- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021 France, Spain, United Kingdom, France, Saudi Arabia, Saudi ArabiaPublisher:Frontiers Media SA Maha J. Cziesielski; Carlos M. Duarte; Nojood Aalismail; Yousef Al-Hafedh; Andrea Anton; Faiyah Baalkhuyur; Andrew C. Baker; Thorsten Balke; Iliana B. Baums; Michael Berumen; Vasiliki I. Chalastani; Brendan Cornwell; Daniele Daffonchio; Karen Diele; Ehtesaam Farooq; Jean-Pierre Gattuso; Jean-Pierre Gattuso; Song He; Song He; Catherine E. Lovelock; Elizabeth Mcleod; Peter I. Macreadie; Nuria Marba; Cecilia Martin; Marcelle Muniz-Barreto; Kirshnakumar P. Kadinijappali; Perdana Prihartato; Lotfi Rabaoui; Vincent Saderne; Sebastian Schmidt-Roach; David J. Suggett; Michael Sweet; John Statton; Sam Teicher; Stacey M. Trevathan-Tackett; Thadickal V. Joydas; Razan Yahya; Manuel Aranda;handle: 10261/309839 , 10754/667289
For millennia, coastal and marine ecosystems have adapted and flourished in the Red Sea’s unique environment. Surrounded by deserts on all sides, the Red Sea is subjected to high dust inputs and receives very little freshwater input, and so harbors a high salinity. Coral reefs, seagrass meadows, and mangroves flourish in this environment and provide socio-economic and environmental benefits to the bordering coastlines and countries. Interestingly, while coral reef ecosystems are currently experiencing rapid decline on a global scale, those in the Red Sea appear to be in relatively better shape. That said, they are certainly not immune to the stressors that cause degradation, such as increasing ocean temperature, acidification and pollution. In many regions, ecosystems are already severely deteriorating and are further threatened by increasing population pressure and large coastal development projects. Degradation of these marine habitats will lead to environmental costs, as well as significant economic losses. Therefore, it will result in a missed opportunity for the bordering countries to develop a sustainable blue economy and integrate innovative nature-based solutions. Recognizing that securing the Red Sea ecosystems’ future must occur in synergy with continued social and economic growth, we developed an action plan for the conservation, restoration, and growth of marine environments of the Red Sea. We then investigated the level of resources for financial and economic investment that may incentivize these activities. This study presents a set of commercially viable financial investment strategies, ecological innovations, and sustainable development opportunities, which can, if implemented strategically, help ensure long-term economic benefits while promoting environmental conservation. We make a case for investing in blue natural capital and propose a strategic development model that relies on maintaining the health of natural ecosystems to safeguard the Red Sea’s sustainable development.
CORE arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Research at Derby (University of Derby)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03089982Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.603722&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 53visibility views 53 download downloads 82 Powered by
more_vert CORE arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Research at Derby (University of Derby)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03089982Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.603722&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:The Royal Society Katherine M. Lagerstrom; Summer Vance; Brendan H. Cornwell; Megan Ruffley; Tatiana Bellagio; Moi Exposito-Alonso; Stephen R. Palumbi; Elizabeth A. Hadly;The pervasive loss of biodiversity in the Anthropocene necessitates rapid assessments of ecosystems to understand how they will respond to anthropogenic environmental change. Many studies have sought to describe the adaptive capacity (AC) of individual species, a measure that encompasses a species’ ability to respond and adapt to change. Only those adaptive mechanisms that can be used over the next few decades (e.g. via novel interactions, behavioural changes, hybridization, migration, etc.) are relevant to the timescale set by the rapid changes of the Anthropocene. The impacts of species loss cascade through ecosystems, yet few studies integrate the capacity of ecological networks to adapt to change with the ACs of its species. Here, we discuss three ecosystems and how their ecological networks impact the AC of species and vice versa. A more holistic perspective that considers the AC of species with respect to their ecological interactions and functions will provide more predictive power and a deeper understanding of what factors are most important to a species’ survival. We contend that the AC of a species, combined with its role in ecosystem function and stability, must guide decisions in assigning ‘risk’ and triaging biodiversity loss in the Anthropocene. This article is part of the theme issue ‘Ecological complexity and the biosphere: the next 30 years’.
PubMed Central arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2022 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2022Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2021.0389&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert PubMed Central arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2022 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2022Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2021.0389&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 France, Spain, United Kingdom, France, Saudi Arabia, Saudi ArabiaPublisher:Frontiers Media SA Maha J. Cziesielski; Carlos M. Duarte; Nojood Aalismail; Yousef Al-Hafedh; Andrea Anton; Faiyah Baalkhuyur; Andrew C. Baker; Thorsten Balke; Iliana B. Baums; Michael Berumen; Vasiliki I. Chalastani; Brendan Cornwell; Daniele Daffonchio; Karen Diele; Ehtesaam Farooq; Jean-Pierre Gattuso; Jean-Pierre Gattuso; Song He; Song He; Catherine E. Lovelock; Elizabeth Mcleod; Peter I. Macreadie; Nuria Marba; Cecilia Martin; Marcelle Muniz-Barreto; Kirshnakumar P. Kadinijappali; Perdana Prihartato; Lotfi Rabaoui; Vincent Saderne; Sebastian Schmidt-Roach; David J. Suggett; Michael Sweet; John Statton; Sam Teicher; Stacey M. Trevathan-Tackett; Thadickal V. Joydas; Razan Yahya; Manuel Aranda;handle: 10261/309839 , 10754/667289
For millennia, coastal and marine ecosystems have adapted and flourished in the Red Sea’s unique environment. Surrounded by deserts on all sides, the Red Sea is subjected to high dust inputs and receives very little freshwater input, and so harbors a high salinity. Coral reefs, seagrass meadows, and mangroves flourish in this environment and provide socio-economic and environmental benefits to the bordering coastlines and countries. Interestingly, while coral reef ecosystems are currently experiencing rapid decline on a global scale, those in the Red Sea appear to be in relatively better shape. That said, they are certainly not immune to the stressors that cause degradation, such as increasing ocean temperature, acidification and pollution. In many regions, ecosystems are already severely deteriorating and are further threatened by increasing population pressure and large coastal development projects. Degradation of these marine habitats will lead to environmental costs, as well as significant economic losses. Therefore, it will result in a missed opportunity for the bordering countries to develop a sustainable blue economy and integrate innovative nature-based solutions. Recognizing that securing the Red Sea ecosystems’ future must occur in synergy with continued social and economic growth, we developed an action plan for the conservation, restoration, and growth of marine environments of the Red Sea. We then investigated the level of resources for financial and economic investment that may incentivize these activities. This study presents a set of commercially viable financial investment strategies, ecological innovations, and sustainable development opportunities, which can, if implemented strategically, help ensure long-term economic benefits while promoting environmental conservation. We make a case for investing in blue natural capital and propose a strategic development model that relies on maintaining the health of natural ecosystems to safeguard the Red Sea’s sustainable development.
CORE arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Research at Derby (University of Derby)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03089982Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.603722&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 53visibility views 53 download downloads 82 Powered by
more_vert CORE arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Research at Derby (University of Derby)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03089982Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.603722&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:The Royal Society Katherine M. Lagerstrom; Summer Vance; Brendan H. Cornwell; Megan Ruffley; Tatiana Bellagio; Moi Exposito-Alonso; Stephen R. Palumbi; Elizabeth A. Hadly;The pervasive loss of biodiversity in the Anthropocene necessitates rapid assessments of ecosystems to understand how they will respond to anthropogenic environmental change. Many studies have sought to describe the adaptive capacity (AC) of individual species, a measure that encompasses a species’ ability to respond and adapt to change. Only those adaptive mechanisms that can be used over the next few decades (e.g. via novel interactions, behavioural changes, hybridization, migration, etc.) are relevant to the timescale set by the rapid changes of the Anthropocene. The impacts of species loss cascade through ecosystems, yet few studies integrate the capacity of ecological networks to adapt to change with the ACs of its species. Here, we discuss three ecosystems and how their ecological networks impact the AC of species and vice versa. A more holistic perspective that considers the AC of species with respect to their ecological interactions and functions will provide more predictive power and a deeper understanding of what factors are most important to a species’ survival. We contend that the AC of a species, combined with its role in ecosystem function and stability, must guide decisions in assigning ‘risk’ and triaging biodiversity loss in the Anthropocene. This article is part of the theme issue ‘Ecological complexity and the biosphere: the next 30 years’.
PubMed Central arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2022 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2022Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2021.0389&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert PubMed Central arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2022 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2022Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2021.0389&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
