Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
9 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Rajendram, R; Preedy, V R;

    Both acute and chronic alcohol consumption have severe effects on the structure and function of the entire gastrointestinal tract (GIT) which result in a vicious cycle. The healthy person who begins to drink heavily, first experiences the toxic effects of high concentrations of ethanol. Mucosal damage compromises the basic functions of the GIT. Suppression of the gastrointestinal immune system and increased transport of toxins across the mucosa result in increased susceptibility to infections. Inhibition of digestion, absorption and secretion cause diarrhea and reduce the transfer of nutrients to the rest of the body. As the individual becomes more dependent on alcohol, the functional reserve and regenerative capacity of the GIT are overwhelmed and malnutrition increases. The rate of progression of this cycle depends on several factors including nutritional intake. Whilst the clinical effects of alcohol are well recognized, more research is required to fully elucidate the underlying mechanisms.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digestive Diseasesarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Digestive Diseases
    Article . 2005 . Peer-reviewed
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    47
    citations47
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digestive Diseasesarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Digestive Diseases
      Article . 2005 . Peer-reviewed
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ariyoshi, K; Adachi, J; Asano, M; Ueno, Y; +2 Authors

    It was our hypothesis that, as a consequence of increased oxidative stress, cholesterol-derived hydroperoxides and oxysterols are increased in livers of rats exposed to ethanol. To test this we dosed Wistar rats (approximately 0.1 kg initial body weight) with ethanol chronically (rats fed a nutritionally complete liquid diet containing ethanol as 35% of total calories; sampled liver at approximately 6-7 weeks). We measured concentrations of 7 alpha- and 7 beta-hydroperoxycholest-5-en-3 beta-ol (7 alpha-OOH and 7 beta-OOH) as well as 7 alpha- and 7 beta-hydroxycholesterol (7 alpha-OH and 7 beta-OH), and 3 beta-hydroxycholest-5-en-7-one (also termed 7-ketocholesterol; 7-keto). In response to chronic alcohol feeding, there were significant elevations in the concentrations of 7 alpha-OOH (+169%, P = 0.005) and 7 beta-OOH (+199%, P = 0.011). Increases in the concentrations of hepatic 7-keto (+74%, P = 0.01) and decreases in cholesterol (-43%; P = 0.03) also occurred. In contrast, the concentrations of both 7 alpha-OH and 7 beta-OH were not significant (NS). However, when oxysterols in chronic ethanol-fed rats were expressed relative to cholesterol there were significant increases in 7-keto/cholesterol (P = 0.0006), 7 alpha-OH/cholesterol (P = 0.0018) and 7 beta-OH/cholesterol (P = 0.0047). In conclusion, this is the first report of increased 7 alpha-OOH, 7 beta-OOH, and 7-keto in liver of rats and their elevation in chronic experimental alcoholism represent evidence of increased oxidative stress.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao King's College, Lond...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Free Radical Research
    Article . 2002 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    19
    citations19
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao King's College, Lond...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Free Radical Research
      Article . 2002 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Adachi, J; Kudo, R; Asano, M; Ueno, Y; +4 Authors

    Oxysterols are cytotoxic agents that have a range of cellular actions, including impairment of albumin synthesis, cell differentiation, and induction of apoptosis. Their regulations by nutritional factors are poorly described. Our objective was to test the hypothesis that the imposition of food withdrawal and alcohol exposure increases tissue oxysterol concentrations. We measured the concentrations of the oxysterols 7alpha-hydroxycholest-5-en-3beta-ol (7alpha-OH), 7beta-hydroxycholest-5-en-3beta-ol (7beta-OH), and 3beta-hydroxycholest-5-en-7-one (7-keto) in liver and skeletal muscle of fed and fasted (food withdrawal for 1 and 2 days) male Wistar rats. Both oxidative (type I; soleus) and glycolytic (type II; plantaris) muscles were analyzed. We also investigated the effects of a nutritional perturbant induced by a short-term bolus of ethanol (75 mmol/kg weight IP administered 2.5 hours before sacrifice). The results showed that in response to fasting there were significant increases in 7alpha-OH, 7beta-OH, and 7-keto in liver and both type I and II skeletal muscle (P < .001 in all instances). For skeletal muscle, the increases were blunted or ameliorated after 2 days when compared with data from rats starved for 1 day. In contrast, the increases in liver after 1 day's fasting were relatively sustained at 2 days. Short-term ethanol increased 7alpha-OH, 7beta-OH, and 7-keto in type I muscle of fed animals only (P < .001 in all instances) with a significant interaction between fasting and alcohol (P < .001 in all instances). For the first time, we have shown that oxysterols can increase in muscle and liver in response to food withdrawal and in response to an immediately imposed nutritional perturbant (ie, alcohol). Increased oxysterols represent elevated oxidative stress and/or disturbances in their formation or clearance. Because of the reported cytotoxic properties of oxysterols, these data are important in understanding cellular pathology because episodic anorexia and/or oxidative stress occur in a variety of disease conditions including sepsis, cancer cachexia, ischemia, and hormonal imbalance.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Metabolismarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Metabolism
    Article . 2006 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Metabolism
    Article . 2006
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    12
    citations12
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Metabolismarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Metabolism
      Article . 2006 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Metabolism
      Article . 2006
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Adachi, J; Kudo, R; Ueno, Y; Hunter, R; +3 Authors

    Recently, cholesterol hydroperoxides have been shown to be sensitive pathogenic markers of reactive oxygen species (ROS)-mediated damage though they have never been measured in heart tissue. We hypothesized that cholesterol hydroperoxides and oxysterols, putative cardiotoxic products of cholesterol oxidation, are elevated in the hearts of alcoholics as a consequence of ROS-mediated reactions. To test this, we measured 7alpha- and 7beta-hydroperoxycholest-5-en-3beta-ol (7alpha-OOH and 7beta-OOH) by HPLC with postcolumn chemiluminescence as well as 7alpha- and 7beta-hydroxycholesterol (7alpha-OH and 7beta-OH) and 3beta-hydroxycholest-5-en-7-one (also termed 7-ketocholesterol; 7-keto) by HPLC-UV in cardiac muscle of alcohol-fed rats. Alcohol feeding was carried out using a pair-feeding protocol with 35% of total dietary energy as ethanol; controls were pair-fed isocaloric glucose. After 6-7 wk treatment with alcohol, heart 7alpha-OOH, 7beta-OOH and 7beta-OH were significantly greater than in controls. Levels of heart phospholipid 16:0 and 18:1 were lower than in controls, while 18:0 and 18:2 were greater. This is the first report of the presence of 7alpha-OOH, 7beta-OOH and 7alpha-OH in cardiac tissue. The elevations in 7alpha-OOH and 7beta-OOH as well as 7beta-OH are evidence of increased oxidative stress and possible membrane changes. Alterations in the proportions of 16:0, 18:1, 18:2 and 18:0 in heart phospholipids provide further evidence of an altered membrane domain.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Nutritionarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Nutrition
    Article . 2001 . Peer-reviewed
    License: Elsevier Non-Commercial
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    42
    citations42
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Nutritionarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Nutrition
      Article . 2001 . Peer-reviewed
      License: Elsevier Non-Commercial
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Preedy, Victor R.; Adachi, Junko; Asano, Migiwa; Koll, Michael; +9 Authors

    Chronic alcoholic myopathy affects up to two-thirds of all alcohol misusers and is characterized by selective atrophy of Type II (glycolytic, fast-twitch, anaerobic) fibers. In contrast, the Type I fibers (oxidative, slow-twitch, aerobic) are relatively protected. Alcohol increases the concentration of cholesterol hydroperoxides and malondialdehyde-protein adducts, though protein-carbonyl concentration levels do not appear to be overtly increased and may actually decrease in some studies. In alcoholics, plasma concentrations of alpha-tocopherol may be reduced in myopathic patients. However, alpha-tocopherol supplementation has failed to prevent either the loss of skeletal muscle protein or the reductions in protein synthesis in alcohol-dosed animals. The evidence for increased oxidative stress in alcohol-exposed skeletal muscle is thus inconsistent. Further work into the role of ROS in alcoholic myopathy is clearly warranted.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Free Radical Biology...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Free Radical Biology and Medicine
    Article . 2002 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    40
    citations40
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Free Radical Biology...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Free Radical Biology and Medicine
      Article . 2002 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Rajendram, Rajkumar; Preedy, Victor R.;

    Ethanol, or alcohol, is one of the most commonly used recreational drugs. On a global basis, alcohol misuse causes the deaths of 3 million people each year (WHO, 2014). This is about 1 in 17 deaths. Alcohol misuse also causes many neurological pathologies. In terms of the global burden of disease, neuropsychiatric disorders contribute to about 25% of all alcohol-attributable disability-adjusted life years (DALYS). The detailed mechanisms related to the neurological effects of alcohol and treatments are relatively recent advances within alcohol-related research. This chapter lists resources of the regulatory bodies, professional societies, journals, books, and websites that are relevant to an evidence-based approach to the neuroscience of alcohol and alcohol treatments. For example, we list over 100 websites and 90 recommended books.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1016/b978-0...
    Part of book or chapter of book . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1016/b978-0...
      Part of book or chapter of book . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Preedy, V R; Ohlendieck, K; Adachi, J; Koll, M; +5 Authors

    Alcohol-induced muscle disease (AIMD) is a composite term to describe any muscle pathology (molecular, biochemical, structural or physiological) resulting from either acute or chronic alcohol ingestion or a combination thereof. The chronic form of AIMD is arguably the most prevalent skeletal muscle disorder in the Western Hemisphere affecting more than 2000 subjects per 100,000 population and is thus much more common than hereditary disorders such as Becker or Duchenne muscular dystrophy. Paradoxically, most texts on skeletal myopathies or scientific meetings covering muscle disease have generally ignored chronic alcoholic myopathy. The chronic form of AIMDs affects 40-60% of alcoholics and is more common than other alcohol-induced diseases, for example, cirrhosis (15-20% of chronic alcoholics), peripheral neuropathy (15-20%), intestinal disease (30-50%) or cardiomyopathy (15-35%). In this article, we summarise the pathological features of alcoholic muscle disease, particularly biochemical changes related to protein metabolism and some of the putative underlying mechanisms. However, the intervening steps between the exposure of muscle to ethanol and the initiation of the cascade of responses leading to muscle weakness and loss of muscle bulk remain essentially unknown. We argue that alcoholic myopathy represents: (a) a model system in which both the causal agent and the target organ is known; (b) a myopathy involving free-radical mediated pathology to the whole body which may also target skeletal muscle and (c) a reversible myopathy, unlike many hereditary muscle diseases. A clearer understanding of the mechanisms responsible for alcoholic myopathy is important since some of the underlying pathways may be common to other myopathies.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    56
    citations56
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Rajendram, R; Marway, J S; Mantle, D; Peters, T J; +1 Authors

    The nitric oxide synthase (NOS) inhibitors, L-omega-nitro-L-arginine methyl ester (L-NAME; 25 mg/kg and 100 mg/kg) and N(G)-nitro-L-arginine (L-NNA; 100 mg/kg) were used to investigate the role of NO on in vivo skeletal muscle and jejunal (mucosa and seromuscular layer) protein synthesis rates in normal (ie, untreated) and ethanol-dosed (75 mmol/kg body weight) rats. Fractional rates of protein synthesis, ie, percentage of protein pool renewed each day, k(s), %/d) were measured with a flooding dose of L-[(3)H-4]phenylalanine. In response to both doses of L-NAME and L-NNA, k(s) in skeletal muscle of normal rats decreased by 9% to 31% (P between <.05 and <.001). In the mucosa, k(s) was significantly reduced only by the higher dose of L-NAME (-49%, P <.001). In the seromuscular layer, k(s) was reduced by 15% to 57% (P between <.05 and <.001) in response to both doses of L-NAME and L-NNA. Ethanol dosage reduced k(s) in skeletal muscle (-35%, P <.001), and small reductions also occurred in the jejunal mucosal and seromuscular layers (-14% P <.05 and -12% P <.05, respectively). However, in the presence of L-NAME, ethanol reduced k(s) in jejunal mucosal and seromuscular layers by -35% (P <.01) and -30% (P <.01), respectively, compared with controls. This exacerbating effect of L-NAME predosage in ethanol-treated rats was not demonstrable in skeletal muscle. The data thus suggest that (1) endogenous NO facilitates constitutive skeletal muscle and jejunal protein synthesis in control animals in vivo; (2) the sensitivity of jejunal (but not skeletal muscle) protein synthesis to acute ethanol is increased when inhibitors of NOS are used. This tentatively implies that, in response to ethanol, overproduction of NO is not involved in the ethanol-induced reduction of protein synthesis in skeletal muscle or the jejunum.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Metabolismarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Metabolism
    Article . 2003 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Metabolism
    Article . 2003
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Metabolismarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Metabolism
      Article . 2003 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Metabolism
      Article . 2003
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Salem, R O; Laposata, M; Rajendram, R; Cluette-Brown, J E; +1 Authors

    Skeletal muscle appears to be susceptible to chronic and acute excess alcohol intake, giving rise to alcoholic myopathy, a common disease among alcoholics. Fatty acid ethyl esters (FAEE), non-oxidative metabolites of ethanol, have been shown to be toxic to cells in vitro and in vivo. We hypothesized that accumulation of FAEE in skeletal muscle could contribute to the development of alcoholic myopathy.Male wistar rats were treated either with 75 mmol ethanol/kg body weight or saline, in the fed state or starved for 1 or 2 days before administration. Rats were thus divided into the following groups: fed-saline (n = 8); fed-ethanol (n = 8); starved 1 day, saline (n = 8); starved 1 day, ethanol (n = 9); starved 2 days, saline (n = 7); and starved 2 days, ethanol (n = 8). At the end of the incubation, skeletal muscles (abdominal and gastrocnemius), liver, and heart were isolated and processed for FAEE isolation and analysis by gas chromatography-mass spectrometry (GC-MS).Total mass of FAEE in the muscles was much greater than that found in the liver and the heart. In general, the animals that were fasted for 1 day and received ethanol had the highest FAEE levels among the three groups of animals. The major ethyl ester species in all cases were ethyl 16:0, ethyl 18:0, ethyl 18:1 n-9, and ethyl 18:2 n-6. Ethyl 20:4 n-6 and ethyl 22:6 n-3 were also present, except in the fasted 1-day group, where ethyl 22:6 disappeared, though it reappeared in the fasted 2-day group.These findings demonstrate that skeletal muscles contain high levels of FAEE that are synthesized in the body after ethanol exposure. The concentration of FAEE in skeletal muscle in this study was very similar to FAEE concentration in the liver. This differs from previous studies suggesting a low concentration of skeletal muscle FAEE with ethanol exposure.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Alcohol and Alcoholi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcohol and Alcoholism
    Article . 2006 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    10
    citations10
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Alcohol and Alcoholi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcohol and Alcoholism
      Article . 2006 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
9 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Rajendram, R; Preedy, V R;

    Both acute and chronic alcohol consumption have severe effects on the structure and function of the entire gastrointestinal tract (GIT) which result in a vicious cycle. The healthy person who begins to drink heavily, first experiences the toxic effects of high concentrations of ethanol. Mucosal damage compromises the basic functions of the GIT. Suppression of the gastrointestinal immune system and increased transport of toxins across the mucosa result in increased susceptibility to infections. Inhibition of digestion, absorption and secretion cause diarrhea and reduce the transfer of nutrients to the rest of the body. As the individual becomes more dependent on alcohol, the functional reserve and regenerative capacity of the GIT are overwhelmed and malnutrition increases. The rate of progression of this cycle depends on several factors including nutritional intake. Whilst the clinical effects of alcohol are well recognized, more research is required to fully elucidate the underlying mechanisms.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digestive Diseasesarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Digestive Diseases
    Article . 2005 . Peer-reviewed
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    47
    citations47
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digestive Diseasesarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Digestive Diseases
      Article . 2005 . Peer-reviewed
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ariyoshi, K; Adachi, J; Asano, M; Ueno, Y; +2 Authors

    It was our hypothesis that, as a consequence of increased oxidative stress, cholesterol-derived hydroperoxides and oxysterols are increased in livers of rats exposed to ethanol. To test this we dosed Wistar rats (approximately 0.1 kg initial body weight) with ethanol chronically (rats fed a nutritionally complete liquid diet containing ethanol as 35% of total calories; sampled liver at approximately 6-7 weeks). We measured concentrations of 7 alpha- and 7 beta-hydroperoxycholest-5-en-3 beta-ol (7 alpha-OOH and 7 beta-OOH) as well as 7 alpha- and 7 beta-hydroxycholesterol (7 alpha-OH and 7 beta-OH), and 3 beta-hydroxycholest-5-en-7-one (also termed 7-ketocholesterol; 7-keto). In response to chronic alcohol feeding, there were significant elevations in the concentrations of 7 alpha-OOH (+169%, P = 0.005) and 7 beta-OOH (+199%, P = 0.011). Increases in the concentrations of hepatic 7-keto (+74%, P = 0.01) and decreases in cholesterol (-43%; P = 0.03) also occurred. In contrast, the concentrations of both 7 alpha-OH and 7 beta-OH were not significant (NS). However, when oxysterols in chronic ethanol-fed rats were expressed relative to cholesterol there were significant increases in 7-keto/cholesterol (P = 0.0006), 7 alpha-OH/cholesterol (P = 0.0018) and 7 beta-OH/cholesterol (P = 0.0047). In conclusion, this is the first report of increased 7 alpha-OOH, 7 beta-OOH, and 7-keto in liver of rats and their elevation in chronic experimental alcoholism represent evidence of increased oxidative stress.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao King's College, Lond...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Free Radical Research
    Article . 2002 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    19
    citations19
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao King's College, Lond...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Free Radical Research
      Article . 2002 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Adachi, J; Kudo, R; Asano, M; Ueno, Y; +4 Authors

    Oxysterols are cytotoxic agents that have a range of cellular actions, including impairment of albumin synthesis, cell differentiation, and induction of apoptosis. Their regulations by nutritional factors are poorly described. Our objective was to test the hypothesis that the imposition of food withdrawal and alcohol exposure increases tissue oxysterol concentrations. We measured the concentrations of the oxysterols 7alpha-hydroxycholest-5-en-3beta-ol (7alpha-OH), 7beta-hydroxycholest-5-en-3beta-ol (7beta-OH), and 3beta-hydroxycholest-5-en-7-one (7-keto) in liver and skeletal muscle of fed and fasted (food withdrawal for 1 and 2 days) male Wistar rats. Both oxidative (type I; soleus) and glycolytic (type II; plantaris) muscles were analyzed. We also investigated the effects of a nutritional perturbant induced by a short-term bolus of ethanol (75 mmol/kg weight IP administered 2.5 hours before sacrifice). The results showed that in response to fasting there were significant increases in 7alpha-OH, 7beta-OH, and 7-keto in liver and both type I and II skeletal muscle (P < .001 in all instances). For skeletal muscle, the increases were blunted or ameliorated after 2 days when compared with data from rats starved for 1 day. In contrast, the increases in liver after 1 day's fasting were relatively sustained at 2 days. Short-term ethanol increased 7alpha-OH, 7beta-OH, and 7-keto in type I muscle of fed animals only (P < .001 in all instances) with a significant interaction between fasting and alcohol (P < .001 in all instances). For the first time, we have shown that oxysterols can increase in muscle and liver in response to food withdrawal and in response to an immediately imposed nutritional perturbant (ie, alcohol). Increased oxysterols represent elevated oxidative stress and/or disturbances in their formation or clearance. Because of the reported cytotoxic properties of oxysterols, these data are important in understanding cellular pathology because episodic anorexia and/or oxidative stress occur in a variety of disease conditions including sepsis, cancer cachexia, ischemia, and hormonal imbalance.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Metabolismarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Metabolism
    Article . 2006 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Metabolism
    Article . 2006
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    12
    citations12
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Metabolismarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Metabolism
      Article . 2006 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Metabolism
      Article . 2006
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Adachi, J; Kudo, R; Ueno, Y; Hunter, R; +3 Authors

    Recently, cholesterol hydroperoxides have been shown to be sensitive pathogenic markers of reactive oxygen species (ROS)-mediated damage though they have never been measured in heart tissue. We hypothesized that cholesterol hydroperoxides and oxysterols, putative cardiotoxic products of cholesterol oxidation, are elevated in the hearts of alcoholics as a consequence of ROS-mediated reactions. To test this, we measured 7alpha- and 7beta-hydroperoxycholest-5-en-3beta-ol (7alpha-OOH and 7beta-OOH) by HPLC with postcolumn chemiluminescence as well as 7alpha- and 7beta-hydroxycholesterol (7alpha-OH and 7beta-OH) and 3beta-hydroxycholest-5-en-7-one (also termed 7-ketocholesterol; 7-keto) by HPLC-UV in cardiac muscle of alcohol-fed rats. Alcohol feeding was carried out using a pair-feeding protocol with 35% of total dietary energy as ethanol; controls were pair-fed isocaloric glucose. After 6-7 wk treatment with alcohol, heart 7alpha-OOH, 7beta-OOH and 7beta-OH were significantly greater than in controls. Levels of heart phospholipid 16:0 and 18:1 were lower than in controls, while 18:0 and 18:2 were greater. This is the first report of the presence of 7alpha-OOH, 7beta-OOH and 7alpha-OH in cardiac tissue. The elevations in 7alpha-OOH and 7beta-OOH as well as 7beta-OH are evidence of increased oxidative stress and possible membrane changes. Alterations in the proportions of 16:0, 18:1, 18:2 and 18:0 in heart phospholipids provide further evidence of an altered membrane domain.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Nutritionarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Nutrition
    Article . 2001 . Peer-reviewed
    License: Elsevier Non-Commercial
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    42
    citations42
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Nutritionarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Nutrition
      Article . 2001 . Peer-reviewed
      License: Elsevier Non-Commercial
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Preedy, Victor R.; Adachi, Junko; Asano, Migiwa; Koll, Michael; +9 Authors

    Chronic alcoholic myopathy affects up to two-thirds of all alcohol misusers and is characterized by selective atrophy of Type II (glycolytic, fast-twitch, anaerobic) fibers. In contrast, the Type I fibers (oxidative, slow-twitch, aerobic) are relatively protected. Alcohol increases the concentration of cholesterol hydroperoxides and malondialdehyde-protein adducts, though protein-carbonyl concentration levels do not appear to be overtly increased and may actually decrease in some studies. In alcoholics, plasma concentrations of alpha-tocopherol may be reduced in myopathic patients. However, alpha-tocopherol supplementation has failed to prevent either the loss of skeletal muscle protein or the reductions in protein synthesis in alcohol-dosed animals. The evidence for increased oxidative stress in alcohol-exposed skeletal muscle is thus inconsistent. Further work into the role of ROS in alcoholic myopathy is clearly warranted.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Free Radical Biology...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Free Radical Biology and Medicine
    Article . 2002 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    40
    citations40
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Free Radical Biology...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Free Radical Biology and Medicine
      Article . 2002 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Rajendram, Rajkumar; Preedy, Victor R.;

    Ethanol, or alcohol, is one of the most commonly used recreational drugs. On a global basis, alcohol misuse causes the deaths of 3 million people each year (WHO, 2014). This is about 1 in 17 deaths. Alcohol misuse also causes many neurological pathologies. In terms of the global burden of disease, neuropsychiatric disorders contribute to about 25% of all alcohol-attributable disability-adjusted life years (DALYS). The detailed mechanisms related to the neurological effects of alcohol and treatments are relatively recent advances within alcohol-related research. This chapter lists resources of the regulatory bodies, professional societies, journals, books, and websites that are relevant to an evidence-based approach to the neuroscience of alcohol and alcohol treatments. For example, we list over 100 websites and 90 recommended books.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1016/b978-0...
    Part of book or chapter of book . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1016/b978-0...
      Part of book or chapter of book . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Preedy, V R; Ohlendieck, K; Adachi, J; Koll, M; +5 Authors

    Alcohol-induced muscle disease (AIMD) is a composite term to describe any muscle pathology (molecular, biochemical, structural or physiological) resulting from either acute or chronic alcohol ingestion or a combination thereof. The chronic form of AIMD is arguably the most prevalent skeletal muscle disorder in the Western Hemisphere affecting more than 2000 subjects per 100,000 population and is thus much more common than hereditary disorders such as Becker or Duchenne muscular dystrophy. Paradoxically, most texts on skeletal myopathies or scientific meetings covering muscle disease have generally ignored chronic alcoholic myopathy. The chronic form of AIMDs affects 40-60% of alcoholics and is more common than other alcohol-induced diseases, for example, cirrhosis (15-20% of chronic alcoholics), peripheral neuropathy (15-20%), intestinal disease (30-50%) or cardiomyopathy (15-35%). In this article, we summarise the pathological features of alcoholic muscle disease, particularly biochemical changes related to protein metabolism and some of the putative underlying mechanisms. However, the intervening steps between the exposure of muscle to ethanol and the initiation of the cascade of responses leading to muscle weakness and loss of muscle bulk remain essentially unknown. We argue that alcoholic myopathy represents: (a) a model system in which both the causal agent and the target organ is known; (b) a myopathy involving free-radical mediated pathology to the whole body which may also target skeletal muscle and (c) a reversible myopathy, unlike many hereditary muscle diseases. A clearer understanding of the mechanisms responsible for alcoholic myopathy is important since some of the underlying pathways may be common to other myopathies.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    56
    citations56
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Rajendram, R; Marway, J S; Mantle, D; Peters, T J; +1 Authors

    The nitric oxide synthase (NOS) inhibitors, L-omega-nitro-L-arginine methyl ester (L-NAME; 25 mg/kg and 100 mg/kg) and N(G)-nitro-L-arginine (L-NNA; 100 mg/kg) were used to investigate the role of NO on in vivo skeletal muscle and jejunal (mucosa and seromuscular layer) protein synthesis rates in normal (ie, untreated) and ethanol-dosed (75 mmol/kg body weight) rats. Fractional rates of protein synthesis, ie, percentage of protein pool renewed each day, k(s), %/d) were measured with a flooding dose of L-[(3)H-4]phenylalanine. In response to both doses of L-NAME and L-NNA, k(s) in skeletal muscle of normal rats decreased by 9% to 31% (P between <.05 and <.001). In the mucosa, k(s) was significantly reduced only by the higher dose of L-NAME (-49%, P <.001). In the seromuscular layer, k(s) was reduced by 15% to 57% (P between <.05 and <.001) in response to both doses of L-NAME and L-NNA. Ethanol dosage reduced k(s) in skeletal muscle (-35%, P <.001), and small reductions also occurred in the jejunal mucosal and seromuscular layers (-14% P <.05 and -12% P <.05, respectively). However, in the presence of L-NAME, ethanol reduced k(s) in jejunal mucosal and seromuscular layers by -35% (P <.01) and -30% (P <.01), respectively, compared with controls. This exacerbating effect of L-NAME predosage in ethanol-treated rats was not demonstrable in skeletal muscle. The data thus suggest that (1) endogenous NO facilitates constitutive skeletal muscle and jejunal protein synthesis in control animals in vivo; (2) the sensitivity of jejunal (but not skeletal muscle) protein synthesis to acute ethanol is increased when inhibitors of NOS are used. This tentatively implies that, in response to ethanol, overproduction of NO is not involved in the ethanol-induced reduction of protein synthesis in skeletal muscle or the jejunum.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Metabolismarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Metabolism
    Article . 2003 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Metabolism
    Article . 2003
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Metabolismarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Metabolism
      Article . 2003 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Metabolism
      Article . 2003
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Salem, R O; Laposata, M; Rajendram, R; Cluette-Brown, J E; +1 Authors

    Skeletal muscle appears to be susceptible to chronic and acute excess alcohol intake, giving rise to alcoholic myopathy, a common disease among alcoholics. Fatty acid ethyl esters (FAEE), non-oxidative metabolites of ethanol, have been shown to be toxic to cells in vitro and in vivo. We hypothesized that accumulation of FAEE in skeletal muscle could contribute to the development of alcoholic myopathy.Male wistar rats were treated either with 75 mmol ethanol/kg body weight or saline, in the fed state or starved for 1 or 2 days before administration. Rats were thus divided into the following groups: fed-saline (n = 8); fed-ethanol (n = 8); starved 1 day, saline (n = 8); starved 1 day, ethanol (n = 9); starved 2 days, saline (n = 7); and starved 2 days, ethanol (n = 8). At the end of the incubation, skeletal muscles (abdominal and gastrocnemius), liver, and heart were isolated and processed for FAEE isolation and analysis by gas chromatography-mass spectrometry (GC-MS).Total mass of FAEE in the muscles was much greater than that found in the liver and the heart. In general, the animals that were fasted for 1 day and received ethanol had the highest FAEE levels among the three groups of animals. The major ethyl ester species in all cases were ethyl 16:0, ethyl 18:0, ethyl 18:1 n-9, and ethyl 18:2 n-6. Ethyl 20:4 n-6 and ethyl 22:6 n-3 were also present, except in the fasted 1-day group, where ethyl 22:6 disappeared, though it reappeared in the fasted 2-day group.These findings demonstrate that skeletal muscles contain high levels of FAEE that are synthesized in the body after ethanol exposure. The concentration of FAEE in skeletal muscle in this study was very similar to FAEE concentration in the liver. This differs from previous studies suggesting a low concentration of skeletal muscle FAEE with ethanol exposure.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Alcohol and Alcoholi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcohol and Alcoholism
    Article . 2006 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    10
    citations10
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Alcohol and Alcoholi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcohol and Alcoholism
      Article . 2006 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph