Database In TechnologyArticle . 2021Data sources: Online Research Database In TechnologySustainabilityArticle . 2021License: CC BYData sources: University of Southern Denmark Research OutputUniversity of Southern Denmark Research OutputArticle . 2021Data sources: University of Southern Denmark Research OutputDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13105621&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 14visibility views 14 download downloads 25 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/10/5621/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline Research Database In TechnologyArticle . 2021Data sources: Online Research Database In TechnologySustainabilityArticle . 2021License: CC BYData sources: University of Southern Denmark Research OutputUniversity of Southern Denmark Research OutputArticle . 2021Data sources: University of Southern Denmark Research OutputDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13105621&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 Netherlands, Netherlands, Netherlands, DenmarkPublisher:World Scientific Pub Co Pte Lt José Potting; José Potting; Ingeborg Kluts; Ingeborg Kluts; Kristina Lundberg; Susanna Toller; Susanna Toller; Helge Brattebø; Sofiia Miliutenko; Harpa Birgisdottir;Energy use and greenhouse gas (GHG) emissions associated with life cycle stages of road infrastructure are currently rarely assessed during road infrastructure planning. This study examines the road infrastructure planning process, with emphasis on its use of Environmental Assessments (EA), and identifies when and how Life Cycle Assessment (LCA) can be integrated in the early planning stages for supporting decisions such as choice of road corridor. Road infrastructure planning processes are compared for four European countries (Sweden, Norway, Denmark, and the Netherlands). The results show that only Norway has a formalised way of using LCA during choice of road corridor. Only the Netherlands has a requirement for using LCA in the later procurement stage. It is concluded that during the early stages of planning, LCA could be integrated as part of an EA, as a separate process or as part of a Cost-Benefit Analysis.
Research Papers in E... arrow_drop_down Journal of Environmental Assessment Policy and ManagementArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Journal of Environmental Assessment Policy and ManagementArticle . 2014 . Peer-reviewedData sources: CrossrefJournal of Environmental Assessment Policy and ManagementArticle . 2014Data sources: Pure Utrecht UniversityJournal of Environmental Assessment Policy and ManagementJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1142/s1464333214500380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 10 citations 10 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert Research Papers in E... arrow_drop_down Journal of Environmental Assessment Policy and ManagementArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Journal of Environmental Assessment Policy and ManagementArticle . 2014 . Peer-reviewedData sources: CrossrefJournal of Environmental Assessment Policy and ManagementArticle . 2014Data sources: Pure Utrecht UniversityJournal of Environmental Assessment Policy and ManagementJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1142/s1464333214500380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 DenmarkPublisher:Elsevier BV Buket Tozan; Endrit Hoxha; Christoffer Ole Olsen; Jørgen Rose; Jesper Kragh; Camilla Ernst Andersen; Christian Grau Sørensen; Agnes Garnow; Harpa Birgisdóttir;The global construction industry, a significant contributor responsible for 37% of greenhouse gas emissions (GHGe), necessitates immediate and relevant policies to reduce emissions. Consequently, several countries are implementing GHGe limit values in building regulations to initiate mitigation measures. To support this development and the efforts to mitigate GHGe, this study provides a method for defining a representative case sample of conventional practice and bottom-up Life Cycle Assessment (LCA)-based limit values for policy measures. Based on a dataset of 291 actual building projects, a representative case sample of 163 conventional case studies is defined, and their related life cycle GHGe is calculated with LCA, resulting in a variation from 8.3 to 11.8 kg CO2e/m2/year. Cumulative distribution functions are computed with share factors, which consider the construction activity in a country and reflect the physical output of completed construction work from which limit values are derived. A general limit value is calculated at 9.0 kg CO2e/m2/year, corresponding to the median where the ambition level targets 50% of new construction to perform mitigation efforts. Across building types, limit values vary between 8.2 and 11.5 kg CO2e/m2/year, and more ambitious limit values for residential buildings are derived starting at 4.9 kg CO2e/m2/year based on examples of best practice case studies. Comparing the general bottom-up limit value against top-down targets reveals a gap, suggesting a necessary increase in the ambition level. Yet, limit values should be introduced and gradually tightened to reach net zero in 2050 across several building typologies to support the adaptation of mitigation strategies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2024.111891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2024.111891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2007 DenmarkPublisher:Elsevier BV Authors: Birgisdottir, Harpa; Bhander, Gurbakhash Singh; Hauschild, Michael Zwicky; Christensen, Thomas Højlund;pmid: 17416511
Two disposal methods for MSWI bottom ash were assessed in a new life cycle assessment (LCA) model for road construction and disposal of residues. The two scenarios evaluated in the model were: (i) landfilling of bottom ash in a coastal landfill in Denmark and (ii) recycling of bottom ash as subbase layer in an asphalted secondary road. The LCA included resource and energy consumption, and emissions associated with upgrading of bottom ash, transport, landfilling processes, incorporation of bottom ash in road, substitution of natural gravel as road construction material and leaching of heavy metals and salts from bottom ash in road as well as in landfill. Environmental impacts associated with emissions to air, fresh surface water, marine surface water, groundwater and soil were aggregated into 12 environmental impact categories: Global Warming, Photochemical Ozone Formation, Nutrient Enrichment, Acidification, Stratospheric Ozone Depletion, Human Toxicity via air/water/soil, Ecotoxicity in water/soil, and a new impact category, Stored Ecotoxicity to water/soil that accounts for the presence of heavy metals and very persistent organic compounds that in the long-term might leach. Leaching of heavy metals and salts from bottom ash was estimated from a series of laboratory leaching tests. For both scenarios, Ecotoxicity(water) was, when evaluated for the first 100 yr, the most important among the twelve impact categories involved in the assessment. Human Toxicity(soil) was also important, especially for the Road scenario. When the long-term leaching of heavy metals from bottom ash was evaluated, based on the total content of heavy metals in bottom ash, all impact categories became negligible compared to the potential Stored Ecotoxicity, which was two orders of magnitudes greater than Ecotoxicity(water). Copper was the constituent that gave the strongest contributions to the ecotoxicities. The most important resources consumed were clay as liner in landfill and the groundwater resource which was potentially spoiled due to leaching of salts from bottom ash in road. The difference in environmental impacts between landfilling and utilization of bottom ash in road was marginal when these alternatives were assessed in a life cycle perspective.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2007.02.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu130 citations 130 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2007.02.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 DenmarkPublisher:MDPI AG Authors: Regitze Kjær Zimmermann; Simone Bruhn; Harpa Birgisdóttir;doi: 10.3390/su13105455
The climate debate necessitates reducing greenhouse gas emissions from buildings. A common and standardized method of assessing this is life cycles assessment (LCA); however, time and costs are a barrier. Large efficiency potentials are associated with using data from building information models (BIM) for the LCA, but development is still at an early stage. This study investigates the industry practice and needs for BIM–LCA, and if these are met through a prototype for the Danish context, using IFC and a 3D view. Eight qualitative in-depth interviews were conducted with medium and large architect, engineering, and contractor companies, covering a large part of the Danish AEC industry. The companies used a quantity take-off approach, and a few were developing plug-in approaches. Challenges included the lack of quality in the models, thus most companies supplemented model data with other data sources. Features they found valuable for BIM–LCA included visual interface, transparency of data, automation, design evaluation, and flexibility. The 3D view of the prototype met some of the needs, however, there were mixed responses on the use of IFC, due to different workflow needs in the companies. Future BIM–LCA development should include considerations on the lack of quality in models and should support different workflows.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/10/5455/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13105455&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/10/5455/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13105455&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006Publisher:SAGE Publications Authors: Kirkeby, Janus Torsten; Birgisdottir, Harpa; Hansen, Trine Lund; Christensen, Thomas Højlund; +2 AuthorsKirkeby, Janus Torsten; Birgisdottir, Harpa; Hansen, Trine Lund; Christensen, Thomas Højlund; Bhander, Gurbakhash Singh; Hauschild, Michael Zwicky;pmid: 16496867
A new computer based life cycle assessment model (EASE-WASTE) was used to evaluate a municipal solid waste system with the purpose of identifying environmental benefits and disadvantages by anaerobic digestion of source-separated household waste and incineration. The most important processes that were included in the study are optical sorting and pre-treatment, anaerobic digestion with heat and power recovery, incineration with heat and power recovery, use of digested biomass on arable soils and finally, an estimated surplus consumption of plastic in order to achieve a higher quality and quantity of organic waste to the biogas plant. Results showed that there were no significant differences in most of the assessed environmental impacts for the two scenarios. However, the use of digested biomass may cause a potential toxicity impact on human health due to the heavy metal content of the organic waste. A sensitivity analysis showed that the results are sensitive to the energy recovery efficiencies, to the extra plastic consumption for waste bags and to the content of heavy metals in the waste. A model such as EASE-WASTE is very suitable for evaluating the overall environmental consequences of different waste management strategies and technologies, and can be used for most waste material fractions existing in household waste.
Research at ASB arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0734242x06062598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu76 citations 76 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Research at ASB arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0734242x06062598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Contribution for newspaper or weekly magazine , Journal 2016 Denmark, Norway, NorwayPublisher:Elsevier BV Schlanbusch, Reidun Dahl; Fufa, Selamawit Mamo; Häkkinen, Tarja; Vares, Sirje; Birgisdottir, Harpa; Ylmén; Peter;handle: 11250/2427768
"NORNET - Innovative use of LCA in the development of sustainable building and refurbishment strategies" is a Nordic network aiming at extended and improved use of LCA in the Nordic building sector. The NORNET LCA network has studied the challenges and needs of the Nordic building industry in the development in Building Life Cycle Assessment (LCA). The study applied a semi-structured interview technique with 57 interviewees from the Danish, Finnish, Norwegian and Swedish building sector. The study was conducted using a combination of in-depth phone interviews, email interviews and an online multiple-choice questionnaire. The interviewees represented different stakeholders in the Nordic building industry with varying knowledge of LCA, including building product manufacturers, entrepreneurs, building owners, architects, consultants, organizations and research institutes. The interviewees emphasized the need for a better understanding of the relative significance of different factors and building parts and the need to refine and harmonize the existing building LCA tools and databases. The results from this study provides valuable insight in how the Nordic Building Industry experiences the use of LCA. The results also raises awareness of the issues that are needed to be addressed in order for the industry to accelerate and expand the application of LCA in the near future.
Energy Procedia arrow_drop_down Aalborg University Research PortalContribution for newspaper or weekly magazine . 2016Data sources: Aalborg University Research PortalDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2016 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.09.106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 44 citations 44 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Procedia arrow_drop_down Aalborg University Research PortalContribution for newspaper or weekly magazine . 2016Data sources: Aalborg University Research PortalDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2016 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.09.106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 DenmarkPublisher:Ubiquity Press, Ltd. Authors: Simon Sjökvist; Nicolas Francart; Maria Balouktsi; Harpa Birgisdottir;doi: 10.5334/bc.478
The urgent need to reduce greenhouse gas emissions and the increasing share of embodied carbon in life-cycle impacts underscore the necessity of mitigating construction and demolition impacts to align with the Paris Agreement. Urban planning significantly influences material flows, with a substantial portion of construction occurring in planned urban development areas (UDAs), such as 76% in Copenhagen, Denmark. However, research on UDAs is limited, with most life-cycle assessments (LCAs) focusing on individual buildings. This study examines the embodied CO2e emissions from buildings and infrastructure in a newly developed UDA, using an archetype-based LCA approach that combines both on-site and average data, which can serve as a stepping stone for a more comprehensive analysis. The study shows that most emissions in the studied UDA occur upfront and are attributed to new building construction. The studied UDA featured several refurbished buildings, repurposed into housing and offices, but their reuse only made a small difference when considering embodied emissions for the entire UDA. Other UDAs may exhibit a different emission profile. Lastly, the study compares neighbourhood and city-scale impacts to absolute environmental boundaries, highlighting the significant climate impacts of urban planning, particularly in UDAs. Policy relevance Urban planning has a significant influence on climate impacts. The substantial amounts of embodied CO2e attributed to planned UDAs, particularly emissions occurring upfront and relative to absolute environmental boundaries, suggest the need to rethink current urban planning frameworks to better align with absolute environmental boundaries and the goals of the Paris Agreement. The results offer insights for developing contextual mitigation measures; the large share of CO2e emitted by new buildings underscores the potential of low-carbon technologies and materials and the broader impact of regulatory targets. Moreover, the limited relative impact of reuse in the studied UDA suggests the need for planning models that prioritise existing building inventories over new construction. Ultimately, the findings may also suggest the need to reconsider the overall scale of permissible building rights altogether.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5334/bc.478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5334/bc.478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 DenmarkPublisher:Elsevier BV Tove Malmqvist; Marie Nehasilova; Alice Moncaster; Harpa Birgisdottir; Freja Nygaard Rasmussen; Aoife Houlihan Wiberg; José Potting;The dominance of operational energy and related greenhouse gas (GHG) emissions of most existing build- ings is decreasing in new construction, when primary fossil energy of building operation decreases as re- sult of the implementation of energy efficiency measures as well as a decarbonisation of national energy mixes. Stakeholders therefore have a growing interest in understanding the possibilities for reducing em- bodied impacts in buildings. In the IEA EBC project ‘Annex 57’ a broad call for case studies was launched with the aim to identify design strategies for reducing embodied energy and GHG emissions (EEG) from buildings. The aim of this paper is to identify and provide a collected and comprehensive overview of quantitative reduction potentials of the particular EEG reduction strategies which should be considered by the stakeholders engaged in, and with the capacity to influence the outcome of, individual building projects. This is done by a systematic analysis of the Annex 57 case study collection as well as additional scientific literature. While it should be noted that the actual EEG savings at building level illustrated in this collection of studies are only applicable to each specific case, importantly this multiple cross-case analysis has provided rigorous evidence of the considerable potential to reduce embodied impacts in the design and construction of new and refurbished buildings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.01.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 104 citations 104 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.01.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Germany, DenmarkPublisher:Elsevier BV Birgisdottir, H.; Moncaster, A.; Houlihan Wiberg, A.; Chae, C.; Yokoyama, K.; Balouktsi, M.; Seo, S.; Oka, T.; Lützkendorf, T.; Malmqvist, T.;The current regulations to reduce energy consumption and greenhouse gas emissions (GHG) from buildings have focused on operational energy consumption. Thus legislation excludes measurement and reduction of the embodied energy and embodied GHG emissions over the building life cycle. Embodied impacts are a significant and growing proportion and it is increasingly recognized that the focus on reducing operational energy consumption needs to be accompanied by a parallel focus on reducing embodied impacts. Over the last six years the Annex 57 has addressed this issue, with researchers from 15 countries working together to develop a detailed understanding of the multiple calculation methods and the interpretation of their results. Based on an analysis of 80 case studies, Annex 57 showed various inconsistencies in current methodological approaches, which inhibit comparisons of results and difficult development of robust reduction strategies. Reinterpreting the studies through an understanding of the methodological differences enabled the cases to be used to demonstrate a number of important strategies for the reduction of embodied impacts. Annex 57 has also produced clear recommendations for uniform definitions and templates which improve the description of system boundaries, completeness of inventory and quality of data, and consequently the transparency of embodied impact assessments.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2017Full-Text: http://oro.open.ac.uk/50807/9/50807.pdfData sources: CORE (RIOXX-UK Aggregator)KITopen (Karlsruhe Institute of Technologie)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.08.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 117 citations 117 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2017Full-Text: http://oro.open.ac.uk/50807/9/50807.pdfData sources: CORE (RIOXX-UK Aggregator)KITopen (Karlsruhe Institute of Technologie)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.08.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Denmark, NetherlandsPublisher:MDPI AG Authors: Leonora Charlotte Malabi Eberhardt; Anne van Stijn; Liv Kristensen Stranddorf; Morten Birkved; +1 AuthorsLeonora Charlotte Malabi Eberhardt; Anne van Stijn; Liv Kristensen Stranddorf; Morten Birkved; Harpa Birgisdottir;doi: 10.3390/su13105621
Transitioning to a circular built environment can reduce the environmental impacts, resource consumption and waste generation emanating from buildings. However, there are many options to design circular building components, and limited knowledge on which options lead to the best environmental performance. Few guidelines exist and they build on conventional environmental performance assessments that focus on single life cycles, whereas the circular economy (CE) focuses on a sequence of multiple use- and life cycles. In this article, environmental design guidelines for circular building components were developed in five steps. First, examples of circular variants of a building structure were synthesized. Second, the environmental performance of these variants was compared with a business-as-usual variant through Life Cycle Assessments (LCA) and Material Flow Analysis (MFA) respectively. Circular parameters of these variants were tested using a scenario-specific approach. Third, from 24 LCAs and MFAs, a scorecard, rules-of-thumb and nine environmental design guidelines for designing circular building components were developed that provide guidance on which circular pathways and variants lead to the best environmental performance. For components with a long functional–technical lifespan, the following are promoted: resource efficiency, longer use through adaptable design, low-impact biomaterials and facilitating multiple cycles after and of use. Fourth, the design guidelines were evaluated by 49 experts from academia, industry and government in seven expert sessions. Further research is needed to validate the generalizability of the design guidelines. However, this research makes an important step in supporting the development of circular building components and, subsequently, the transition to a circular built environment.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/10/5621/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline Research Database In TechnologyArticle . 2021Data sources: Online Research Database In TechnologySustainabilityArticle . 2021License: CC BYData sources: University of Southern Denmark Research OutputUniversity of Southern Denmark Research OutputArticle . 2021Data sources: University of Southern Denmark Research OutputDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13105621&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 14visibility views 14 download downloads 25 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/10/5621/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline Research Database In TechnologyArticle . 2021Data sources: Online Research Database In TechnologySustainabilityArticle . 2021License: CC BYData sources: University of Southern Denmark Research OutputUniversity of Southern Denmark Research OutputArticle . 2021Data sources: University of Southern Denmark Research OutputDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13105621&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 Netherlands, Netherlands, Netherlands, DenmarkPublisher:World Scientific Pub Co Pte Lt José Potting; José Potting; Ingeborg Kluts; Ingeborg Kluts; Kristina Lundberg; Susanna Toller; Susanna Toller; Helge Brattebø; Sofiia Miliutenko; Harpa Birgisdottir;Energy use and greenhouse gas (GHG) emissions associated with life cycle stages of road infrastructure are currently rarely assessed during road infrastructure planning. This study examines the road infrastructure planning process, with emphasis on its use of Environmental Assessments (EA), and identifies when and how Life Cycle Assessment (LCA) can be integrated in the early planning stages for supporting decisions such as choice of road corridor. Road infrastructure planning processes are compared for four European countries (Sweden, Norway, Denmark, and the Netherlands). The results show that only Norway has a formalised way of using LCA during choice of road corridor. Only the Netherlands has a requirement for using LCA in the later procurement stage. It is concluded that during the early stages of planning, LCA could be integrated as part of an EA, as a separate process or as part of a Cost-Benefit Analysis.
Research Papers in E... arrow_drop_down Journal of Environmental Assessment Policy and ManagementArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Journal of Environmental Assessment Policy and ManagementArticle . 2014 . Peer-reviewedData sources: CrossrefJournal of Environmental Assessment Policy and ManagementArticle . 2014Data sources: Pure Utrecht UniversityJournal of Environmental Assessment Policy and ManagementJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1142/s1464333214500380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 10 citations 10 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert Research Papers in E... arrow_drop_down Journal of Environmental Assessment Policy and ManagementArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Journal of Environmental Assessment Policy and ManagementArticle . 2014 . Peer-reviewedData sources: CrossrefJournal of Environmental Assessment Policy and ManagementArticle . 2014Data sources: Pure Utrecht UniversityJournal of Environmental Assessment Policy and ManagementJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1142/s1464333214500380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 DenmarkPublisher:Elsevier BV Buket Tozan; Endrit Hoxha; Christoffer Ole Olsen; Jørgen Rose; Jesper Kragh; Camilla Ernst Andersen; Christian Grau Sørensen; Agnes Garnow; Harpa Birgisdóttir;The global construction industry, a significant contributor responsible for 37% of greenhouse gas emissions (GHGe), necessitates immediate and relevant policies to reduce emissions. Consequently, several countries are implementing GHGe limit values in building regulations to initiate mitigation measures. To support this development and the efforts to mitigate GHGe, this study provides a method for defining a representative case sample of conventional practice and bottom-up Life Cycle Assessment (LCA)-based limit values for policy measures. Based on a dataset of 291 actual building projects, a representative case sample of 163 conventional case studies is defined, and their related life cycle GHGe is calculated with LCA, resulting in a variation from 8.3 to 11.8 kg CO2e/m2/year. Cumulative distribution functions are computed with share factors, which consider the construction activity in a country and reflect the physical output of completed construction work from which limit values are derived. A general limit value is calculated at 9.0 kg CO2e/m2/year, corresponding to the median where the ambition level targets 50% of new construction to perform mitigation efforts. Across building types, limit values vary between 8.2 and 11.5 kg CO2e/m2/year, and more ambitious limit values for residential buildings are derived starting at 4.9 kg CO2e/m2/year based on examples of best practice case studies. Comparing the general bottom-up limit value against top-down targets reveals a gap, suggesting a necessary increase in the ambition level. Yet, limit values should be introduced and gradually tightened to reach net zero in 2050 across several building typologies to support the adaptation of mitigation strategies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2024.111891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2024.111891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu