- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | GCRF Living Deltas HubUKRI| GCRF Living Deltas HubÉmilie Crémin; Cai Ladd; Thorsten Balke; Sumana Banerjee; Ly H. Bui; Tuhin Ghosh; Andrew Large; Hue Le; Van Kien Nguyen; Lan Nguyen; Tanh Nguyen; Vinh Quang Nguyen; Indrajit Pal; Sylvia Szabo; Ha Tran; Zita Sebesvári; Shah Alam Khan; Fabrice G. Renaud;pmid: 38613747
pmc: PMC11101396
AbstractThe sustainability of social–ecological systems within river deltas globally is in question as rapid development and environmental change trigger “negative” or “positive” tipping points depending on actors’ perspectives, e.g. regime shift from abundant sediment deposition to sediment shortage, agricultural sustainability to agricultural collapse or shift from rural to urban land use. Using a systematic review of the literature, we show how cascading effects across anthropogenic, ecological, and geophysical processes have triggered numerous tipping points in the governance, hydrological, and land-use management of the world’s river deltas. Crossing tipping points had both positive and negative effects that generally enhanced economic development to the detriment of the environment. Assessment of deltas that featured prominently in the review revealed how outcomes of tipping points can inform the long-term trajectory of deltas towards sustainability or collapse. Management of key drivers at the delta scale can trigger positive tipping points to place social–ecological systems on a pathway towards sustainable development.
Newcastle University... arrow_drop_down Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/295741Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-023-01978-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Newcastle University... arrow_drop_down Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/295741Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-023-01978-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | GCRF Living Deltas HubUKRI| GCRF Living Deltas HubÉmilie Crémin; Cai Ladd; Thorsten Balke; Sumana Banerjee; Ly H. Bui; Tuhin Ghosh; Andrew Large; Hue Le; Van Kien Nguyen; Lan Nguyen; Tanh Nguyen; Vinh Quang Nguyen; Indrajit Pal; Sylvia Szabo; Ha Tran; Zita Sebesvári; Shah Alam Khan; Fabrice G. Renaud;pmid: 38613747
pmc: PMC11101396
AbstractThe sustainability of social–ecological systems within river deltas globally is in question as rapid development and environmental change trigger “negative” or “positive” tipping points depending on actors’ perspectives, e.g. regime shift from abundant sediment deposition to sediment shortage, agricultural sustainability to agricultural collapse or shift from rural to urban land use. Using a systematic review of the literature, we show how cascading effects across anthropogenic, ecological, and geophysical processes have triggered numerous tipping points in the governance, hydrological, and land-use management of the world’s river deltas. Crossing tipping points had both positive and negative effects that generally enhanced economic development to the detriment of the environment. Assessment of deltas that featured prominently in the review revealed how outcomes of tipping points can inform the long-term trajectory of deltas towards sustainability or collapse. Management of key drivers at the delta scale can trigger positive tipping points to place social–ecological systems on a pathway towards sustainable development.
Newcastle University... arrow_drop_down Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/295741Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-023-01978-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Newcastle University... arrow_drop_down Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/295741Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-023-01978-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United Kingdom, United States, Canada, CanadaPublisher:Informa UK Limited Funded by:UKRI | Belmont Forum Deltas, NSF | Belmont Forum-G8 Collabor...UKRI| Belmont Forum Deltas ,NSF| Belmont Forum-G8 Collaborative Research: DELTAS: Catalyzing action towards sustainability of deltaic systems with an integrated modeling framework for risk assessmentSzabo, Sylvia; Nicholls, Robert J.; Neumann, Barbara; Renaud, Fabrice G.; Matthews, Zoe; Sebesvari, Zita; AghaKouchak, Amir; Bales, Roger; Ruktanonchai, Corrine Warren; Kloos, Julia; Foufoula-Georgiou, Efi; Wester, Philippus; New, Mark; Rhyner, Jakob; Hutton, Craig;handle: 10625/57386
The impacts of climate change on people's livelihoods have been widely documented. It is expected that climate and environmental change will hamper poverty reduction, or even exacerbate poverty in some or all of its dimensions. Changes in the biophysical environment, such as droughts, flooding, water quantity and quality, and degrading ecosystems, are expected to affect opportunities for people to generate income. These changes, combined with a deficiency in coping strategies and innovation to adapt to particular climate change threats, are in turn likely to lead to increased economic and social vulnerability of households and communities, especially amongst the poorest.
CORE arrow_drop_down EnlightenArticle . 2016License: CC BY NC NDFull-Text: http://eprints.gla.ac.uk/158883/1/158883.pdfData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/9g58q2vhData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaEnvironment Science and Policy for Sustainable DevelopmentArticle . 2016 . Peer-reviewedData sources: CrossrefEnvironment Science and Policy for Sustainable DevelopmentJournalData sources: Microsoft Academic GrapheScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00139157.2016.1209016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 55 citations 55 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnlightenArticle . 2016License: CC BY NC NDFull-Text: http://eprints.gla.ac.uk/158883/1/158883.pdfData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/9g58q2vhData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaEnvironment Science and Policy for Sustainable DevelopmentArticle . 2016 . Peer-reviewedData sources: CrossrefEnvironment Science and Policy for Sustainable DevelopmentJournalData sources: Microsoft Academic GrapheScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00139157.2016.1209016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United Kingdom, United States, Canada, CanadaPublisher:Informa UK Limited Funded by:UKRI | Belmont Forum Deltas, NSF | Belmont Forum-G8 Collabor...UKRI| Belmont Forum Deltas ,NSF| Belmont Forum-G8 Collaborative Research: DELTAS: Catalyzing action towards sustainability of deltaic systems with an integrated modeling framework for risk assessmentSzabo, Sylvia; Nicholls, Robert J.; Neumann, Barbara; Renaud, Fabrice G.; Matthews, Zoe; Sebesvari, Zita; AghaKouchak, Amir; Bales, Roger; Ruktanonchai, Corrine Warren; Kloos, Julia; Foufoula-Georgiou, Efi; Wester, Philippus; New, Mark; Rhyner, Jakob; Hutton, Craig;handle: 10625/57386
The impacts of climate change on people's livelihoods have been widely documented. It is expected that climate and environmental change will hamper poverty reduction, or even exacerbate poverty in some or all of its dimensions. Changes in the biophysical environment, such as droughts, flooding, water quantity and quality, and degrading ecosystems, are expected to affect opportunities for people to generate income. These changes, combined with a deficiency in coping strategies and innovation to adapt to particular climate change threats, are in turn likely to lead to increased economic and social vulnerability of households and communities, especially amongst the poorest.
CORE arrow_drop_down EnlightenArticle . 2016License: CC BY NC NDFull-Text: http://eprints.gla.ac.uk/158883/1/158883.pdfData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/9g58q2vhData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaEnvironment Science and Policy for Sustainable DevelopmentArticle . 2016 . Peer-reviewedData sources: CrossrefEnvironment Science and Policy for Sustainable DevelopmentJournalData sources: Microsoft Academic GrapheScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00139157.2016.1209016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 55 citations 55 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnlightenArticle . 2016License: CC BY NC NDFull-Text: http://eprints.gla.ac.uk/158883/1/158883.pdfData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/9g58q2vhData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaEnvironment Science and Policy for Sustainable DevelopmentArticle . 2016 . Peer-reviewedData sources: CrossrefEnvironment Science and Policy for Sustainable DevelopmentJournalData sources: Microsoft Academic GrapheScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00139157.2016.1209016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | GCRF Living Deltas HubUKRI| GCRF Living Deltas HubÉmilie Crémin; J. Jack O'Connor; Sumana Banerjee; Ly Ha Bui; Abhra Chanda; Hieu Hong Hua; Da Van Huynh; Hue Le; Sonia Binte Murshed; Mashfiqus Salehin; Anh Ngoc Vu; Zita Sebesvári; Andrew Large; Fabrice G. Renaud;pmid: 37363314
pmc: PMC9982774
AbstractRiver deltas globally are highly exposed and vulnerable to natural hazards and are often over-exploited landforms. The Global Delta Risk Index (GDRI) was developed to assess multi-hazard risk in river deltas and support decision-making in risk reduction interventions in delta regions. Disasters have significant impacts on the progress towards the Sustainable Development Goals (SDGs). However, despite the strong interlinkage between disaster risk reduction and sustainable development, global frameworks are still developed in isolation and actions to address them are delegated to different institutions. Greater alignment between frameworks would both simplify monitoring progress towards disaster risk reduction and sustainable development and increase capacity to address data gaps in relation to indicator-based assessments for both processes. This research aims at aligning the GDRI indicators with the SDGs and the Sendai Framework for Disaster and Risk Reduction (SFDRR). While the GDRI has a modular indicator library, the most relevant indicators for this research were selected through a delta-specific impact chain designed in consultation with experts, communities and stakeholders in three delta regions: the Red River and Mekong deltas in Vietnam and the Ganges–Brahmaputra–Meghna (GBM) delta in Bangladesh and India. We analyse how effectively the 143 indicators for the GDRI match (or not) the SDG and SFDRR global frameworks. We demonstrate the interconnections of the different drivers of risk to better inform risk management and in turn support delta-level interventions towards improved sustainability and resilience of these Asian mega-deltas.
Newcastle University... arrow_drop_down Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/295418Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11625-023-01295-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Newcastle University... arrow_drop_down Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/295418Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11625-023-01295-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | GCRF Living Deltas HubUKRI| GCRF Living Deltas HubÉmilie Crémin; J. Jack O'Connor; Sumana Banerjee; Ly Ha Bui; Abhra Chanda; Hieu Hong Hua; Da Van Huynh; Hue Le; Sonia Binte Murshed; Mashfiqus Salehin; Anh Ngoc Vu; Zita Sebesvári; Andrew Large; Fabrice G. Renaud;pmid: 37363314
pmc: PMC9982774
AbstractRiver deltas globally are highly exposed and vulnerable to natural hazards and are often over-exploited landforms. The Global Delta Risk Index (GDRI) was developed to assess multi-hazard risk in river deltas and support decision-making in risk reduction interventions in delta regions. Disasters have significant impacts on the progress towards the Sustainable Development Goals (SDGs). However, despite the strong interlinkage between disaster risk reduction and sustainable development, global frameworks are still developed in isolation and actions to address them are delegated to different institutions. Greater alignment between frameworks would both simplify monitoring progress towards disaster risk reduction and sustainable development and increase capacity to address data gaps in relation to indicator-based assessments for both processes. This research aims at aligning the GDRI indicators with the SDGs and the Sendai Framework for Disaster and Risk Reduction (SFDRR). While the GDRI has a modular indicator library, the most relevant indicators for this research were selected through a delta-specific impact chain designed in consultation with experts, communities and stakeholders in three delta regions: the Red River and Mekong deltas in Vietnam and the Ganges–Brahmaputra–Meghna (GBM) delta in Bangladesh and India. We analyse how effectively the 143 indicators for the GDRI match (or not) the SDG and SFDRR global frameworks. We demonstrate the interconnections of the different drivers of risk to better inform risk management and in turn support delta-level interventions towards improved sustainability and resilience of these Asian mega-deltas.
Newcastle University... arrow_drop_down Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/295418Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11625-023-01295-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Newcastle University... arrow_drop_down Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/295418Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11625-023-01295-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Jazmin Campos Zeballos; Zita Sebesvari; Jakob Rhyner; Markus Metz; Vinicius Bof Bufon;doi: 10.3390/su14106219
Brazil has a large share of hydropower in its electricity matrix. Since hydropower depends on water availability, it is particularly vulnerable to drought events, making the Brazilian electricity matrix vulnerable to climate change. Starting in 2005, Brazil opened the matrix to new renewable sources, including sugarcane-based electricity. Sugarcane is known for its resilience to short dry spells. Over the last decades, its production area moved from the coastal plains of the Atlantic Forest biome to the savannahs of the Cerrado biome, which is characterised by a five- to six month-long dry season. The sugarcane-based electricity system is highly dynamic and complex due to the interlinkages, dependencies, and cascading impacts between its agricultural and industrial subsystems. This paper applies the risk framework proposed by the IPCC to assess climate-change-driven drought risks to sugarcane electricity generation systems to identify their strengths and weaknesses, considering the system dynamics and linkages. Our methodology aims to understand and characterize drought in the agriculture as well as industrial subsystems and offers a specific understanding of the system by using indicators tailored to sugarcane-based electricity generation. Our results underline the relevance of actions at different levels of management. Initiatives, such as regional weather forecasts specifically for agriculture, and measures to increase industrial water-use efficiency were identified to be essential to reduce the drought risk. Actions from farmers and mill owners, supported and guided by the government at different levels, have the potential to increase the resilience of the system. For example, the implementation of small dams was identified by local actors as a promising intervention to adapt to the long dry seasons; however, they need to be implemented based on a proper technical assessment in order to locate these dams in suitable places. Moreover, the results show that creating and maintaining small water reservoirs to enable the adoption of deficit-controlled irrigation technology contribute to reducing the overall drought risk of the sugarcane-based electricity generation system.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/10/6219/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14106219&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/10/6219/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14106219&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Jazmin Campos Zeballos; Zita Sebesvari; Jakob Rhyner; Markus Metz; Vinicius Bof Bufon;doi: 10.3390/su14106219
Brazil has a large share of hydropower in its electricity matrix. Since hydropower depends on water availability, it is particularly vulnerable to drought events, making the Brazilian electricity matrix vulnerable to climate change. Starting in 2005, Brazil opened the matrix to new renewable sources, including sugarcane-based electricity. Sugarcane is known for its resilience to short dry spells. Over the last decades, its production area moved from the coastal plains of the Atlantic Forest biome to the savannahs of the Cerrado biome, which is characterised by a five- to six month-long dry season. The sugarcane-based electricity system is highly dynamic and complex due to the interlinkages, dependencies, and cascading impacts between its agricultural and industrial subsystems. This paper applies the risk framework proposed by the IPCC to assess climate-change-driven drought risks to sugarcane electricity generation systems to identify their strengths and weaknesses, considering the system dynamics and linkages. Our methodology aims to understand and characterize drought in the agriculture as well as industrial subsystems and offers a specific understanding of the system by using indicators tailored to sugarcane-based electricity generation. Our results underline the relevance of actions at different levels of management. Initiatives, such as regional weather forecasts specifically for agriculture, and measures to increase industrial water-use efficiency were identified to be essential to reduce the drought risk. Actions from farmers and mill owners, supported and guided by the government at different levels, have the potential to increase the resilience of the system. For example, the implementation of small dams was identified by local actors as a promising intervention to adapt to the long dry seasons; however, they need to be implemented based on a proper technical assessment in order to locate these dams in suitable places. Moreover, the results show that creating and maintaining small water reservoirs to enable the adoption of deficit-controlled irrigation technology contribute to reducing the overall drought risk of the sugarcane-based electricity generation system.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/10/6219/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14106219&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/10/6219/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14106219&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006Publisher:Informa UK Limited Shardendu Shardendu; Zita Sebesvari; Nazir Salhani; Hendrik Emons; Hassan Azaizeh;pmid: 17120524
The potential of two plant species, Phragmites australis (common reed) and Typha latifolia (cattail), in the phytoremediation process of selenium (Se) was studied in subsurface-flow constructed wetland (SSF). Se was supplemented continuously at a concentration of 100 microg Se L(-1) in the inlet of the cultivation beds of the SSF. Water samples collected from the outlet of the Phragmites bed after 1, 3, 6, 9, and 12 wk of treatments showed that Se content was under detectable limits. Water samples collected from the Typha bed at the same five periods showed that Se concentrations in the outlet were 55, 47, 65, 76, and 25 microg/L, respectively. The results of bioaccumulation in the biomass of both species after 12 wk of treatment indicated that Typha plants accumulated Se mainly in fine roots. Phragmites accumulated Se mainly in leaves and rhizomes, and moderate levels were found in stems and fine organic materials. The results indicate that common reed is a very good species for Se phytoextraction and phytostabilization (immobilization) and that cattail is only a phytostabilization species. The use of common reed and cattail for Se phytoremediation in a SSF system and in constructed wetland models are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15226510600846723&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15226510600846723&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006Publisher:Informa UK Limited Shardendu Shardendu; Zita Sebesvari; Nazir Salhani; Hendrik Emons; Hassan Azaizeh;pmid: 17120524
The potential of two plant species, Phragmites australis (common reed) and Typha latifolia (cattail), in the phytoremediation process of selenium (Se) was studied in subsurface-flow constructed wetland (SSF). Se was supplemented continuously at a concentration of 100 microg Se L(-1) in the inlet of the cultivation beds of the SSF. Water samples collected from the outlet of the Phragmites bed after 1, 3, 6, 9, and 12 wk of treatments showed that Se content was under detectable limits. Water samples collected from the Typha bed at the same five periods showed that Se concentrations in the outlet were 55, 47, 65, 76, and 25 microg/L, respectively. The results of bioaccumulation in the biomass of both species after 12 wk of treatment indicated that Typha plants accumulated Se mainly in fine roots. Phragmites accumulated Se mainly in leaves and rhizomes, and moderate levels were found in stems and fine organic materials. The results indicate that common reed is a very good species for Se phytoextraction and phytostabilization (immobilization) and that cattail is only a phytostabilization species. The use of common reed and cattail for Se phytoremediation in a SSF system and in constructed wetland models are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15226510600846723&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15226510600846723&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Copernicus GmbH Émilie Crémin; Sumana Banerjee; Sonia Binte Murshed; Jack O'Connor; Hieu Hong Hua; Van Da Huynh; Thanh Son Vo; Huệ Lê; Mashfiqus Salehin; Zita Sebesvári; Andrew Large; Fabrice G. Renaud;Disasters have significant impacts on the progress towards achieving the Sustainable Development Goals (SDGs). However, the interlinkage between sustainable development and disaster risk reduction is not considered enough in risk assessment tools. A greater alignment with global frameworks would ease the monitoring while increasing the capacity to address data availability issues for indicator-based assessments.To bridge this gap, we use the Global Delta Risk Index (GDRI), which is composed of multiple components to assess risks to livelihoods: hazards, vulnerability, and exposure of social-ecological systems. The modular library of indicators of the GDRI has been further aligned with the Sustainable Development Goals (SDG) and the Sendai Framework for Disaster and Risk Reduction (SFDRR). To improve the accuracy of the risk assessment, the list of indicators has been weighted and scored through consultation with stakeholders.This research presents the initial results of a multi-hazard risk assessment that encompasses SDG and SFDRR indicators in three Asian river deltas: Ganges-Brahmaputra-Meghna, Mekong and Red River. This work aims at better informing risk management and supporting delta-level interventions to influence progress towards sustainability and resilience of river deltas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu23-881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu23-881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Copernicus GmbH Émilie Crémin; Sumana Banerjee; Sonia Binte Murshed; Jack O'Connor; Hieu Hong Hua; Van Da Huynh; Thanh Son Vo; Huệ Lê; Mashfiqus Salehin; Zita Sebesvári; Andrew Large; Fabrice G. Renaud;Disasters have significant impacts on the progress towards achieving the Sustainable Development Goals (SDGs). However, the interlinkage between sustainable development and disaster risk reduction is not considered enough in risk assessment tools. A greater alignment with global frameworks would ease the monitoring while increasing the capacity to address data availability issues for indicator-based assessments.To bridge this gap, we use the Global Delta Risk Index (GDRI), which is composed of multiple components to assess risks to livelihoods: hazards, vulnerability, and exposure of social-ecological systems. The modular library of indicators of the GDRI has been further aligned with the Sustainable Development Goals (SDG) and the Sendai Framework for Disaster and Risk Reduction (SFDRR). To improve the accuracy of the risk assessment, the list of indicators has been weighted and scored through consultation with stakeholders.This research presents the initial results of a multi-hazard risk assessment that encompasses SDG and SFDRR indicators in three Asian river deltas: Ganges-Brahmaputra-Meghna, Mekong and Red River. This work aims at better informing risk management and supporting delta-level interventions to influence progress towards sustainability and resilience of river deltas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu23-881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu23-881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | GCRF Living Deltas HubUKRI| GCRF Living Deltas HubÉmilie Crémin; Cai Ladd; Thorsten Balke; Sumana Banerjee; Ly H. Bui; Tuhin Ghosh; Andrew Large; Hue Le; Van Kien Nguyen; Lan Nguyen; Tanh Nguyen; Vinh Quang Nguyen; Indrajit Pal; Sylvia Szabo; Ha Tran; Zita Sebesvári; Shah Alam Khan; Fabrice G. Renaud;pmid: 38613747
pmc: PMC11101396
AbstractThe sustainability of social–ecological systems within river deltas globally is in question as rapid development and environmental change trigger “negative” or “positive” tipping points depending on actors’ perspectives, e.g. regime shift from abundant sediment deposition to sediment shortage, agricultural sustainability to agricultural collapse or shift from rural to urban land use. Using a systematic review of the literature, we show how cascading effects across anthropogenic, ecological, and geophysical processes have triggered numerous tipping points in the governance, hydrological, and land-use management of the world’s river deltas. Crossing tipping points had both positive and negative effects that generally enhanced economic development to the detriment of the environment. Assessment of deltas that featured prominently in the review revealed how outcomes of tipping points can inform the long-term trajectory of deltas towards sustainability or collapse. Management of key drivers at the delta scale can trigger positive tipping points to place social–ecological systems on a pathway towards sustainable development.
Newcastle University... arrow_drop_down Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/295741Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-023-01978-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Newcastle University... arrow_drop_down Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/295741Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-023-01978-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | GCRF Living Deltas HubUKRI| GCRF Living Deltas HubÉmilie Crémin; Cai Ladd; Thorsten Balke; Sumana Banerjee; Ly H. Bui; Tuhin Ghosh; Andrew Large; Hue Le; Van Kien Nguyen; Lan Nguyen; Tanh Nguyen; Vinh Quang Nguyen; Indrajit Pal; Sylvia Szabo; Ha Tran; Zita Sebesvári; Shah Alam Khan; Fabrice G. Renaud;pmid: 38613747
pmc: PMC11101396
AbstractThe sustainability of social–ecological systems within river deltas globally is in question as rapid development and environmental change trigger “negative” or “positive” tipping points depending on actors’ perspectives, e.g. regime shift from abundant sediment deposition to sediment shortage, agricultural sustainability to agricultural collapse or shift from rural to urban land use. Using a systematic review of the literature, we show how cascading effects across anthropogenic, ecological, and geophysical processes have triggered numerous tipping points in the governance, hydrological, and land-use management of the world’s river deltas. Crossing tipping points had both positive and negative effects that generally enhanced economic development to the detriment of the environment. Assessment of deltas that featured prominently in the review revealed how outcomes of tipping points can inform the long-term trajectory of deltas towards sustainability or collapse. Management of key drivers at the delta scale can trigger positive tipping points to place social–ecological systems on a pathway towards sustainable development.
Newcastle University... arrow_drop_down Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/295741Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-023-01978-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Newcastle University... arrow_drop_down Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/295741Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-023-01978-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United Kingdom, United States, Canada, CanadaPublisher:Informa UK Limited Funded by:UKRI | Belmont Forum Deltas, NSF | Belmont Forum-G8 Collabor...UKRI| Belmont Forum Deltas ,NSF| Belmont Forum-G8 Collaborative Research: DELTAS: Catalyzing action towards sustainability of deltaic systems with an integrated modeling framework for risk assessmentSzabo, Sylvia; Nicholls, Robert J.; Neumann, Barbara; Renaud, Fabrice G.; Matthews, Zoe; Sebesvari, Zita; AghaKouchak, Amir; Bales, Roger; Ruktanonchai, Corrine Warren; Kloos, Julia; Foufoula-Georgiou, Efi; Wester, Philippus; New, Mark; Rhyner, Jakob; Hutton, Craig;handle: 10625/57386
The impacts of climate change on people's livelihoods have been widely documented. It is expected that climate and environmental change will hamper poverty reduction, or even exacerbate poverty in some or all of its dimensions. Changes in the biophysical environment, such as droughts, flooding, water quantity and quality, and degrading ecosystems, are expected to affect opportunities for people to generate income. These changes, combined with a deficiency in coping strategies and innovation to adapt to particular climate change threats, are in turn likely to lead to increased economic and social vulnerability of households and communities, especially amongst the poorest.
CORE arrow_drop_down EnlightenArticle . 2016License: CC BY NC NDFull-Text: http://eprints.gla.ac.uk/158883/1/158883.pdfData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/9g58q2vhData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaEnvironment Science and Policy for Sustainable DevelopmentArticle . 2016 . Peer-reviewedData sources: CrossrefEnvironment Science and Policy for Sustainable DevelopmentJournalData sources: Microsoft Academic GrapheScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00139157.2016.1209016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 55 citations 55 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnlightenArticle . 2016License: CC BY NC NDFull-Text: http://eprints.gla.ac.uk/158883/1/158883.pdfData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/9g58q2vhData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaEnvironment Science and Policy for Sustainable DevelopmentArticle . 2016 . Peer-reviewedData sources: CrossrefEnvironment Science and Policy for Sustainable DevelopmentJournalData sources: Microsoft Academic GrapheScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00139157.2016.1209016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United Kingdom, United States, Canada, CanadaPublisher:Informa UK Limited Funded by:UKRI | Belmont Forum Deltas, NSF | Belmont Forum-G8 Collabor...UKRI| Belmont Forum Deltas ,NSF| Belmont Forum-G8 Collaborative Research: DELTAS: Catalyzing action towards sustainability of deltaic systems with an integrated modeling framework for risk assessmentSzabo, Sylvia; Nicholls, Robert J.; Neumann, Barbara; Renaud, Fabrice G.; Matthews, Zoe; Sebesvari, Zita; AghaKouchak, Amir; Bales, Roger; Ruktanonchai, Corrine Warren; Kloos, Julia; Foufoula-Georgiou, Efi; Wester, Philippus; New, Mark; Rhyner, Jakob; Hutton, Craig;handle: 10625/57386
The impacts of climate change on people's livelihoods have been widely documented. It is expected that climate and environmental change will hamper poverty reduction, or even exacerbate poverty in some or all of its dimensions. Changes in the biophysical environment, such as droughts, flooding, water quantity and quality, and degrading ecosystems, are expected to affect opportunities for people to generate income. These changes, combined with a deficiency in coping strategies and innovation to adapt to particular climate change threats, are in turn likely to lead to increased economic and social vulnerability of households and communities, especially amongst the poorest.
CORE arrow_drop_down EnlightenArticle . 2016License: CC BY NC NDFull-Text: http://eprints.gla.ac.uk/158883/1/158883.pdfData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/9g58q2vhData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaEnvironment Science and Policy for Sustainable DevelopmentArticle . 2016 . Peer-reviewedData sources: CrossrefEnvironment Science and Policy for Sustainable DevelopmentJournalData sources: Microsoft Academic GrapheScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00139157.2016.1209016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 55 citations 55 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnlightenArticle . 2016License: CC BY NC NDFull-Text: http://eprints.gla.ac.uk/158883/1/158883.pdfData sources: CORE (RIOXX-UK Aggregator)University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/9g58q2vhData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaEnvironment Science and Policy for Sustainable DevelopmentArticle . 2016 . Peer-reviewedData sources: CrossrefEnvironment Science and Policy for Sustainable DevelopmentJournalData sources: Microsoft Academic GrapheScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00139157.2016.1209016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | GCRF Living Deltas HubUKRI| GCRF Living Deltas HubÉmilie Crémin; J. Jack O'Connor; Sumana Banerjee; Ly Ha Bui; Abhra Chanda; Hieu Hong Hua; Da Van Huynh; Hue Le; Sonia Binte Murshed; Mashfiqus Salehin; Anh Ngoc Vu; Zita Sebesvári; Andrew Large; Fabrice G. Renaud;pmid: 37363314
pmc: PMC9982774
AbstractRiver deltas globally are highly exposed and vulnerable to natural hazards and are often over-exploited landforms. The Global Delta Risk Index (GDRI) was developed to assess multi-hazard risk in river deltas and support decision-making in risk reduction interventions in delta regions. Disasters have significant impacts on the progress towards the Sustainable Development Goals (SDGs). However, despite the strong interlinkage between disaster risk reduction and sustainable development, global frameworks are still developed in isolation and actions to address them are delegated to different institutions. Greater alignment between frameworks would both simplify monitoring progress towards disaster risk reduction and sustainable development and increase capacity to address data gaps in relation to indicator-based assessments for both processes. This research aims at aligning the GDRI indicators with the SDGs and the Sendai Framework for Disaster and Risk Reduction (SFDRR). While the GDRI has a modular indicator library, the most relevant indicators for this research were selected through a delta-specific impact chain designed in consultation with experts, communities and stakeholders in three delta regions: the Red River and Mekong deltas in Vietnam and the Ganges–Brahmaputra–Meghna (GBM) delta in Bangladesh and India. We analyse how effectively the 143 indicators for the GDRI match (or not) the SDG and SFDRR global frameworks. We demonstrate the interconnections of the different drivers of risk to better inform risk management and in turn support delta-level interventions towards improved sustainability and resilience of these Asian mega-deltas.
Newcastle University... arrow_drop_down Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/295418Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11625-023-01295-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Newcastle University... arrow_drop_down Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/295418Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11625-023-01295-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | GCRF Living Deltas HubUKRI| GCRF Living Deltas HubÉmilie Crémin; J. Jack O'Connor; Sumana Banerjee; Ly Ha Bui; Abhra Chanda; Hieu Hong Hua; Da Van Huynh; Hue Le; Sonia Binte Murshed; Mashfiqus Salehin; Anh Ngoc Vu; Zita Sebesvári; Andrew Large; Fabrice G. Renaud;pmid: 37363314
pmc: PMC9982774
AbstractRiver deltas globally are highly exposed and vulnerable to natural hazards and are often over-exploited landforms. The Global Delta Risk Index (GDRI) was developed to assess multi-hazard risk in river deltas and support decision-making in risk reduction interventions in delta regions. Disasters have significant impacts on the progress towards the Sustainable Development Goals (SDGs). However, despite the strong interlinkage between disaster risk reduction and sustainable development, global frameworks are still developed in isolation and actions to address them are delegated to different institutions. Greater alignment between frameworks would both simplify monitoring progress towards disaster risk reduction and sustainable development and increase capacity to address data gaps in relation to indicator-based assessments for both processes. This research aims at aligning the GDRI indicators with the SDGs and the Sendai Framework for Disaster and Risk Reduction (SFDRR). While the GDRI has a modular indicator library, the most relevant indicators for this research were selected through a delta-specific impact chain designed in consultation with experts, communities and stakeholders in three delta regions: the Red River and Mekong deltas in Vietnam and the Ganges–Brahmaputra–Meghna (GBM) delta in Bangladesh and India. We analyse how effectively the 143 indicators for the GDRI match (or not) the SDG and SFDRR global frameworks. We demonstrate the interconnections of the different drivers of risk to better inform risk management and in turn support delta-level interventions towards improved sustainability and resilience of these Asian mega-deltas.
Newcastle University... arrow_drop_down Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/295418Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11625-023-01295-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Newcastle University... arrow_drop_down Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/295418Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11625-023-01295-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Jazmin Campos Zeballos; Zita Sebesvari; Jakob Rhyner; Markus Metz; Vinicius Bof Bufon;doi: 10.3390/su14106219
Brazil has a large share of hydropower in its electricity matrix. Since hydropower depends on water availability, it is particularly vulnerable to drought events, making the Brazilian electricity matrix vulnerable to climate change. Starting in 2005, Brazil opened the matrix to new renewable sources, including sugarcane-based electricity. Sugarcane is known for its resilience to short dry spells. Over the last decades, its production area moved from the coastal plains of the Atlantic Forest biome to the savannahs of the Cerrado biome, which is characterised by a five- to six month-long dry season. The sugarcane-based electricity system is highly dynamic and complex due to the interlinkages, dependencies, and cascading impacts between its agricultural and industrial subsystems. This paper applies the risk framework proposed by the IPCC to assess climate-change-driven drought risks to sugarcane electricity generation systems to identify their strengths and weaknesses, considering the system dynamics and linkages. Our methodology aims to understand and characterize drought in the agriculture as well as industrial subsystems and offers a specific understanding of the system by using indicators tailored to sugarcane-based electricity generation. Our results underline the relevance of actions at different levels of management. Initiatives, such as regional weather forecasts specifically for agriculture, and measures to increase industrial water-use efficiency were identified to be essential to reduce the drought risk. Actions from farmers and mill owners, supported and guided by the government at different levels, have the potential to increase the resilience of the system. For example, the implementation of small dams was identified by local actors as a promising intervention to adapt to the long dry seasons; however, they need to be implemented based on a proper technical assessment in order to locate these dams in suitable places. Moreover, the results show that creating and maintaining small water reservoirs to enable the adoption of deficit-controlled irrigation technology contribute to reducing the overall drought risk of the sugarcane-based electricity generation system.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/10/6219/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14106219&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/10/6219/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14106219&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Jazmin Campos Zeballos; Zita Sebesvari; Jakob Rhyner; Markus Metz; Vinicius Bof Bufon;doi: 10.3390/su14106219
Brazil has a large share of hydropower in its electricity matrix. Since hydropower depends on water availability, it is particularly vulnerable to drought events, making the Brazilian electricity matrix vulnerable to climate change. Starting in 2005, Brazil opened the matrix to new renewable sources, including sugarcane-based electricity. Sugarcane is known for its resilience to short dry spells. Over the last decades, its production area moved from the coastal plains of the Atlantic Forest biome to the savannahs of the Cerrado biome, which is characterised by a five- to six month-long dry season. The sugarcane-based electricity system is highly dynamic and complex due to the interlinkages, dependencies, and cascading impacts between its agricultural and industrial subsystems. This paper applies the risk framework proposed by the IPCC to assess climate-change-driven drought risks to sugarcane electricity generation systems to identify their strengths and weaknesses, considering the system dynamics and linkages. Our methodology aims to understand and characterize drought in the agriculture as well as industrial subsystems and offers a specific understanding of the system by using indicators tailored to sugarcane-based electricity generation. Our results underline the relevance of actions at different levels of management. Initiatives, such as regional weather forecasts specifically for agriculture, and measures to increase industrial water-use efficiency were identified to be essential to reduce the drought risk. Actions from farmers and mill owners, supported and guided by the government at different levels, have the potential to increase the resilience of the system. For example, the implementation of small dams was identified by local actors as a promising intervention to adapt to the long dry seasons; however, they need to be implemented based on a proper technical assessment in order to locate these dams in suitable places. Moreover, the results show that creating and maintaining small water reservoirs to enable the adoption of deficit-controlled irrigation technology contribute to reducing the overall drought risk of the sugarcane-based electricity generation system.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/10/6219/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14106219&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/10/6219/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14106219&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006Publisher:Informa UK Limited Shardendu Shardendu; Zita Sebesvari; Nazir Salhani; Hendrik Emons; Hassan Azaizeh;pmid: 17120524
The potential of two plant species, Phragmites australis (common reed) and Typha latifolia (cattail), in the phytoremediation process of selenium (Se) was studied in subsurface-flow constructed wetland (SSF). Se was supplemented continuously at a concentration of 100 microg Se L(-1) in the inlet of the cultivation beds of the SSF. Water samples collected from the outlet of the Phragmites bed after 1, 3, 6, 9, and 12 wk of treatments showed that Se content was under detectable limits. Water samples collected from the Typha bed at the same five periods showed that Se concentrations in the outlet were 55, 47, 65, 76, and 25 microg/L, respectively. The results of bioaccumulation in the biomass of both species after 12 wk of treatment indicated that Typha plants accumulated Se mainly in fine roots. Phragmites accumulated Se mainly in leaves and rhizomes, and moderate levels were found in stems and fine organic materials. The results indicate that common reed is a very good species for Se phytoextraction and phytostabilization (immobilization) and that cattail is only a phytostabilization species. The use of common reed and cattail for Se phytoremediation in a SSF system and in constructed wetland models are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15226510600846723&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15226510600846723&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006Publisher:Informa UK Limited Shardendu Shardendu; Zita Sebesvari; Nazir Salhani; Hendrik Emons; Hassan Azaizeh;pmid: 17120524
The potential of two plant species, Phragmites australis (common reed) and Typha latifolia (cattail), in the phytoremediation process of selenium (Se) was studied in subsurface-flow constructed wetland (SSF). Se was supplemented continuously at a concentration of 100 microg Se L(-1) in the inlet of the cultivation beds of the SSF. Water samples collected from the outlet of the Phragmites bed after 1, 3, 6, 9, and 12 wk of treatments showed that Se content was under detectable limits. Water samples collected from the Typha bed at the same five periods showed that Se concentrations in the outlet were 55, 47, 65, 76, and 25 microg/L, respectively. The results of bioaccumulation in the biomass of both species after 12 wk of treatment indicated that Typha plants accumulated Se mainly in fine roots. Phragmites accumulated Se mainly in leaves and rhizomes, and moderate levels were found in stems and fine organic materials. The results indicate that common reed is a very good species for Se phytoextraction and phytostabilization (immobilization) and that cattail is only a phytostabilization species. The use of common reed and cattail for Se phytoremediation in a SSF system and in constructed wetland models are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15226510600846723&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15226510600846723&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Copernicus GmbH Émilie Crémin; Sumana Banerjee; Sonia Binte Murshed; Jack O'Connor; Hieu Hong Hua; Van Da Huynh; Thanh Son Vo; Huệ Lê; Mashfiqus Salehin; Zita Sebesvári; Andrew Large; Fabrice G. Renaud;Disasters have significant impacts on the progress towards achieving the Sustainable Development Goals (SDGs). However, the interlinkage between sustainable development and disaster risk reduction is not considered enough in risk assessment tools. A greater alignment with global frameworks would ease the monitoring while increasing the capacity to address data availability issues for indicator-based assessments.To bridge this gap, we use the Global Delta Risk Index (GDRI), which is composed of multiple components to assess risks to livelihoods: hazards, vulnerability, and exposure of social-ecological systems. The modular library of indicators of the GDRI has been further aligned with the Sustainable Development Goals (SDG) and the Sendai Framework for Disaster and Risk Reduction (SFDRR). To improve the accuracy of the risk assessment, the list of indicators has been weighted and scored through consultation with stakeholders.This research presents the initial results of a multi-hazard risk assessment that encompasses SDG and SFDRR indicators in three Asian river deltas: Ganges-Brahmaputra-Meghna, Mekong and Red River. This work aims at better informing risk management and supporting delta-level interventions to influence progress towards sustainability and resilience of river deltas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu23-881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu23-881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Copernicus GmbH Émilie Crémin; Sumana Banerjee; Sonia Binte Murshed; Jack O'Connor; Hieu Hong Hua; Van Da Huynh; Thanh Son Vo; Huệ Lê; Mashfiqus Salehin; Zita Sebesvári; Andrew Large; Fabrice G. Renaud;Disasters have significant impacts on the progress towards achieving the Sustainable Development Goals (SDGs). However, the interlinkage between sustainable development and disaster risk reduction is not considered enough in risk assessment tools. A greater alignment with global frameworks would ease the monitoring while increasing the capacity to address data availability issues for indicator-based assessments.To bridge this gap, we use the Global Delta Risk Index (GDRI), which is composed of multiple components to assess risks to livelihoods: hazards, vulnerability, and exposure of social-ecological systems. The modular library of indicators of the GDRI has been further aligned with the Sustainable Development Goals (SDG) and the Sendai Framework for Disaster and Risk Reduction (SFDRR). To improve the accuracy of the risk assessment, the list of indicators has been weighted and scored through consultation with stakeholders.This research presents the initial results of a multi-hazard risk assessment that encompasses SDG and SFDRR indicators in three Asian river deltas: Ganges-Brahmaputra-Meghna, Mekong and Red River. This work aims at better informing risk management and supporting delta-level interventions to influence progress towards sustainability and resilience of river deltas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu23-881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu23-881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu