- home
- Advanced Search
- Energy Research
- Closed Access
- Energy Research
- Closed Access
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Jacopo Tattini; Maurizio Gargiulo; Kenneth Bernard Karlsson;Abstract Energy/Economy/Environment/Engineering (E4) models have been rarely apt to represent human behaviour in transportation mode adoption. This paper contributes to the scientific literature by using an E4 model to analyse the long-term decarbonisation of the Danish transport sector. The study is carried out with TIMES-DK, the integrated energy system model of Denmark, which has been expanded in order to endogenously determine modal shares. The methodology extends the technology competition within the modes to competition across modes by aggregating the passenger modal travel demands into demand segments based on the distance range. Modal shift is based not only on the levelised costs of the modes, but also on speed and infrastructure requirement. Constraints derived from the National Travel Survey guarantee consistent travel habits and avoid unrealistic modal shifts. The comparison of model versions with and without modal shift identifies its positive contribution to the fulfilment of the Danish environmental targets. Four sensitivity analyses on the key variables of modal shift assess how their alternative realizations affect the decarbonisation of the transport sector and enable shifting away from car. The results indicate that less strict travel time budget (TTB) and increased speed of public bus lead to a more efficient decarbonisation by 2050.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2017.11.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 73 citations 73 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2017.11.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Kenneth Bernard Karlsson; Peter Meibom;The Balmorel model has been used to calculate the economic optimal energy system configuration for the Scandinavian countries and Germany in 2060 assuming a nearly 100% coverage of the energy demands in the power, heat and transport sector with renewable energy sources. Different assumptions about the future success of fuel cell technologies have been investigated as well as different electricity and heat demand assumptions. The variability of wind power production was handled by varying the hydropower production and the production on CHP plants using biomass, by power transmission, by varying the heat production in heat pumps and electric heat boilers, and by varying the production of hydrogen in electrolysis plants in combination with hydrogen storage. Investment in hydrogen storage capacity corresponded to 1.2% of annual wind power production in the scenarios without a hydrogen demand from the transport sector, and approximately 4% in the scenarios with a hydrogen demand from the transport sector. Even the scenarios without a demand for hydrogen from the transport sector saw investments in hydrogen storage due to the need for flexibility provided by the ability to store hydrogen. The storage capacities of the electricity storages provided by plug-in hybrid electric vehicles were too small to make hydrogen storage superfluous.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2009.12.161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2009.12.161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Publicly fundedJacopo Tattini; Kalai Ramea; Maurizio Gargiulo; Christopher Yang; Eamonn Mulholland; Sonia Yeh; Kenneth Karlsson;This study presents MoCho-TIMES, an original methodology for incorporating modal choice into energy-economy-environment-engineering (E4) system models. MoCho-TIMES addresses the scarce ability of E4 models to realistically depict behaviour in transport and allows for modal shift towards transit and non-motorized modes as a new dimension for decarbonising the transportation sector. The novel methodology determines endogenous modal shares by incorporating variables related to the level-of-service (LoS) of modes and consumers’ modal perception within the E4 modeling framework. Heterogeneity of transport users is introduced to differentiate modal perception and preferences across different consumer groups, while modal preferences are quantified via monetization of intangible costs. A support transport simulation model consistent with the geographical scope of the E4 model provides the data and mathematical expressions required to develop the approach. This study develops MoCho-TIMES in the standalone transportation sector of TIMES-DK, the integrated energy system model for Denmark. The model is tested for the Business as Usual scenario and for four alternative scenarios that imply diverse assumptions for the new attributes introduced. The results show that different assumptions for the new attributes affect modal shares and CO2 emissions. MoCho-TIMES inaugurates the possibility to perform innovative policy analyses involving new parameters to the E4 modeling framework. The results find that authority’s commitment to sustainability is crucial for a paradigmatic change in the transportation sector.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.12.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.12.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Raffaele Salvucci; Maurizio Gargiulo; Kenneth Karlsson;Abstract In the Nordics, transportation accounts for almost 40% of energy-related CO 2 emissions, a higher share than most European countries. The International Energy Agency identifies modal shift as pivotal for a sustainable transition of the transport sector. This study analyses the role of modal shift in the decarbonisation of the Scandinavian energy system with TIMES-Nordic, the TIMES (The Integrated MARKAL-EFOM System) model depicting the national energy systems of Denmark, Norway and Sweden. For the first time, passenger and freight modal shift is modelled through substitution elasticities for a real case study. Transport elasticities from the literature are discussed in light of the modelling environment, and long-term direct elasticities are identified as suitable for the purpose. The results obtained with TIMES-Nordic and its version equipped with modal shift are compared under an increasing CO 2 tax. For passenger, car is mainly substituted by rail and non-motorised modes, while for freight, rail replaces truck and ship. Modal shift results in a cost-effective mitigation measure, responsible for 26 PJ of lower fuel consumption in 2050, and 2.2% lower cumulative CO 2 emissions from transport. A sensitivity analysis on the investment costs for electric cars reveals the ineffectiveness of the CO 2 tax in stimulating car substitution in a future where electric cars are more competitive and the power sector almost decarbonised. Estimates of modal shift potentials from alternative methodologies are comparable to the results obtained, highlighting the methodology solidity. Lastly, a well-balanced technology characterization among modes is identified as crucial when enabling modal shift.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: Peter Meibom; Kenneth Bernard Karlsson;Abstract This paper investigates a possible long term investment path for the Nordic energy system focussing on renewable energy in the supply sector and on hydrogen as the main fuel for transportation, covering up to 70% of all transport in 2050. The optimisation model Balmorel [Ravn H, et al. Balmorel: A model for analyses of the electricity and CHP markets in the Baltic Sea Region. 〈 www.Balmorel.com 〉 ; 2001. [1] ] covering the Nordic energy system is used. The model has been expanded to include the modelling of hydrogen production technologies, storage and hydrogen power plants. The simulation shows that with an oil price at 100 $/barrel, a CO 2 price at 40 € / ton and the assumed penetration of hydrogen in the transport sector, it is economically optimal to cover more than 95% of the primary energy consumption for electricity and district heat by renewables in 2050. When the transport sector is converted as assumed 65% of the transportation relies on renewable energy.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2008.01.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 77 citations 77 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2008.01.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Jacopo Tattini; Maurizio Gargiulo; Kenneth Bernard Karlsson;Abstract Energy/Economy/Environment/Engineering (E4) models have been rarely apt to represent human behaviour in transportation mode adoption. This paper contributes to the scientific literature by using an E4 model to analyse the long-term decarbonisation of the Danish transport sector. The study is carried out with TIMES-DK, the integrated energy system model of Denmark, which has been expanded in order to endogenously determine modal shares. The methodology extends the technology competition within the modes to competition across modes by aggregating the passenger modal travel demands into demand segments based on the distance range. Modal shift is based not only on the levelised costs of the modes, but also on speed and infrastructure requirement. Constraints derived from the National Travel Survey guarantee consistent travel habits and avoid unrealistic modal shifts. The comparison of model versions with and without modal shift identifies its positive contribution to the fulfilment of the Danish environmental targets. Four sensitivity analyses on the key variables of modal shift assess how their alternative realizations affect the decarbonisation of the transport sector and enable shifting away from car. The results indicate that less strict travel time budget (TTB) and increased speed of public bus lead to a more efficient decarbonisation by 2050.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2017.11.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 73 citations 73 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2017.11.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Kenneth Bernard Karlsson; Peter Meibom;The Balmorel model has been used to calculate the economic optimal energy system configuration for the Scandinavian countries and Germany in 2060 assuming a nearly 100% coverage of the energy demands in the power, heat and transport sector with renewable energy sources. Different assumptions about the future success of fuel cell technologies have been investigated as well as different electricity and heat demand assumptions. The variability of wind power production was handled by varying the hydropower production and the production on CHP plants using biomass, by power transmission, by varying the heat production in heat pumps and electric heat boilers, and by varying the production of hydrogen in electrolysis plants in combination with hydrogen storage. Investment in hydrogen storage capacity corresponded to 1.2% of annual wind power production in the scenarios without a hydrogen demand from the transport sector, and approximately 4% in the scenarios with a hydrogen demand from the transport sector. Even the scenarios without a demand for hydrogen from the transport sector saw investments in hydrogen storage due to the need for flexibility provided by the ability to store hydrogen. The storage capacities of the electricity storages provided by plug-in hybrid electric vehicles were too small to make hydrogen storage superfluous.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2009.12.161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2009.12.161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Publicly fundedJacopo Tattini; Kalai Ramea; Maurizio Gargiulo; Christopher Yang; Eamonn Mulholland; Sonia Yeh; Kenneth Karlsson;This study presents MoCho-TIMES, an original methodology for incorporating modal choice into energy-economy-environment-engineering (E4) system models. MoCho-TIMES addresses the scarce ability of E4 models to realistically depict behaviour in transport and allows for modal shift towards transit and non-motorized modes as a new dimension for decarbonising the transportation sector. The novel methodology determines endogenous modal shares by incorporating variables related to the level-of-service (LoS) of modes and consumers’ modal perception within the E4 modeling framework. Heterogeneity of transport users is introduced to differentiate modal perception and preferences across different consumer groups, while modal preferences are quantified via monetization of intangible costs. A support transport simulation model consistent with the geographical scope of the E4 model provides the data and mathematical expressions required to develop the approach. This study develops MoCho-TIMES in the standalone transportation sector of TIMES-DK, the integrated energy system model for Denmark. The model is tested for the Business as Usual scenario and for four alternative scenarios that imply diverse assumptions for the new attributes introduced. The results show that different assumptions for the new attributes affect modal shares and CO2 emissions. MoCho-TIMES inaugurates the possibility to perform innovative policy analyses involving new parameters to the E4 modeling framework. The results find that authority’s commitment to sustainability is crucial for a paradigmatic change in the transportation sector.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.12.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.12.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Raffaele Salvucci; Maurizio Gargiulo; Kenneth Karlsson;Abstract In the Nordics, transportation accounts for almost 40% of energy-related CO 2 emissions, a higher share than most European countries. The International Energy Agency identifies modal shift as pivotal for a sustainable transition of the transport sector. This study analyses the role of modal shift in the decarbonisation of the Scandinavian energy system with TIMES-Nordic, the TIMES (The Integrated MARKAL-EFOM System) model depicting the national energy systems of Denmark, Norway and Sweden. For the first time, passenger and freight modal shift is modelled through substitution elasticities for a real case study. Transport elasticities from the literature are discussed in light of the modelling environment, and long-term direct elasticities are identified as suitable for the purpose. The results obtained with TIMES-Nordic and its version equipped with modal shift are compared under an increasing CO 2 tax. For passenger, car is mainly substituted by rail and non-motorised modes, while for freight, rail replaces truck and ship. Modal shift results in a cost-effective mitigation measure, responsible for 26 PJ of lower fuel consumption in 2050, and 2.2% lower cumulative CO 2 emissions from transport. A sensitivity analysis on the investment costs for electric cars reveals the ineffectiveness of the CO 2 tax in stimulating car substitution in a future where electric cars are more competitive and the power sector almost decarbonised. Estimates of modal shift potentials from alternative methodologies are comparable to the results obtained, highlighting the methodology solidity. Lastly, a well-balanced technology characterization among modes is identified as crucial when enabling modal shift.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113593&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: Peter Meibom; Kenneth Bernard Karlsson;Abstract This paper investigates a possible long term investment path for the Nordic energy system focussing on renewable energy in the supply sector and on hydrogen as the main fuel for transportation, covering up to 70% of all transport in 2050. The optimisation model Balmorel [Ravn H, et al. Balmorel: A model for analyses of the electricity and CHP markets in the Baltic Sea Region. 〈 www.Balmorel.com 〉 ; 2001. [1] ] covering the Nordic energy system is used. The model has been expanded to include the modelling of hydrogen production technologies, storage and hydrogen power plants. The simulation shows that with an oil price at 100 $/barrel, a CO 2 price at 40 € / ton and the assumed penetration of hydrogen in the transport sector, it is economically optimal to cover more than 95% of the primary energy consumption for electricity and district heat by renewables in 2050. When the transport sector is converted as assumed 65% of the transportation relies on renewable energy.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2008.01.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 77 citations 77 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2008.01.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu