- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Michal Rajnak; Zan Wu; Bystrik Dolnik; Katarina Paulovicova; Jana Tothova; Roman Cimbala; Juraj Kurimský; Peter Kopcansky; Bengt Sunden; Lars Wadsö; Milan Timko;doi: 10.3390/en12234532
Progress in electrical engineering puts a greater demand on the cooling and insulating properties of liquid media, such as transformer oils. To enhance their performance, researchers develop various nanofluids based on transformer oils. In this study, we focus on novel commercial transformer oil and a magnetic nanofluid containing iron oxide nanoparticles. Three key properties are experimentally investigated in this paper. Thermal conductivity was studied by a transient plane source method dependent on the magnetic volume fraction and external magnetic field. It is shown that the classical effective medium theory, such as the Maxwell model, fails to explain the obtained results. We highlight the importance of the magnetic field distribution and the location of the thermal conductivity sensor in the analysis of the anisotropic thermal conductivity. Dielectric permittivity of the magnetic nanofluid, dependent on electric field frequency and magnetic volume fraction, was measured by an LCR meter. The measurements were carried out in thin sample cells yielding unusual magneto-dielectric anisotropy, which was dependent on the magnetic volume fraction. Finally, the viscosity of the studied magnetic fluid was experimentally studied by means of a rheometer with a magneto-rheological device. The measurements proved the magneto-viscous effect, which intensifies with increasing magnetic volume fraction.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/23/4532/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12234532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/23/4532/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12234532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:IOP Publishing Michal Rajňák; Marek Franko; Katarína Paulovičová; Maksym Karpets; Kinnari Parekh; Ramesh Upadhyay; Juraj Kurimský; Bystrík Dolník; Roman Cimbala; Peter Havran; Milan Timko; Peter Kopčanský;Abstract In electrical engineering, the heat transfer can be enhanced by changing the thermophysical properties of insulating oils. In this paper, a single-phase power transformer with a nominal power of 5 kVA is subjected to a temperature rise test with three different transformer liquids. The first test is carried out with a novel gas-to-liquid transformer oil applied as a cooling and insulating medium. The other tests are conducted with ferrofluids based on this oil and MnZn ferrite nanoparticles of a low and a high nanoparticle concentration. The ferrofluids are characterized by magnetization curves, magnetic susceptibility and temperature-dependent magnetization measurements. The nanoparticle size distribution is determined from dynamic light scattering and the magnetization data. From the temperature rise profiles of the transformer at various inner locations, it has been found that the low-concentrated ferrofluid significantly reduces the transformer temperature rise. The enhanced cooling performance is ascribed to the thermomagnetic and natural convection, and increased thermal conductivity. The application of the ferrofluid with the high nanoparticle concentration resulted in a remarkable increase of the transformer temperature rise. The deteriorative cooling effect is attributed to the hindered natural and thermomagnetic convection due to the high ferrofluid magnetization and strong magnetic interaction of the ferrofluid with the magnetic field near the transformer core.
Journal of Physics D... arrow_drop_down Journal of Physics D Applied PhysicsArticle . 2022 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1361-6463/ac7425&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Physics D... arrow_drop_down Journal of Physics D Applied PhysicsArticle . 2022 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1361-6463/ac7425&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Institute of Physics, Polish Academy of Sciences Vladimír Lisý; M. Rajňák; K. Paulovičová; Peter Kopčanský; Jana Tóthová; Milan Timko;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12693/aphyspola.137.908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12693/aphyspola.137.908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Preprint 2020 GermanyPublisher:Institute of Physics, Polish Academy of Sciences Rajnak, M.; Garamus, V.; Timko, M.; Kopcansky, P.; Paulovicova, K.; Kurimsky, J.; Dolnik, B.; Cimbala, R.;We report on the investigation of a transformer oil-based magnetic nanofluid exposed to an electric field by means of synchrotron small angle X-ray scattering. Two types of small angle X-ray scattering experiments were carried out. In the first one, the electric field up to 6 kV / cm was generated in the nanofluid between two immersed electrodes. The other experiment focused on the nanofluid in an external electric field up to 10 kV / cm, when the electrodes were not in a direct electrical contact with the nanofluid. In the available range (0.02–4.5 nm$^{−1}$) of scattering vector $q$, the non-contact mode has no effect on the scattering intensity. The contact mode yielded noticeable low-$q$ intensity variations. In comparison to small angle neutron scattering, the small angle X-rayscattering study did not prove the proportional increase in the low $q$ scattering intensity with increasing electric field, but rather stochastic variations. The observed intensity variations reflect the local structural nanofluid changes caused by the induced electrohydrodynamics. The electrical conductivity and relaxation processes are pointed out as favorable conditions for electrohydrodynamics in the magnetic nanofluid. Acta physica Polonica / A 137(5), 942 - 944 (2020). doi:10.12693/APhysPolA.137.942 Published by Acad. Inst., Warsaw
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12693/aphyspola.137.942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12693/aphyspola.137.942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Michal Rajnak; Zan Wu; Bystrik Dolnik; Katarina Paulovicova; Jana Tothova; Roman Cimbala; Juraj Kurimský; Peter Kopcansky; Bengt Sunden; Lars Wadsö; Milan Timko;doi: 10.3390/en12234532
Progress in electrical engineering puts a greater demand on the cooling and insulating properties of liquid media, such as transformer oils. To enhance their performance, researchers develop various nanofluids based on transformer oils. In this study, we focus on novel commercial transformer oil and a magnetic nanofluid containing iron oxide nanoparticles. Three key properties are experimentally investigated in this paper. Thermal conductivity was studied by a transient plane source method dependent on the magnetic volume fraction and external magnetic field. It is shown that the classical effective medium theory, such as the Maxwell model, fails to explain the obtained results. We highlight the importance of the magnetic field distribution and the location of the thermal conductivity sensor in the analysis of the anisotropic thermal conductivity. Dielectric permittivity of the magnetic nanofluid, dependent on electric field frequency and magnetic volume fraction, was measured by an LCR meter. The measurements were carried out in thin sample cells yielding unusual magneto-dielectric anisotropy, which was dependent on the magnetic volume fraction. Finally, the viscosity of the studied magnetic fluid was experimentally studied by means of a rheometer with a magneto-rheological device. The measurements proved the magneto-viscous effect, which intensifies with increasing magnetic volume fraction.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/23/4532/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12234532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/23/4532/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12234532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:IOP Publishing Michal Rajňák; Marek Franko; Katarína Paulovičová; Maksym Karpets; Kinnari Parekh; Ramesh Upadhyay; Juraj Kurimský; Bystrík Dolník; Roman Cimbala; Peter Havran; Milan Timko; Peter Kopčanský;Abstract In electrical engineering, the heat transfer can be enhanced by changing the thermophysical properties of insulating oils. In this paper, a single-phase power transformer with a nominal power of 5 kVA is subjected to a temperature rise test with three different transformer liquids. The first test is carried out with a novel gas-to-liquid transformer oil applied as a cooling and insulating medium. The other tests are conducted with ferrofluids based on this oil and MnZn ferrite nanoparticles of a low and a high nanoparticle concentration. The ferrofluids are characterized by magnetization curves, magnetic susceptibility and temperature-dependent magnetization measurements. The nanoparticle size distribution is determined from dynamic light scattering and the magnetization data. From the temperature rise profiles of the transformer at various inner locations, it has been found that the low-concentrated ferrofluid significantly reduces the transformer temperature rise. The enhanced cooling performance is ascribed to the thermomagnetic and natural convection, and increased thermal conductivity. The application of the ferrofluid with the high nanoparticle concentration resulted in a remarkable increase of the transformer temperature rise. The deteriorative cooling effect is attributed to the hindered natural and thermomagnetic convection due to the high ferrofluid magnetization and strong magnetic interaction of the ferrofluid with the magnetic field near the transformer core.
Journal of Physics D... arrow_drop_down Journal of Physics D Applied PhysicsArticle . 2022 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1361-6463/ac7425&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Physics D... arrow_drop_down Journal of Physics D Applied PhysicsArticle . 2022 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1361-6463/ac7425&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Institute of Physics, Polish Academy of Sciences Vladimír Lisý; M. Rajňák; K. Paulovičová; Peter Kopčanský; Jana Tóthová; Milan Timko;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12693/aphyspola.137.908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12693/aphyspola.137.908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Preprint 2020 GermanyPublisher:Institute of Physics, Polish Academy of Sciences Rajnak, M.; Garamus, V.; Timko, M.; Kopcansky, P.; Paulovicova, K.; Kurimsky, J.; Dolnik, B.; Cimbala, R.;We report on the investigation of a transformer oil-based magnetic nanofluid exposed to an electric field by means of synchrotron small angle X-ray scattering. Two types of small angle X-ray scattering experiments were carried out. In the first one, the electric field up to 6 kV / cm was generated in the nanofluid between two immersed electrodes. The other experiment focused on the nanofluid in an external electric field up to 10 kV / cm, when the electrodes were not in a direct electrical contact with the nanofluid. In the available range (0.02–4.5 nm$^{−1}$) of scattering vector $q$, the non-contact mode has no effect on the scattering intensity. The contact mode yielded noticeable low-$q$ intensity variations. In comparison to small angle neutron scattering, the small angle X-rayscattering study did not prove the proportional increase in the low $q$ scattering intensity with increasing electric field, but rather stochastic variations. The observed intensity variations reflect the local structural nanofluid changes caused by the induced electrohydrodynamics. The electrical conductivity and relaxation processes are pointed out as favorable conditions for electrohydrodynamics in the magnetic nanofluid. Acta physica Polonica / A 137(5), 942 - 944 (2020). doi:10.12693/APhysPolA.137.942 Published by Acad. Inst., Warsaw
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12693/aphyspola.137.942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12693/aphyspola.137.942&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu