- home
- Advanced Search
- Energy Research
- Open Access
- Energy Research
- Open Access
description Publicationkeyboard_double_arrow_right Article 2024 MalaysiaPublisher:Elsevier BV H. Fayaz; S. Ramesh; Vijayanandh Raja; Emanoil Linul; Sher Afghan Khan; Mohammed Asif; Abdulrajak Buradi; Olusegun David Samuel;The ability of phase change materials (PCM) to store thermal energy has gained wide application area, like battery thermal management, solar water desalination and many other. The melting process of beeswax phase change material within the cube geometry with constant wall temperature (65 °C) boundary condition has been investigated using solidification and melting model. The fluid flow and heat transfer governing equations are solved using second order finite volume scheme. A PRESTO algorithm is applied for pressure-velocity coupling. The convergence criteria of 10−10 have been selected for energy equation, while 10−8 is selected for both momentum and continuity equations. The results like percentage variation along length-height and height-width plane for transient liquid fraction and temperature has been plotted, along with velocity streamlines within the cube geometry. From the obtained results it is concluded that the melting fraction and temperature of beeswax PCM is different in different planes and the major factors which affect the complete melting process is wall temperature, and the geometry. A difference of more than 0.1 °C in temperature has been recorded between mid-length-height and height-width plane while a difference of more than 2% in liquid fraction of PCM is observed. Even the uniformity of temperature and liquid fraction is notably influenced and vary along length, height, and width of cube geometry. Thus, it is concluded that melting process of PCM may affect the ability to store and release the heat energy which further affect the performance parameters of applied physical system.
Case Studies in Ther... arrow_drop_down Case Studies in Thermal EngineeringArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: CrossrefUniversity of Malaya: UM Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2024.104273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Case Studies in Ther... arrow_drop_down Case Studies in Thermal EngineeringArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: CrossrefUniversity of Malaya: UM Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2024.104273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Asif Afzal; Saad Alshahrani; Abdulrahman Alrobaian; Abdulrajak Buradi; Sher Afghan Khan;doi: 10.3390/en14217254
This work aims to model the combined cycle power plant (CCPP) using different algorithms. The algorithms used are Ridge, Linear regressor (LR), and upport vector regressor (SVR). The CCPP energy output data collected as a factor of thermal input variables, mainly exhaust vacuum, ambient temperature, relative humidity, and ambient pressure. Initially, the Ridge algorithm-based modeling is performed in detail, and then SVR-based LR, named as SVR (LR), SVR-based radial basis function—SVR (RBF), and SVR-based polynomial regression—SVR (Poly.) algorithms, are applied. Mean absolute error (MAE), R-squared (R2), median absolute error (MeAE), mean absolute percentage error (MAPE), and mean Poisson deviance (MPD) are assessed after their training and testing of each algorithm. From the modeling of energy output data, it is seen that SVR (RBF) is the most suitable in providing very close predictions compared to other algorithms. SVR (RBF) training R2 obtained is 0.98 while all others were 0.9–0.92. The testing predictions made by SVR (RBF), Ridge, and RidgeCV are nearly the same, i.e., R2 is 0.92. It is concluded that these algorithms are suitable for predicting sensitive output energy data of a CCPP depending on thermal input variables.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/21/7254/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14217254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 47 citations 47 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/21/7254/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14217254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Aabid Hussain Shaik; Saboor Shaik; Sparsh Goyal; Mohammed Rehaan Chandan; Ibham Veza; Abdulrajak Buradi; Ibrahim M. Alarifi;doi: 10.1155/2022/3443360
2D nanomaterials‐based heat transfer fluids show excellent thermal properties due to their large specific surface area; hence, they find large‐scale applications in automobile industries and cooling processes. Therefore, it is very essential to study the environmental and economic aspects of these 2D nanomaterial‐based nanofluids. In this review, we have discussed the environmental impact of 2D nanomaterial‐based heat transfer nanofluids under various conditions. The environmental impact analysis of these materials has shown excellent capability in reducing the energy consumption for heat transfer operations. Moreover, the possibility of nanomaterials and base fluid recovery makes it a sustainable alternative. In addition, health risk assessment on humans, cytotoxicity, and life cycle analysis have also been explored. The price‐performance index has been successfully used to study the economic impact of 2D nanomaterial‐based heat transfer fluids. The overall economic impact of 2D nanomaterial‐based heat transfer nanofluids provides an optimistic perspective over conventional heat transfer fluids. Moreover, graphene production, market trend, and commercialization obstacles were also discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2022/3443360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2022/3443360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024 MalaysiaPublisher:Elsevier BV H. Fayaz; S. Ramesh; Vijayanandh Raja; Emanoil Linul; Sher Afghan Khan; Mohammed Asif; Abdulrajak Buradi; Olusegun David Samuel;The ability of phase change materials (PCM) to store thermal energy has gained wide application area, like battery thermal management, solar water desalination and many other. The melting process of beeswax phase change material within the cube geometry with constant wall temperature (65 °C) boundary condition has been investigated using solidification and melting model. The fluid flow and heat transfer governing equations are solved using second order finite volume scheme. A PRESTO algorithm is applied for pressure-velocity coupling. The convergence criteria of 10−10 have been selected for energy equation, while 10−8 is selected for both momentum and continuity equations. The results like percentage variation along length-height and height-width plane for transient liquid fraction and temperature has been plotted, along with velocity streamlines within the cube geometry. From the obtained results it is concluded that the melting fraction and temperature of beeswax PCM is different in different planes and the major factors which affect the complete melting process is wall temperature, and the geometry. A difference of more than 0.1 °C in temperature has been recorded between mid-length-height and height-width plane while a difference of more than 2% in liquid fraction of PCM is observed. Even the uniformity of temperature and liquid fraction is notably influenced and vary along length, height, and width of cube geometry. Thus, it is concluded that melting process of PCM may affect the ability to store and release the heat energy which further affect the performance parameters of applied physical system.
Case Studies in Ther... arrow_drop_down Case Studies in Thermal EngineeringArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: CrossrefUniversity of Malaya: UM Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2024.104273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Case Studies in Ther... arrow_drop_down Case Studies in Thermal EngineeringArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: CrossrefUniversity of Malaya: UM Institutional RepositoryArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2024.104273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Asif Afzal; Saad Alshahrani; Abdulrahman Alrobaian; Abdulrajak Buradi; Sher Afghan Khan;doi: 10.3390/en14217254
This work aims to model the combined cycle power plant (CCPP) using different algorithms. The algorithms used are Ridge, Linear regressor (LR), and upport vector regressor (SVR). The CCPP energy output data collected as a factor of thermal input variables, mainly exhaust vacuum, ambient temperature, relative humidity, and ambient pressure. Initially, the Ridge algorithm-based modeling is performed in detail, and then SVR-based LR, named as SVR (LR), SVR-based radial basis function—SVR (RBF), and SVR-based polynomial regression—SVR (Poly.) algorithms, are applied. Mean absolute error (MAE), R-squared (R2), median absolute error (MeAE), mean absolute percentage error (MAPE), and mean Poisson deviance (MPD) are assessed after their training and testing of each algorithm. From the modeling of energy output data, it is seen that SVR (RBF) is the most suitable in providing very close predictions compared to other algorithms. SVR (RBF) training R2 obtained is 0.98 while all others were 0.9–0.92. The testing predictions made by SVR (RBF), Ridge, and RidgeCV are nearly the same, i.e., R2 is 0.92. It is concluded that these algorithms are suitable for predicting sensitive output energy data of a CCPP depending on thermal input variables.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/21/7254/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14217254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 47 citations 47 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/21/7254/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14217254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Aabid Hussain Shaik; Saboor Shaik; Sparsh Goyal; Mohammed Rehaan Chandan; Ibham Veza; Abdulrajak Buradi; Ibrahim M. Alarifi;doi: 10.1155/2022/3443360
2D nanomaterials‐based heat transfer fluids show excellent thermal properties due to their large specific surface area; hence, they find large‐scale applications in automobile industries and cooling processes. Therefore, it is very essential to study the environmental and economic aspects of these 2D nanomaterial‐based nanofluids. In this review, we have discussed the environmental impact of 2D nanomaterial‐based heat transfer nanofluids under various conditions. The environmental impact analysis of these materials has shown excellent capability in reducing the energy consumption for heat transfer operations. Moreover, the possibility of nanomaterials and base fluid recovery makes it a sustainable alternative. In addition, health risk assessment on humans, cytotoxicity, and life cycle analysis have also been explored. The price‐performance index has been successfully used to study the economic impact of 2D nanomaterial‐based heat transfer fluids. The overall economic impact of 2D nanomaterial‐based heat transfer nanofluids provides an optimistic perspective over conventional heat transfer fluids. Moreover, graphene production, market trend, and commercialization obstacles were also discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2022/3443360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2022/3443360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu