- home
- Advanced Search
- Energy Research
- Environmental Research Letters
- Energy Research
- Environmental Research Letters
description Publicationkeyboard_double_arrow_right Article , Journal 2018Embargo end date: 01 Jan 2018 United Kingdom, Austria, SwitzerlandPublisher:IOP Publishing Funded by:EC | CD-LINKSEC| CD-LINKSKiyoshi Takahashi; Shinichiro Fujimori; Xuanming Su; Petr Havlik; Joeri Rogelj; Tomoko Hasegawa; Tomoko Hasegawa; Keywan Riahi; Keywan Riahi; Volker Krey;handle: 10044/1/78148
Climate change mitigation to limit warming to 1.5 °C or well below 2 °C, as suggested by the Paris Agreement, can rely on large-scale deployment of land-related measures (e.g. afforestation, or bioenergy production). This can increase food prices, and hence raises food security concerns. Here we show how an inclusive policy design can avoid these adverse side-effects. Food-security support through international aid, bioenergy tax, or domestic reallocation of income can shield impoverished and vulnerable people from the additional risk of hunger that would be caused by the economic effects of policies narrowly focussing on climate objectives only. In the absence of such support, 35% more people might be at risk of hunger by 2050 (i.e. 84 million additional people) in a 2 °C-consistent scenario. The additional global welfare changes due to inclusive climate policies are small (<0.1%) compared to the total climate mitigation cost (3.7% welfare loss), and the financial costs of international aid amount to about half a percent of high-income countries' GDP. This implies that climate policy should treat this issue carefully. Although there are challenges to implement food policies, options exist to avoid the food security concerns often linked to climate mitigation. Environmental Research Letters, 13 (7) ISSN:1748-9326 ISSN:1748-9318
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/78148Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryEnvironmental Research LettersArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aad0f7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/78148Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryEnvironmental Research LettersArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aad0f7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Austria, JapanPublisher:IOP Publishing Jun’ya Takakura; Shinichiro Fujimori; Shinichiro Fujimori; Shinichiro Fujimori; Wenchao Wu; Kiyoshi Takahashi; Jing-Yu Liu; Jing-Yu Liu; Tomoko Hasegawa; Tomoko Hasegawa; Tomoko Hasegawa; Toshihiko Masui;handle: 2433/255847
Abstract The Paris Agreement set long-term global climate goals to pursue stabilization of the global mean temperature increase at below 2 °C (the so-called 2 °C goal). Individual countries submitted their own short-term targets, mostly for the year 2030. Meanwhile, the UN’s sustainable development goals (SDGs) were designed to help set multiple societal goals with respect to socioeconomic development, the environment, and other issues. Climate policies can lead to intended or unintended consequences in various sectors, but these types of side effects rarely have been studied in China, where climate policies will play an important role in global greenhouse gas emissions and sustainable development is a major goal. This study identified the extent to which climate policies in line with the 2 °C goal could have multi-sectoral consequences in China. Carbon constraints in China in the 2Deg scenario are set to align with the global 2 °C target based on the emissions per capita convergence principle. Carbon policies for NDC pledges as well as policies in China regarding renewables, air pollution control, and land management were also simulated. The results show that energy security and air quality have co-benefits related to climate policies, whereas food security and land resources experienced negative side effects (trade-offs). Near-term climate actions were shown to help reduce these trade-offs in the mid-term. A policy package that included food and land subsidies also helped achieve climate targets while avoiding the adverse side effects caused by the mitigation policies. The findings should help policymakers in China develop win–win policies that do not negatively affect some sectors, which could potentially enhance their ability to take climate actions to realize the global 2 °C goal within the context of sustainable development.
IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab59c4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab59c4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Part of book or chapter of book , Journal 2016 AustriaPublisher:IOP Publishing Authors: Toshihiko Masui; Shinichiro Fujimori; Shinichiro Fujimori; Jing-Yu Liu;Each country’s Intended Nationally Determined Contribution (INDC) pledges an emission target for 2025 or 2030. Here, we evaluated the INDC inter-generational and inter-regional equity by comparing scenarios with INDC emissions target in 2030 and with an immediate emission reduction associated with a global uniform carbon price using Asian-Pacific Integrated Model/Computable General Equilibrium. Both scenarios eventually achieve 2 °C target. The results showed that, as compared with an immediate emission reduction scenario, the inter-generational equity status is not favorable for INDC scenario and the future generation suffers more from delayed mitigation. Moreover, this conclusion was robust to the wide range of inequality aversion parameter that determines discount rate. On the other hand, the INDC scenario has better inter-regional equity in the early part of the century than does the immediate emission reduction scenario in which we assume a global carbon price during the period up to 2030. However, inter-regional equity worsens later in the century. The additional emissions reduction to the INDC in 2030 would improve both inter- and inter-regional equity as compared to the current INDC. We also suggest that countries should commit to more emissions reductions in the follow-up INDC communications and that continuous consideration for low-income countries is needed for global climate change cooperation after 2030.
IIASA DARE arrow_drop_down https://doi.org/10.1007/978-98...Part of book or chapter of book . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefIIASA DAREPart of book or chapter of book . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/11/114004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert IIASA DARE arrow_drop_down https://doi.org/10.1007/978-98...Part of book or chapter of book . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefIIASA DAREPart of book or chapter of book . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/11/114004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 AustriaPublisher:IOP Publishing Takahiro Oda; Jun’ya Takakura; Longlong Tang; Toshichika Iizumi; Norihiro Itsubo; Haruka Ohashi; Masashi Kiguchi; Naoko Kumano; Kiyoshi Takahashi; Masahiro Tanoue; Makoto Tamura; Qian Zhou; Naota Hanasaki; Tomoko Hasegawa; Chan Park; Yasuaki Hijioka; Yukiko Hirabayashi; Shinichiro Fujimori; Yasushi Honda; Tetsuya Matsui; Hiroyuki Matsuda; Hiromune Yokoki; Taikan Oki;Abstract What will be the aggregated cost of climate change in achieving the Paris Agreement, including mitigation, adaptation, and residual impacts? Several studies estimated the aggregated cost but did not always consider the critical issues. Some do not address non-market values such as biodiversity and human health, and most do not address differentiating discount rates. In this study, we estimate the aggregated cost of climate change using an integrated assessment model linked with detailed-process-based climate impact models and different discount rates for market and non-market values. The analysis reveals that a climate policy with minimal aggregated cost is sensitive to socioeconomic scenarios and the way discount rates are applied. The results elucidate that a lower discount rate to non-market value—that is, a higher estimate of future value—makes the aggregated cost of achieving the Paris Agreement economically reasonable.
IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/accdee&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/accdee&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 13 Oct 2022 Italy, Japan, India, Germany, India, NetherlandsPublisher:IOP Publishing Funded by:EC | CD-LINKSEC| CD-LINKSAuthors: Shinichiro Fujimori; Shinichiro Fujimori; Swapnil Shekhar; Saritha Vishwanathan; +10 AuthorsShinichiro Fujimori; Shinichiro Fujimori; Swapnil Shekhar; Saritha Vishwanathan; Johannes Emmerling; Ritu Mathur; Gunnar Luderer; Mark Roelfsema; Zoi Vrontisi; Amit Garg; Christoph Bertram; Jacques Després; Elmar Kriegler; Aman Malik;handle: 2433/255255 , 11718/25358
Abstract Cost-effective achievement of the Paris Agreement’s long-term goals requires the unanimous phase-out of coal power generation by mid-century. However, continued investments in coal power plants will make this transition difficult. India is one of the major countries with significant under construction and planned increase in coal power capacity. To ascertain the likelihood and consequences of the continued expansion of coal power for India’s future mitigation options, we use harmonised scenario results from national and global models along with projections from various government reports. Both these approaches estimate that coal capacity is expected to increase until 2030, along with rapid developments in wind and solar power. However, coal capacity stranding of the order of 133–237 GW needs to occur after 2030 if India were to pursue an ambitious climate policy in line with a well-below 2 °C target. Earlier policy strengthening starting after 2020 can reduce stranded assets (14–159 GW) but brings with it political economy and renewable expansion challenges. We conclude that a policy limiting coal plants to those under construction combined with higher solar targets could be politically feasible, prevent significant stranded capacity, and allow higher mitigation ambition in the future.
Publication Database... arrow_drop_down IIMA Institutional Repository (Indian Institute of Management)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/11718/25358Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab8033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 4visibility views 4 Powered bymore_vert Publication Database... arrow_drop_down IIMA Institutional Repository (Indian Institute of Management)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/11718/25358Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab8033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United Kingdom, Germany, Austria, Japan, Germany, GermanyPublisher:IOP Publishing Dan Tong; Shinichiro Fujimori; Shinichiro Fujimori; Shinichiro Fujimori; Johannes Emmerling; Robert Fofrich; Oliver Fricko; Gunnar Luderer; Gunnar Luderer; Joeri Rogelj; Joeri Rogelj; Steven J. Davis; Harmen Sytze de Boer; Harmen Sytze de Boer; Katherine Calvin;handle: 2433/255250 , 10044/1/83047
Abstract International efforts to avoid dangerous climate change aim for large and rapid reductions of fossil fuel CO2 emissions worldwide, including nearly complete decarbonization of the electric power sector. However, achieving such rapid reductions may depend on early retirement of coal- and natural gas-fired power plants. Here, we analyze future fossil fuel electricity demand in 171 energy-emissions scenarios from Integrated Assessment Models (IAMs), evaluating the implicit retirements and/or reduced operation of generating infrastructure. Although IAMs calculate retirements endogenously, the structure and methods of each model differ; we use a standard approach to infer retirements in outputs from all six major IAMs and—unlike the IAMs themselves—we begin with the age distribution and region-specific operating capacities of the existing power fleet. We find that coal-fired power plants in scenarios consistent with international climate targets (i.e. keeping global warming well-below 2 °C or 1.5 °C) retire one to three decades earlier than historically has been the case. If plants are built to meet projected fossil electricity demand and instead allowed to operate at the level and over the lifetimes they have historically, the roughly 200 Gt CO2 of additional emissions this century would be incompatible with keeping global warming well-below 2 °C. Thus, ambitious climate mitigation scenarios entail drastic, and perhaps un-appreciated, changes in the operating and/or retirement schedules of power infrastructure.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/83047Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab96d3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 44 citations 44 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/83047Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab96d3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 France, United Kingdom, Denmark, Denmark, Austria, Germany, Denmark, United Kingdom, Denmark, France, Germany, Finland, Netherlands, Netherlands, GermanyPublisher:IOP Publishing Funded by:EC | ADVANCE, EC | NAVIGATEEC| ADVANCE ,EC| NAVIGATEGokul Iyer; Detlef P. van Vuuren; Detlef P. van Vuuren; Bas van Ruijven; Ryna Cui; Volker Krey; Kaj-Ivar van der Wijst; Kaj-Ivar van der Wijst; Shinichiro Fujimori; Jessica Strefler; Johannes Emmerling; Gunnar Luderer; Gunnar Luderer; Alexandre C. Köberle; Panagiotis Fragkos; Olivier Dessens; Christoph Krüger; Christoph Krüger; Florian Fosse; Fuminori Sano; Dimitris Fragkiadakis; Kimon Keramidas; Sergey Paltsev; Florian Leblanc; Pedro Rochedo; Ronald D. Sands; Kostas Fragkiadakis; Céline Guivarch; Peter Kolp; Panagiotis Karkatsoulis; Elmar Kriegler; Elmar Kriegler; J. Jeffrey Morris; David E.H.J. Gernaat; David E.H.J. Gernaat; Mathijs Harmsen; Mathijs Harmsen; Laurent Drouet; Oliver Fricko; Behnam Zakeri; Behnam Zakeri; Shivika Mittal; Eveline Vasquez Arroyo; Kenichi Wada; I. Keppo;handle: 10044/1/88339
Abstract Integrated assessment models (IAMs) form a prime tool in informing about climate mitigation strategies. Diagnostic indicators that allow comparison across these models can help describe and explain differences in model projections. This increases transparency and comparability. Earlier, the IAM community has developed an approach to diagnose models (Kriegler (2015 Technol. Forecast. Soc. Change 90 45–61)). Here we build on this, by proposing a selected set of well-defined indicators as a community standard, to systematically and routinely assess IAM behaviour, similar to metrics used for other modeling communities such as climate models. These indicators are the relative abatement index, emission reduction type index, inertia timescale, fossil fuel reduction, transformation index and cost per abatement value. We apply the approach to 17 IAMs, assessing both older as well as their latest versions, as applied in the IPCC 6th Assessment Report. The study shows that the approach can be easily applied and used to indentify key differences between models and model versions. Moreover, we demonstrate that this comparison helps to link model behavior to model characteristics and assumptions. We show that together, the set of six indicators can provide useful indication of the main traits of the model and can roughly indicate the general model behavior. The results also show that there is often a considerable spread across the models. Interestingly, the diagnostic values often change for different model versions, but there does not seem to be a distinct trend.
IIASA PURE arrow_drop_down IIASA PUREArticle . 2021 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/17207/1/Harmsen_2021_Environ._Res._Lett._16_054046.pdfData sources: IIASA PUREIIASA DAREArticle . 2021License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/17207/1/Harmsen_2021_Environ._Res._Lett._16_054046.pdfData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/88339Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2021Data sources: Spiral - Imperial College Digital RepositoryAaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication ArchiveEnvironmental Research LettersArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalCIRAD: HAL (Agricultural Research for Development)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abf964&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IIASA PURE arrow_drop_down IIASA PUREArticle . 2021 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/17207/1/Harmsen_2021_Environ._Res._Lett._16_054046.pdfData sources: IIASA PUREIIASA DAREArticle . 2021License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/17207/1/Harmsen_2021_Environ._Res._Lett._16_054046.pdfData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/88339Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2021Data sources: Spiral - Imperial College Digital RepositoryAaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication ArchiveEnvironmental Research LettersArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalCIRAD: HAL (Agricultural Research for Development)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abf964&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustriaPublisher:IOP Publishing Tomoko Hasegawa; Tomoko Hasegawa; Chan Park; Shinichiro Fujimori; Shinichiro Fujimori; Yasuaki Hijioka; Jun’ya Takakura; Kiyoshi Takahashi;Energy demand associated with space heating and cooling is expected to be affected by climate change. There are several global projections of space heating and cooling use that take into consideration climate change, but a comprehensive uncertainty of socioeconomic and climate conditions, including a 1.5 °C global mean temperature change, has never been assessed. This paper shows the economic impact of changes in energy demand for space heating and cooling under multiple socioeconomic and climatic conditions. We use three shared socioeconomic pathways as socioeconomic conditions. For climate conditions, we use two representative concentration pathways that correspond to 4.0 °C and 2.0 °C scenarios, and a 1.5 °C scenario driven from the 2.0 °C scenario with assumption in conjunction with five general circulation models. We find that the economic impacts of climate change are largely affected by socioeconomic assumptions, and global GDP change rates range from +0.21% to −2.01% in 2100 under the 4.0 °C scenario, depending on the socioeconomic condition. Sensitivity analysis that differentiates the thresholds of heating and cooling degree days clarifies that the threshold is a strong factor that generates these differences. Meanwhile, the impact of the 1.5 °C is small regardless of socioeconomic assumptions (−0.02% to −0.06%). The economic loss caused by differences in socioeconomic assumption under the 1.5 °C scenario is much smaller than that under the 2 °C scenario, which implies that stringent climate mitigation can work as a risk hedge to socioeconomic development diversity.
IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aab724&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aab724&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Germany, France, Netherlands, France, Austria, NetherlandsPublisher:IOP Publishing Funded by:EC | ADVANCEEC| ADVANCEBert Saveyn; Shinichiro Fujimori; Gunnar Luderer; Harmen Sytze de Boer; Harmen Sytze de Boer; Detlef P. van Vuuren; Christoph Bertram; Kimon Keramidas; Zoi Vrontisi; Kostas Fragkiadakis; Céline Guivarch; Leonidas Paroussos; Lara Aleluia Reis; Laurent Drouet; Oliver Fricko; Alban Kitous; Volker Krey; Lavinia Baumstark; Eoin Ó Broin; Elmar Kriegler;The Paris Agreement is a milestone in international climate policy as it establishes a global mitigation framework towards 2030 and sets the ground for a potential 1.5 °C climate stabilization. To provide useful insights for the 2018 UNFCCC Talanoa facilitative dialogue, we use eight state-of-the-art climate-energy-economy models to assess the effectiveness of the Intended Nationally Determined Contributions (INDCs) in meeting high probability 1.5 and 2 °C stabilization goals. We estimate that the implementation of conditional INDCs in 2030 leaves an emissions gap from least cost 2 °C and 1.5 °C pathways for year 2030 equal to 15.6 (9.0-20.3) and 24.6 (18.5-29.0) GtCO2eq respectively. The immediate transition to a more efficient and low-carbon energy system is key to achieving the Paris goals. The decarbonization of the power supply sector delivers half of total CO2 emission reductions in all scenarios, primarily through high penetration of renewables and energy efficiency improvements. In combination with an increased electrification of final energy demand, low-carbon power supply is the main short-term abatement option. We find that the global macroeconomic cost of mitigation efforts does not reduce the 2020-2030 annual GDP growth rates in any model more than 0.1 percentage points in the INDC or 0.3 and 0.5 in the 2 °C and 1.5 °C scenarios respectively even without accounting for potential co-benefits and avoided climate damages. Accordingly, the median GDP reductions across all models in 2030 are 0.4%, 1.2% and 3.3% of reference GDP for each respective scenario. Costs go up with increasing mitigation efforts but a fragmented action, as implied by the INDCs, results in higher costs per unit of abated emissions. On a regional level, the cost distribution is different across scenarios while fossil fuel exporters see the highest GDP reductions in all INDC, 2 °C and 1.5 °C scenarios.
IIASA PURE arrow_drop_down IIASA PUREArticle . 2018 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/15251/1/Vrontisi_2018_Environ._Res._Lett._13_044039.pdfData sources: IIASA PUREIIASA PUREArticle . 2018 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/15251/1/Vrontisi_2018_Environ._Res._Lett._13_044039.pdfData sources: IIASA PUREIIASA DAREArticle . 2018License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/15251/1/Vrontisi_2018_Environ._Res._Lett._13_044039.pdfData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Full-Text: https://shs.hal.science/halshs-01782274Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aab53e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IIASA PURE arrow_drop_down IIASA PUREArticle . 2018 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/15251/1/Vrontisi_2018_Environ._Res._Lett._13_044039.pdfData sources: IIASA PUREIIASA PUREArticle . 2018 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/15251/1/Vrontisi_2018_Environ._Res._Lett._13_044039.pdfData sources: IIASA PUREIIASA DAREArticle . 2018License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/15251/1/Vrontisi_2018_Environ._Res._Lett._13_044039.pdfData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Full-Text: https://shs.hal.science/halshs-01782274Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aab53e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustriaPublisher:IOP Publishing Shinichiro Fujimori; Shinichiro Fujimori; Toshihiko Masui; Yasushi Honda; Kiyoshi Takahashi; Jun’ya Takakura; Yasuaki Hijioka; Tomoko Hasegawa; Tomoko Hasegawa;The exposure of workers to hot environments is expected to increase as a result of climate change. In order to prevent heat-related illness, it is recommended that workers take breaks during working hours. However, this would lead to reductions in worktime and labor productivity. In this study, we estimate the economic cost of heat-related illness prevention through worker breaks associated with climate change under a wide range of climatic and socioeconomic conditions. We calculate the worktime reduction based on the recommendation of work/rest ratio and the estimated future wet bulb glove temperature, which is an index of heat stresses. Corresponding GDP losses (cost of heat-related illness prevention through worker breaks) are estimated using a computable general equilibrium model throughout this century. Under the highest emission scenario, GDP losses in 2100 will range from 2.6 to 4.0% compared to the current climate conditions. On the other hand, GDP losses will be less than 0.5% if the 2.0 °C goal is achieved. The benefit of climate-change mitigation for avoiding worktime loss is comparable to the cost of mitigation (cost of the greenhouse gas emission reduction) under the 2.0 °C goal. The relationship between the cost of heat-related illness prevention through worker breaks and global average temperature rise is approximately linear, and the difference in economic loss between the 1.5 °C goal and the 2.0 °C goal is expected to be approximately 0.3% of global GDP in 2100. Although climate mitigation and socioeconomic development can limit the vulnerable regions and sectors, particularly in developing countries, outdoor work is still expected to be affected. The effectiveness of some adaptation measures such as additional installation of air conditioning devices or shifting the time of day for working are also suggested. In order to reduce the economic impacts, adaptation measures should also be implemented as well as pursing ambitious climate change mitigation targets.
IIASA DARE arrow_drop_down IIASA DAREArticle . 2017License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/14667/1/Takakura_2017_Environ._Res._Lett._12_064010.pdfData sources: Bielefeld Academic Search Engine (BASE)IIASA PUREArticle . 2017 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/14667/1/Takakura_2017_Environ._Res._Lett._12_064010.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aa72cc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 68 citations 68 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IIASA DARE arrow_drop_down IIASA DAREArticle . 2017License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/14667/1/Takakura_2017_Environ._Res._Lett._12_064010.pdfData sources: Bielefeld Academic Search Engine (BASE)IIASA PUREArticle . 2017 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/14667/1/Takakura_2017_Environ._Res._Lett._12_064010.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aa72cc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018Embargo end date: 01 Jan 2018 United Kingdom, Austria, SwitzerlandPublisher:IOP Publishing Funded by:EC | CD-LINKSEC| CD-LINKSKiyoshi Takahashi; Shinichiro Fujimori; Xuanming Su; Petr Havlik; Joeri Rogelj; Tomoko Hasegawa; Tomoko Hasegawa; Keywan Riahi; Keywan Riahi; Volker Krey;handle: 10044/1/78148
Climate change mitigation to limit warming to 1.5 °C or well below 2 °C, as suggested by the Paris Agreement, can rely on large-scale deployment of land-related measures (e.g. afforestation, or bioenergy production). This can increase food prices, and hence raises food security concerns. Here we show how an inclusive policy design can avoid these adverse side-effects. Food-security support through international aid, bioenergy tax, or domestic reallocation of income can shield impoverished and vulnerable people from the additional risk of hunger that would be caused by the economic effects of policies narrowly focussing on climate objectives only. In the absence of such support, 35% more people might be at risk of hunger by 2050 (i.e. 84 million additional people) in a 2 °C-consistent scenario. The additional global welfare changes due to inclusive climate policies are small (<0.1%) compared to the total climate mitigation cost (3.7% welfare loss), and the financial costs of international aid amount to about half a percent of high-income countries' GDP. This implies that climate policy should treat this issue carefully. Although there are challenges to implement food policies, options exist to avoid the food security concerns often linked to climate mitigation. Environmental Research Letters, 13 (7) ISSN:1748-9326 ISSN:1748-9318
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/78148Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryEnvironmental Research LettersArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aad0f7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/78148Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryEnvironmental Research LettersArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aad0f7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Austria, JapanPublisher:IOP Publishing Jun’ya Takakura; Shinichiro Fujimori; Shinichiro Fujimori; Shinichiro Fujimori; Wenchao Wu; Kiyoshi Takahashi; Jing-Yu Liu; Jing-Yu Liu; Tomoko Hasegawa; Tomoko Hasegawa; Tomoko Hasegawa; Toshihiko Masui;handle: 2433/255847
Abstract The Paris Agreement set long-term global climate goals to pursue stabilization of the global mean temperature increase at below 2 °C (the so-called 2 °C goal). Individual countries submitted their own short-term targets, mostly for the year 2030. Meanwhile, the UN’s sustainable development goals (SDGs) were designed to help set multiple societal goals with respect to socioeconomic development, the environment, and other issues. Climate policies can lead to intended or unintended consequences in various sectors, but these types of side effects rarely have been studied in China, where climate policies will play an important role in global greenhouse gas emissions and sustainable development is a major goal. This study identified the extent to which climate policies in line with the 2 °C goal could have multi-sectoral consequences in China. Carbon constraints in China in the 2Deg scenario are set to align with the global 2 °C target based on the emissions per capita convergence principle. Carbon policies for NDC pledges as well as policies in China regarding renewables, air pollution control, and land management were also simulated. The results show that energy security and air quality have co-benefits related to climate policies, whereas food security and land resources experienced negative side effects (trade-offs). Near-term climate actions were shown to help reduce these trade-offs in the mid-term. A policy package that included food and land subsidies also helped achieve climate targets while avoiding the adverse side effects caused by the mitigation policies. The findings should help policymakers in China develop win–win policies that do not negatively affect some sectors, which could potentially enhance their ability to take climate actions to realize the global 2 °C goal within the context of sustainable development.
IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab59c4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab59c4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Part of book or chapter of book , Journal 2016 AustriaPublisher:IOP Publishing Authors: Toshihiko Masui; Shinichiro Fujimori; Shinichiro Fujimori; Jing-Yu Liu;Each country’s Intended Nationally Determined Contribution (INDC) pledges an emission target for 2025 or 2030. Here, we evaluated the INDC inter-generational and inter-regional equity by comparing scenarios with INDC emissions target in 2030 and with an immediate emission reduction associated with a global uniform carbon price using Asian-Pacific Integrated Model/Computable General Equilibrium. Both scenarios eventually achieve 2 °C target. The results showed that, as compared with an immediate emission reduction scenario, the inter-generational equity status is not favorable for INDC scenario and the future generation suffers more from delayed mitigation. Moreover, this conclusion was robust to the wide range of inequality aversion parameter that determines discount rate. On the other hand, the INDC scenario has better inter-regional equity in the early part of the century than does the immediate emission reduction scenario in which we assume a global carbon price during the period up to 2030. However, inter-regional equity worsens later in the century. The additional emissions reduction to the INDC in 2030 would improve both inter- and inter-regional equity as compared to the current INDC. We also suggest that countries should commit to more emissions reductions in the follow-up INDC communications and that continuous consideration for low-income countries is needed for global climate change cooperation after 2030.
IIASA DARE arrow_drop_down https://doi.org/10.1007/978-98...Part of book or chapter of book . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefIIASA DAREPart of book or chapter of book . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/11/114004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert IIASA DARE arrow_drop_down https://doi.org/10.1007/978-98...Part of book or chapter of book . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefIIASA DAREPart of book or chapter of book . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/11/114004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 AustriaPublisher:IOP Publishing Takahiro Oda; Jun’ya Takakura; Longlong Tang; Toshichika Iizumi; Norihiro Itsubo; Haruka Ohashi; Masashi Kiguchi; Naoko Kumano; Kiyoshi Takahashi; Masahiro Tanoue; Makoto Tamura; Qian Zhou; Naota Hanasaki; Tomoko Hasegawa; Chan Park; Yasuaki Hijioka; Yukiko Hirabayashi; Shinichiro Fujimori; Yasushi Honda; Tetsuya Matsui; Hiroyuki Matsuda; Hiromune Yokoki; Taikan Oki;Abstract What will be the aggregated cost of climate change in achieving the Paris Agreement, including mitigation, adaptation, and residual impacts? Several studies estimated the aggregated cost but did not always consider the critical issues. Some do not address non-market values such as biodiversity and human health, and most do not address differentiating discount rates. In this study, we estimate the aggregated cost of climate change using an integrated assessment model linked with detailed-process-based climate impact models and different discount rates for market and non-market values. The analysis reveals that a climate policy with minimal aggregated cost is sensitive to socioeconomic scenarios and the way discount rates are applied. The results elucidate that a lower discount rate to non-market value—that is, a higher estimate of future value—makes the aggregated cost of achieving the Paris Agreement economically reasonable.
IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/accdee&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/accdee&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 13 Oct 2022 Italy, Japan, India, Germany, India, NetherlandsPublisher:IOP Publishing Funded by:EC | CD-LINKSEC| CD-LINKSAuthors: Shinichiro Fujimori; Shinichiro Fujimori; Swapnil Shekhar; Saritha Vishwanathan; +10 AuthorsShinichiro Fujimori; Shinichiro Fujimori; Swapnil Shekhar; Saritha Vishwanathan; Johannes Emmerling; Ritu Mathur; Gunnar Luderer; Mark Roelfsema; Zoi Vrontisi; Amit Garg; Christoph Bertram; Jacques Després; Elmar Kriegler; Aman Malik;handle: 2433/255255 , 11718/25358
Abstract Cost-effective achievement of the Paris Agreement’s long-term goals requires the unanimous phase-out of coal power generation by mid-century. However, continued investments in coal power plants will make this transition difficult. India is one of the major countries with significant under construction and planned increase in coal power capacity. To ascertain the likelihood and consequences of the continued expansion of coal power for India’s future mitigation options, we use harmonised scenario results from national and global models along with projections from various government reports. Both these approaches estimate that coal capacity is expected to increase until 2030, along with rapid developments in wind and solar power. However, coal capacity stranding of the order of 133–237 GW needs to occur after 2030 if India were to pursue an ambitious climate policy in line with a well-below 2 °C target. Earlier policy strengthening starting after 2020 can reduce stranded assets (14–159 GW) but brings with it political economy and renewable expansion challenges. We conclude that a policy limiting coal plants to those under construction combined with higher solar targets could be politically feasible, prevent significant stranded capacity, and allow higher mitigation ambition in the future.
Publication Database... arrow_drop_down IIMA Institutional Repository (Indian Institute of Management)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/11718/25358Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab8033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 4visibility views 4 Powered bymore_vert Publication Database... arrow_drop_down IIMA Institutional Repository (Indian Institute of Management)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/11718/25358Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab8033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United Kingdom, Germany, Austria, Japan, Germany, GermanyPublisher:IOP Publishing Dan Tong; Shinichiro Fujimori; Shinichiro Fujimori; Shinichiro Fujimori; Johannes Emmerling; Robert Fofrich; Oliver Fricko; Gunnar Luderer; Gunnar Luderer; Joeri Rogelj; Joeri Rogelj; Steven J. Davis; Harmen Sytze de Boer; Harmen Sytze de Boer; Katherine Calvin;handle: 2433/255250 , 10044/1/83047
Abstract International efforts to avoid dangerous climate change aim for large and rapid reductions of fossil fuel CO2 emissions worldwide, including nearly complete decarbonization of the electric power sector. However, achieving such rapid reductions may depend on early retirement of coal- and natural gas-fired power plants. Here, we analyze future fossil fuel electricity demand in 171 energy-emissions scenarios from Integrated Assessment Models (IAMs), evaluating the implicit retirements and/or reduced operation of generating infrastructure. Although IAMs calculate retirements endogenously, the structure and methods of each model differ; we use a standard approach to infer retirements in outputs from all six major IAMs and—unlike the IAMs themselves—we begin with the age distribution and region-specific operating capacities of the existing power fleet. We find that coal-fired power plants in scenarios consistent with international climate targets (i.e. keeping global warming well-below 2 °C or 1.5 °C) retire one to three decades earlier than historically has been the case. If plants are built to meet projected fossil electricity demand and instead allowed to operate at the level and over the lifetimes they have historically, the roughly 200 Gt CO2 of additional emissions this century would be incompatible with keeping global warming well-below 2 °C. Thus, ambitious climate mitigation scenarios entail drastic, and perhaps un-appreciated, changes in the operating and/or retirement schedules of power infrastructure.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/83047Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab96d3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 44 citations 44 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/83047Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab96d3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 France, United Kingdom, Denmark, Denmark, Austria, Germany, Denmark, United Kingdom, Denmark, France, Germany, Finland, Netherlands, Netherlands, GermanyPublisher:IOP Publishing Funded by:EC | ADVANCE, EC | NAVIGATEEC| ADVANCE ,EC| NAVIGATEGokul Iyer; Detlef P. van Vuuren; Detlef P. van Vuuren; Bas van Ruijven; Ryna Cui; Volker Krey; Kaj-Ivar van der Wijst; Kaj-Ivar van der Wijst; Shinichiro Fujimori; Jessica Strefler; Johannes Emmerling; Gunnar Luderer; Gunnar Luderer; Alexandre C. Köberle; Panagiotis Fragkos; Olivier Dessens; Christoph Krüger; Christoph Krüger; Florian Fosse; Fuminori Sano; Dimitris Fragkiadakis; Kimon Keramidas; Sergey Paltsev; Florian Leblanc; Pedro Rochedo; Ronald D. Sands; Kostas Fragkiadakis; Céline Guivarch; Peter Kolp; Panagiotis Karkatsoulis; Elmar Kriegler; Elmar Kriegler; J. Jeffrey Morris; David E.H.J. Gernaat; David E.H.J. Gernaat; Mathijs Harmsen; Mathijs Harmsen; Laurent Drouet; Oliver Fricko; Behnam Zakeri; Behnam Zakeri; Shivika Mittal; Eveline Vasquez Arroyo; Kenichi Wada; I. Keppo;handle: 10044/1/88339
Abstract Integrated assessment models (IAMs) form a prime tool in informing about climate mitigation strategies. Diagnostic indicators that allow comparison across these models can help describe and explain differences in model projections. This increases transparency and comparability. Earlier, the IAM community has developed an approach to diagnose models (Kriegler (2015 Technol. Forecast. Soc. Change 90 45–61)). Here we build on this, by proposing a selected set of well-defined indicators as a community standard, to systematically and routinely assess IAM behaviour, similar to metrics used for other modeling communities such as climate models. These indicators are the relative abatement index, emission reduction type index, inertia timescale, fossil fuel reduction, transformation index and cost per abatement value. We apply the approach to 17 IAMs, assessing both older as well as their latest versions, as applied in the IPCC 6th Assessment Report. The study shows that the approach can be easily applied and used to indentify key differences between models and model versions. Moreover, we demonstrate that this comparison helps to link model behavior to model characteristics and assumptions. We show that together, the set of six indicators can provide useful indication of the main traits of the model and can roughly indicate the general model behavior. The results also show that there is often a considerable spread across the models. Interestingly, the diagnostic values often change for different model versions, but there does not seem to be a distinct trend.
IIASA PURE arrow_drop_down IIASA PUREArticle . 2021 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/17207/1/Harmsen_2021_Environ._Res._Lett._16_054046.pdfData sources: IIASA PUREIIASA DAREArticle . 2021License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/17207/1/Harmsen_2021_Environ._Res._Lett._16_054046.pdfData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/88339Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2021Data sources: Spiral - Imperial College Digital RepositoryAaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication ArchiveEnvironmental Research LettersArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalCIRAD: HAL (Agricultural Research for Development)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abf964&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IIASA PURE arrow_drop_down IIASA PUREArticle . 2021 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/17207/1/Harmsen_2021_Environ._Res._Lett._16_054046.pdfData sources: IIASA PUREIIASA DAREArticle . 2021License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/17207/1/Harmsen_2021_Environ._Res._Lett._16_054046.pdfData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/88339Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2021Data sources: Spiral - Imperial College Digital RepositoryAaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication ArchiveEnvironmental Research LettersArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalCIRAD: HAL (Agricultural Research for Development)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abf964&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustriaPublisher:IOP Publishing Tomoko Hasegawa; Tomoko Hasegawa; Chan Park; Shinichiro Fujimori; Shinichiro Fujimori; Yasuaki Hijioka; Jun’ya Takakura; Kiyoshi Takahashi;Energy demand associated with space heating and cooling is expected to be affected by climate change. There are several global projections of space heating and cooling use that take into consideration climate change, but a comprehensive uncertainty of socioeconomic and climate conditions, including a 1.5 °C global mean temperature change, has never been assessed. This paper shows the economic impact of changes in energy demand for space heating and cooling under multiple socioeconomic and climatic conditions. We use three shared socioeconomic pathways as socioeconomic conditions. For climate conditions, we use two representative concentration pathways that correspond to 4.0 °C and 2.0 °C scenarios, and a 1.5 °C scenario driven from the 2.0 °C scenario with assumption in conjunction with five general circulation models. We find that the economic impacts of climate change are largely affected by socioeconomic assumptions, and global GDP change rates range from +0.21% to −2.01% in 2100 under the 4.0 °C scenario, depending on the socioeconomic condition. Sensitivity analysis that differentiates the thresholds of heating and cooling degree days clarifies that the threshold is a strong factor that generates these differences. Meanwhile, the impact of the 1.5 °C is small regardless of socioeconomic assumptions (−0.02% to −0.06%). The economic loss caused by differences in socioeconomic assumption under the 1.5 °C scenario is much smaller than that under the 2 °C scenario, which implies that stringent climate mitigation can work as a risk hedge to socioeconomic development diversity.
IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aab724&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aab724&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Germany, France, Netherlands, France, Austria, NetherlandsPublisher:IOP Publishing Funded by:EC | ADVANCEEC| ADVANCEBert Saveyn; Shinichiro Fujimori; Gunnar Luderer; Harmen Sytze de Boer; Harmen Sytze de Boer; Detlef P. van Vuuren; Christoph Bertram; Kimon Keramidas; Zoi Vrontisi; Kostas Fragkiadakis; Céline Guivarch; Leonidas Paroussos; Lara Aleluia Reis; Laurent Drouet; Oliver Fricko; Alban Kitous; Volker Krey; Lavinia Baumstark; Eoin Ó Broin; Elmar Kriegler;The Paris Agreement is a milestone in international climate policy as it establishes a global mitigation framework towards 2030 and sets the ground for a potential 1.5 °C climate stabilization. To provide useful insights for the 2018 UNFCCC Talanoa facilitative dialogue, we use eight state-of-the-art climate-energy-economy models to assess the effectiveness of the Intended Nationally Determined Contributions (INDCs) in meeting high probability 1.5 and 2 °C stabilization goals. We estimate that the implementation of conditional INDCs in 2030 leaves an emissions gap from least cost 2 °C and 1.5 °C pathways for year 2030 equal to 15.6 (9.0-20.3) and 24.6 (18.5-29.0) GtCO2eq respectively. The immediate transition to a more efficient and low-carbon energy system is key to achieving the Paris goals. The decarbonization of the power supply sector delivers half of total CO2 emission reductions in all scenarios, primarily through high penetration of renewables and energy efficiency improvements. In combination with an increased electrification of final energy demand, low-carbon power supply is the main short-term abatement option. We find that the global macroeconomic cost of mitigation efforts does not reduce the 2020-2030 annual GDP growth rates in any model more than 0.1 percentage points in the INDC or 0.3 and 0.5 in the 2 °C and 1.5 °C scenarios respectively even without accounting for potential co-benefits and avoided climate damages. Accordingly, the median GDP reductions across all models in 2030 are 0.4%, 1.2% and 3.3% of reference GDP for each respective scenario. Costs go up with increasing mitigation efforts but a fragmented action, as implied by the INDCs, results in higher costs per unit of abated emissions. On a regional level, the cost distribution is different across scenarios while fossil fuel exporters see the highest GDP reductions in all INDC, 2 °C and 1.5 °C scenarios.
IIASA PURE arrow_drop_down IIASA PUREArticle . 2018 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/15251/1/Vrontisi_2018_Environ._Res._Lett._13_044039.pdfData sources: IIASA PUREIIASA PUREArticle . 2018 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/15251/1/Vrontisi_2018_Environ._Res._Lett._13_044039.pdfData sources: IIASA PUREIIASA DAREArticle . 2018License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/15251/1/Vrontisi_2018_Environ._Res._Lett._13_044039.pdfData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Full-Text: https://shs.hal.science/halshs-01782274Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aab53e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IIASA PURE arrow_drop_down IIASA PUREArticle . 2018 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/15251/1/Vrontisi_2018_Environ._Res._Lett._13_044039.pdfData sources: IIASA PUREIIASA PUREArticle . 2018 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/15251/1/Vrontisi_2018_Environ._Res._Lett._13_044039.pdfData sources: IIASA PUREIIASA DAREArticle . 2018License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/15251/1/Vrontisi_2018_Environ._Res._Lett._13_044039.pdfData sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Full-Text: https://shs.hal.science/halshs-01782274Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aab53e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustriaPublisher:IOP Publishing Shinichiro Fujimori; Shinichiro Fujimori; Toshihiko Masui; Yasushi Honda; Kiyoshi Takahashi; Jun’ya Takakura; Yasuaki Hijioka; Tomoko Hasegawa; Tomoko Hasegawa;The exposure of workers to hot environments is expected to increase as a result of climate change. In order to prevent heat-related illness, it is recommended that workers take breaks during working hours. However, this would lead to reductions in worktime and labor productivity. In this study, we estimate the economic cost of heat-related illness prevention through worker breaks associated with climate change under a wide range of climatic and socioeconomic conditions. We calculate the worktime reduction based on the recommendation of work/rest ratio and the estimated future wet bulb glove temperature, which is an index of heat stresses. Corresponding GDP losses (cost of heat-related illness prevention through worker breaks) are estimated using a computable general equilibrium model throughout this century. Under the highest emission scenario, GDP losses in 2100 will range from 2.6 to 4.0% compared to the current climate conditions. On the other hand, GDP losses will be less than 0.5% if the 2.0 °C goal is achieved. The benefit of climate-change mitigation for avoiding worktime loss is comparable to the cost of mitigation (cost of the greenhouse gas emission reduction) under the 2.0 °C goal. The relationship between the cost of heat-related illness prevention through worker breaks and global average temperature rise is approximately linear, and the difference in economic loss between the 1.5 °C goal and the 2.0 °C goal is expected to be approximately 0.3% of global GDP in 2100. Although climate mitigation and socioeconomic development can limit the vulnerable regions and sectors, particularly in developing countries, outdoor work is still expected to be affected. The effectiveness of some adaptation measures such as additional installation of air conditioning devices or shifting the time of day for working are also suggested. In order to reduce the economic impacts, adaptation measures should also be implemented as well as pursing ambitious climate change mitigation targets.
IIASA DARE arrow_drop_down IIASA DAREArticle . 2017License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/14667/1/Takakura_2017_Environ._Res._Lett._12_064010.pdfData sources: Bielefeld Academic Search Engine (BASE)IIASA PUREArticle . 2017 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/14667/1/Takakura_2017_Environ._Res._Lett._12_064010.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aa72cc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 68 citations 68 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IIASA DARE arrow_drop_down IIASA DAREArticle . 2017License: CC BYFull-Text: https://pure.iiasa.ac.at/id/eprint/14667/1/Takakura_2017_Environ._Res._Lett._12_064010.pdfData sources: Bielefeld Academic Search Engine (BASE)IIASA PUREArticle . 2017 . Peer-reviewedFull-Text: http://pure.iiasa.ac.at/id/eprint/14667/1/Takakura_2017_Environ._Res._Lett._12_064010.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aa72cc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu