- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Elsevier BV Qingyin Dong; Shuang Liang; Jinhui Li; Hyung Chul Kim; Wei Shen; Timothy J. Wallington;The manuscript reviews the research on economic and environmental benefits of second-life electric vehicle batteries (EVBs) use for energy storage in households, utilities, and EV charging stations. Economic benefits depend heavily on electricity costs, battery costs, and battery performance; carbon benefits depend largely on the electricity mix charging the batteries. Environmental performance is greatest when used to store renewable energy such as wind and solar power. Inconsistent system boundaries make it challenging to compare the life cycle carbon footprint across different studies. The future growth of second-life EVB utilization faces several challenges, including the chemical and electrical properties and states of health of retired EVBs, the rapidly decreasing costs of new batteries, and different operational requirements. Measures to mitigate these challenges include the development of efficient diagnostic technologies, comprehensive test standards, and battery designs suitable for remanufacturing. Further research is needed based on real-world operational data and harmonized approaches.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.isci.2023.107195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.isci.2023.107195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 United KingdomPublisher:Elsevier BV Jinhui Li; Xianlai Zeng; Xiaoyu Yan; Robert Pell; Robert Pell; Frances Wall;handle: 10871/36260
Abstract The study shows that a detailed LCA can be carried out for a proposed mining project as soon as Prefeasibility (PFS) data are available. The prefeasibility study is one of the key early steps in bringing a deposit towards production and results are often publically available. This study applies the technique to a rare earth deposit because rare earth element (REE) consumption is increasing owing to their use in low-carbon technologies such as electric vehicles and wind turbines. It is therefore particularly important to understand the environmental impacts of the raw materials. A number of REE deposits are under development to give additional supply and many possess novel mineral compositions and will require different processing methods than previously used. Assessing the environmental performance of the production of REE during the development of projects offers significant insights into how to improve the sustainability of a project. In this study we used life cycle assessment (LCA) to quantify the environmental impacts for producing rare earth oxide (REO) from the Bear Lodge Project, United States. The Life Cycle Impact Assessment results were produced for each year over the life of the project, generating insight about the relationships between ore composition, grade, processing method and environmental impacts. The environmental impacts vary significantly during the life of a project and a temporally explicit LCA can highlight these.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10871/36260Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mineng.2019.02.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10871/36260Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mineng.2019.02.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Quanyin Tan; Liyao Yang; Fan Wei; Yuan Chen; Jinhui Li;Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2023.113239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2023.113239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Ming Xu; Jinhui Li; Xianlai Zeng; Xianlai Zeng;Abstract Rapid economic growth and accelerating urbanization in the past three decades have accelerated the exhaustion of China’s mineral resources. China is the world’s largest consumer and importer of nickel resources; therefore, a growing domestic demand will increase China’s import dependence and in turn make it potentially vulnerable to supply shortages. One hundred years from 1950 to 2050 were examined for China’s nickel utilization. Identified domestic nickel resources can only sustain China’s industries until 2017, but nickel will reach peak utilization around the year of 2020–2022. Given the 5% annual increase in applications and the growing importation of minerals in China, the carrying duration of nickel resources until 2020 will require a nickel-recycling rate of more than 90%. To sustain China’s nickel utilization, future strategies should foster three solutions: maintaining a high level of imports, adjusting the landscape of nickel applications, and shifting from virgin mining of geological minerals to urban mining of anthropogenic resources.
Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2018.08.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu66 citations 66 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2018.08.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Authors: Qudsia Kanwal; Xianlai Zeng; Jinhui Li;AbstractIndustrial waste is the byproduct of many industrial processes. Estimating the recycling potential of industrial waste can help solve the anthropogenic circularity conundrum. Here we employed the Environmental Kuznets Curve (EKC) to verify GDP as a route to "amplified resource efficiency". The results provide substantial evidence for an inverted U and N relationship between the hypothesized GDPPC and industrial waste generation. During 2011–2025, the recycling potential in China showed a downward trend. China is projected to experience a dramatic increase in the production of industrial hazardous waste until the successful implementation of industrial hazardous waste prevention measures reverses the current trends. The turning point of the EKC between industrial waste generation and economic development is around US$8000, while the comprehensive utilization is 102.22 million tons. The EKC inflection points established by the study are correlated with the waste category’s turning point. The revised EKC claims that technological change may accelerate the turning points; thus, the graph shifts downward and right. The study recommends investing in new technology development to help the industry produce virgin and recycled industrial waste for a circular economy. Recycling potential evaluation also assists us to achieve our Sustainable Development Goals (SDGs).
Humanities & Soc... arrow_drop_down Humanities & Social Sciences CommunicationsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1057/s41599-023-01942-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Humanities & Soc... arrow_drop_down Humanities & Social Sciences CommunicationsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1057/s41599-023-01942-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:American Chemical Society (ACS) Authors: Moisés Gómez; Guochang Xu; Jinhui Li; Xianlai Zeng;pmid: 36735866
Indium has emerged as a strategic metal for high-tech and renewable industries, being catalogued as a critical material to foster a greener future. Nevertheless, its global sustainability is not well addressed. Here, using dynamic substance flow analysis, we study the indium industry evolution between 2010 and 2020 and estimate its future demand in the medium and long term toward 2050 to identify potential paths and mechanisms to decrease indium losses and to identify the key stages in its life cycle. As electronics and photovoltaic industries will play a crucial role in the indium demand, we assess their indium demand employing three cumulative photovoltaic capacity scenarios (8.5, 14, and 60 TW by 2050) with different dominant photovoltaic sub-technologies. Results show that liquid-crystal displays and photovoltaic panels will drive indium future demand, increasing its current demand by 2.2-4.2, 2.6-7.0, and 6.8-38.3 times for the 8.5, 14, and 60 TW scenarios, respectively, threatening with shortages that could occur as early as the next decade. Therefore, measures to reduce losses in primary production, innovations and improvements in electronics and solar panels, and indium recycling with an effective circular economy strategy could promote and secure the future sustainability of indium.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.2c07169&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.2c07169&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Australia, Denmark, AustraliaPublisher:American Chemical Society (ACS) Huabo Duan; T. Reed Miller; Gang Liu; Xianlai Zeng; Keli Yu; Qifei Huang; Jian Zuo; Yufei Qin; Jinhui Li;The global community has responded to the dual threats of ozone depletion and climate change from refrigerant emissions (e.g., chlorofluorocarbons, CFCs, and hydrofluorocarbons, HFCs) in refrigerators and air conditioners (RACs) by agreeing to phase out the production of the most damaging chemicals and replacing them with substitutes. Since these refrigerants are "banked" in products during their service life, they will continue to impact our environment for decades to come if they are released due to mismanagement at the end of life. Addressing such long-term impacts of refrigerants requires a dynamic understanding of the RACs' life cycle, which was largely overlooked in previous studies. Based on field surveys and a dynamic model, we reveal the lingering ozone depletion potential (ODP) and significant global warming potential (GWP) of scrap refrigerants in China, the world's largest producer (62%) and consumer (46%) of RACs in 2015, which comes almost entirely from air conditioners rather than refrigerators. If the use and waste management of RACs continue with the current trend, the total GWP of scrap refrigerants in China will peak by 2025 at a level of 135.2 ± 18.9 Mt CO2e (equal to approximately 1.2% ± 0.2% of China's total greenhouse gas emissions or the national total of either The Netherlands and Czech Republic in 2015). Our results imply an urgent need for improving the recycling and waste management of RACs in China.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2018Data sources: University of Southern Denmark Research OutputUniversity of Southern Denmark Research OutputArticle . 2018Data sources: University of Southern Denmark Research OutputThe University of Adelaide: Digital LibraryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.7b05987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2018Data sources: University of Southern Denmark Research OutputUniversity of Southern Denmark Research OutputArticle . 2018Data sources: University of Southern Denmark Research OutputThe University of Adelaide: Digital LibraryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.7b05987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Elsevier BV Qingyin Dong; Shuang Liang; Jinhui Li; Hyung Chul Kim; Wei Shen; Timothy J. Wallington;The manuscript reviews the research on economic and environmental benefits of second-life electric vehicle batteries (EVBs) use for energy storage in households, utilities, and EV charging stations. Economic benefits depend heavily on electricity costs, battery costs, and battery performance; carbon benefits depend largely on the electricity mix charging the batteries. Environmental performance is greatest when used to store renewable energy such as wind and solar power. Inconsistent system boundaries make it challenging to compare the life cycle carbon footprint across different studies. The future growth of second-life EVB utilization faces several challenges, including the chemical and electrical properties and states of health of retired EVBs, the rapidly decreasing costs of new batteries, and different operational requirements. Measures to mitigate these challenges include the development of efficient diagnostic technologies, comprehensive test standards, and battery designs suitable for remanufacturing. Further research is needed based on real-world operational data and harmonized approaches.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.isci.2023.107195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.isci.2023.107195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 United KingdomPublisher:Elsevier BV Jinhui Li; Xianlai Zeng; Xiaoyu Yan; Robert Pell; Robert Pell; Frances Wall;handle: 10871/36260
Abstract The study shows that a detailed LCA can be carried out for a proposed mining project as soon as Prefeasibility (PFS) data are available. The prefeasibility study is one of the key early steps in bringing a deposit towards production and results are often publically available. This study applies the technique to a rare earth deposit because rare earth element (REE) consumption is increasing owing to their use in low-carbon technologies such as electric vehicles and wind turbines. It is therefore particularly important to understand the environmental impacts of the raw materials. A number of REE deposits are under development to give additional supply and many possess novel mineral compositions and will require different processing methods than previously used. Assessing the environmental performance of the production of REE during the development of projects offers significant insights into how to improve the sustainability of a project. In this study we used life cycle assessment (LCA) to quantify the environmental impacts for producing rare earth oxide (REO) from the Bear Lodge Project, United States. The Life Cycle Impact Assessment results were produced for each year over the life of the project, generating insight about the relationships between ore composition, grade, processing method and environmental impacts. The environmental impacts vary significantly during the life of a project and a temporally explicit LCA can highlight these.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10871/36260Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mineng.2019.02.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10871/36260Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mineng.2019.02.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Quanyin Tan; Liyao Yang; Fan Wei; Yuan Chen; Jinhui Li;Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2023.113239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2023.113239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Ming Xu; Jinhui Li; Xianlai Zeng; Xianlai Zeng;Abstract Rapid economic growth and accelerating urbanization in the past three decades have accelerated the exhaustion of China’s mineral resources. China is the world’s largest consumer and importer of nickel resources; therefore, a growing domestic demand will increase China’s import dependence and in turn make it potentially vulnerable to supply shortages. One hundred years from 1950 to 2050 were examined for China’s nickel utilization. Identified domestic nickel resources can only sustain China’s industries until 2017, but nickel will reach peak utilization around the year of 2020–2022. Given the 5% annual increase in applications and the growing importation of minerals in China, the carrying duration of nickel resources until 2020 will require a nickel-recycling rate of more than 90%. To sustain China’s nickel utilization, future strategies should foster three solutions: maintaining a high level of imports, adjusting the landscape of nickel applications, and shifting from virgin mining of geological minerals to urban mining of anthropogenic resources.
Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2018.08.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu66 citations 66 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2018.08.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Authors: Qudsia Kanwal; Xianlai Zeng; Jinhui Li;AbstractIndustrial waste is the byproduct of many industrial processes. Estimating the recycling potential of industrial waste can help solve the anthropogenic circularity conundrum. Here we employed the Environmental Kuznets Curve (EKC) to verify GDP as a route to "amplified resource efficiency". The results provide substantial evidence for an inverted U and N relationship between the hypothesized GDPPC and industrial waste generation. During 2011–2025, the recycling potential in China showed a downward trend. China is projected to experience a dramatic increase in the production of industrial hazardous waste until the successful implementation of industrial hazardous waste prevention measures reverses the current trends. The turning point of the EKC between industrial waste generation and economic development is around US$8000, while the comprehensive utilization is 102.22 million tons. The EKC inflection points established by the study are correlated with the waste category’s turning point. The revised EKC claims that technological change may accelerate the turning points; thus, the graph shifts downward and right. The study recommends investing in new technology development to help the industry produce virgin and recycled industrial waste for a circular economy. Recycling potential evaluation also assists us to achieve our Sustainable Development Goals (SDGs).
Humanities & Soc... arrow_drop_down Humanities & Social Sciences CommunicationsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1057/s41599-023-01942-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Humanities & Soc... arrow_drop_down Humanities & Social Sciences CommunicationsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1057/s41599-023-01942-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:American Chemical Society (ACS) Authors: Moisés Gómez; Guochang Xu; Jinhui Li; Xianlai Zeng;pmid: 36735866
Indium has emerged as a strategic metal for high-tech and renewable industries, being catalogued as a critical material to foster a greener future. Nevertheless, its global sustainability is not well addressed. Here, using dynamic substance flow analysis, we study the indium industry evolution between 2010 and 2020 and estimate its future demand in the medium and long term toward 2050 to identify potential paths and mechanisms to decrease indium losses and to identify the key stages in its life cycle. As electronics and photovoltaic industries will play a crucial role in the indium demand, we assess their indium demand employing three cumulative photovoltaic capacity scenarios (8.5, 14, and 60 TW by 2050) with different dominant photovoltaic sub-technologies. Results show that liquid-crystal displays and photovoltaic panels will drive indium future demand, increasing its current demand by 2.2-4.2, 2.6-7.0, and 6.8-38.3 times for the 8.5, 14, and 60 TW scenarios, respectively, threatening with shortages that could occur as early as the next decade. Therefore, measures to reduce losses in primary production, innovations and improvements in electronics and solar panels, and indium recycling with an effective circular economy strategy could promote and secure the future sustainability of indium.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.2c07169&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.2c07169&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Australia, Denmark, AustraliaPublisher:American Chemical Society (ACS) Huabo Duan; T. Reed Miller; Gang Liu; Xianlai Zeng; Keli Yu; Qifei Huang; Jian Zuo; Yufei Qin; Jinhui Li;The global community has responded to the dual threats of ozone depletion and climate change from refrigerant emissions (e.g., chlorofluorocarbons, CFCs, and hydrofluorocarbons, HFCs) in refrigerators and air conditioners (RACs) by agreeing to phase out the production of the most damaging chemicals and replacing them with substitutes. Since these refrigerants are "banked" in products during their service life, they will continue to impact our environment for decades to come if they are released due to mismanagement at the end of life. Addressing such long-term impacts of refrigerants requires a dynamic understanding of the RACs' life cycle, which was largely overlooked in previous studies. Based on field surveys and a dynamic model, we reveal the lingering ozone depletion potential (ODP) and significant global warming potential (GWP) of scrap refrigerants in China, the world's largest producer (62%) and consumer (46%) of RACs in 2015, which comes almost entirely from air conditioners rather than refrigerators. If the use and waste management of RACs continue with the current trend, the total GWP of scrap refrigerants in China will peak by 2025 at a level of 135.2 ± 18.9 Mt CO2e (equal to approximately 1.2% ± 0.2% of China's total greenhouse gas emissions or the national total of either The Netherlands and Czech Republic in 2015). Our results imply an urgent need for improving the recycling and waste management of RACs in China.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2018Data sources: University of Southern Denmark Research OutputUniversity of Southern Denmark Research OutputArticle . 2018Data sources: University of Southern Denmark Research OutputThe University of Adelaide: Digital LibraryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.7b05987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2018Data sources: University of Southern Denmark Research OutputUniversity of Southern Denmark Research OutputArticle . 2018Data sources: University of Southern Denmark Research OutputThe University of Adelaide: Digital LibraryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.7b05987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu