- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015 FrancePublisher:Elsevier BV Tu Van Nguyen; Erik-jan Malta; Francisco Arenas; Jorge Assis; Sofie Vranken; Frédéric Mineur; Frédéric Mineur; Andrew J. Davies; Ester A. Serrão; Thierry Thibaut; Fátima Vaz-Pinto; Aschwin H. Engelen; Francisco Fernandes; Olivier De Clerck;Seaweed assemblages represent the dominant autotrophic biomass in many coastal environments, playing a central structural and functional role in several ecosystems. In Europe, seaweed assemblages are highly diverse systems. The combined seaweed flora of different European regions hold around 1550 species (belonging to nearly 500 genera), with new species continuously uncovered, thanks to the emergence of molecular tools. In this manuscript we review the effects of global and local stressors on European seaweeds, their communities, and ecosystem functioning. Following a brief review on the present knowledge on European seaweed diversity and distribution, and the role of seaweed communities in biodiversity and ecosystem functioning, we discuss the effects of biotic homogenization (invasive species) and global climate change (shifts in bioclimatic zones and ocean acidification) on the distribution of individual species and their effect on the structure and functioning of seaweed communities. The arrival of new introduced species (that already account for 5–10% of the European seaweeds) and the regional extirpation of native species resulting from oceans' climate change are creating new diversity scenarios with undetermined functional consequences. Anthropogenic local stressors create additional disruption often altering dramatically assemblage's structure. Hence, we discuss ecosystem level effects of such stressors like harvesting, trampling, habitat modification, overgrazing and eutrophication that impact coastal communities at local scales. Last, we conclude by highlighting significant knowledge gaps that need to be addressed to anticipate the combined effects of global and local stressors on seaweed communities. With physical and biological changes occurring at unexpected pace, marine phycologists should now integrate and join their research efforts to be able to contribute efficiently for the conservation and management of coastal systems.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2015License: CC BY NC NDFull-Text: https://hal.science/hal-03477435Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seares.2014.11.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 169 citations 169 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2015License: CC BY NC NDFull-Text: https://hal.science/hal-03477435Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seares.2014.11.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015 FrancePublisher:Elsevier BV Tu Van Nguyen; Erik-jan Malta; Francisco Arenas; Jorge Assis; Sofie Vranken; Frédéric Mineur; Frédéric Mineur; Andrew J. Davies; Ester A. Serrão; Thierry Thibaut; Fátima Vaz-Pinto; Aschwin H. Engelen; Francisco Fernandes; Olivier De Clerck;Seaweed assemblages represent the dominant autotrophic biomass in many coastal environments, playing a central structural and functional role in several ecosystems. In Europe, seaweed assemblages are highly diverse systems. The combined seaweed flora of different European regions hold around 1550 species (belonging to nearly 500 genera), with new species continuously uncovered, thanks to the emergence of molecular tools. In this manuscript we review the effects of global and local stressors on European seaweeds, their communities, and ecosystem functioning. Following a brief review on the present knowledge on European seaweed diversity and distribution, and the role of seaweed communities in biodiversity and ecosystem functioning, we discuss the effects of biotic homogenization (invasive species) and global climate change (shifts in bioclimatic zones and ocean acidification) on the distribution of individual species and their effect on the structure and functioning of seaweed communities. The arrival of new introduced species (that already account for 5–10% of the European seaweeds) and the regional extirpation of native species resulting from oceans' climate change are creating new diversity scenarios with undetermined functional consequences. Anthropogenic local stressors create additional disruption often altering dramatically assemblage's structure. Hence, we discuss ecosystem level effects of such stressors like harvesting, trampling, habitat modification, overgrazing and eutrophication that impact coastal communities at local scales. Last, we conclude by highlighting significant knowledge gaps that need to be addressed to anticipate the combined effects of global and local stressors on seaweed communities. With physical and biological changes occurring at unexpected pace, marine phycologists should now integrate and join their research efforts to be able to contribute efficiently for the conservation and management of coastal systems.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2015License: CC BY NC NDFull-Text: https://hal.science/hal-03477435Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seares.2014.11.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 169 citations 169 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2015License: CC BY NC NDFull-Text: https://hal.science/hal-03477435Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seares.2014.11.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu