- home
- Advanced Search
- Energy Research
- 8. Economic growth
- Energy Research
- 8. Economic growth
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 IrelandPublisher:MDPI AG Publicly fundedAuthors:Shivika Mittal;
Jing-Yu Liu;Shivika Mittal
Shivika Mittal in OpenAIREShinichiro Fujimori;
Shinichiro Fujimori
Shinichiro Fujimori in OpenAIREPriyadarshi Ramprasad Shukla;
Priyadarshi Ramprasad Shukla
Priyadarshi Ramprasad Shukla in OpenAIREdoi: 10.3390/en11092213
handle: 10468/9217
The goal of limiting global temperature rise to “well below” 2 °C has been reaffirmed in the Paris Agreement on climate change at the 21st Conference of the Parties (COP21). Almost all countries submitted their decarbonization targets in their Intended Nationally Determined Contributions (INDC) to the United Nations Framework Convention on Climate Change (UNFCCC) and India did as well. India’s nationally determined contribution (NDC) aims to reduce greenhouse gas (GHG) emissions intensity of national GDP in 2030 by 33–35% compared to 2005. This paper analyzes how India’s NDC commitments compare with emission trajectories consistent with well below 2 °C and 1.5 °C global temperature stabilization goals. A top-down computable general equilibrium model is used for the analysis. Our analysis shows that there are significant emission gaps between NDC and global climate stabilization targets in 2030. The energy system requires significant changes, mostly relying on renewable energy and carbon capture and storage (CCS) technology. The mitigation costs would increase if India delays its abatement efforts and is locked into NDC pathways till 2030. India’s GHG emissions would peak 10 years earlier under 1.5 °C global temperature stabilization compared to the 2 °C goal. The results imply that India would need financial and technological support from developed countries to achieve emissions reductions aligned with the global long-term goal.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/9/2213/pdfData sources: Multidisciplinary Digital Publishing InstituteCork Open Research Archive (CORA)Article . 2018License: CC BYFull-Text: https://www.mdpi.com/1996-1073/11/9/2213Data sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11092213&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/9/2213/pdfData sources: Multidisciplinary Digital Publishing InstituteCork Open Research Archive (CORA)Article . 2018License: CC BYFull-Text: https://www.mdpi.com/1996-1073/11/9/2213Data sources: Cork Open Research Archive (CORA)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11092213&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Japan, AustriaPublisher:Elsevier BV Authors:Tomoki Ehara;
Tomoki Ehara
Tomoki Ehara in OpenAIREShinichiro Fujimori;
Shinichiro Fujimori; Shinichiro Fujimori; +2 AuthorsShinichiro Fujimori
Shinichiro Fujimori in OpenAIRETomoki Ehara;
Tomoki Ehara
Tomoki Ehara in OpenAIREShinichiro Fujimori;
Shinichiro Fujimori; Shinichiro Fujimori; Yuki Ochi;Shinichiro Fujimori
Shinichiro Fujimori in OpenAIREKen Oshiro;
Ken Oshiro
Ken Oshiro in OpenAIREhandle: 2433/276537
Abstract Japan’s mid-century strategy for reducing greenhouse gas emissions by 80% in 2050 would require large-scale energy system transformation and associated increases in mitigation costs. Nevertheless, the role of energy demand reduction, especially reductions related to energy services such as behavioral changes and material use efficiency improvements, have not been sufficiently evaluated. This study aims to identify key challenges and opportunities of the decarbonization goal when considering the role of energy service demand reduction. To this end, we used a detailed bottom-up energy system model in conjunction with an energy service demand model to explore energy system changes and their cost implications. The results indicate that final energy demand in 2050 can be cut by 37% relative to the no-policy case through energy service demand reduction measures. Although the lack of carbon capture and storage would cause mitigation costs to double or more, these economic impacts can be offset by energy service demand reduction. Among energy demand sectors, the impact of industrial service demand reduction is largest, as it contributes to reducing residual emissions from the industry sector. These findings highlight the importance of energy service demand reduction measures for meeting national climate goals in addition to technological options.
IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120464&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 44 citations 44 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120464&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Yuzuru Matsuoka;Shinichiro Fujimori;
Hancheng Dai; Toshihiko Masui;Shinichiro Fujimori
Shinichiro Fujimori in OpenAIREAbstract This paper explores how China’s household consumption patterns over the period 2005–2050 influence the total energy demand and carbon dioxide (CO2) emissions in two baseline scenarios, and how it influences carbon prices as well as the economic cost in the corresponding carbon mitigation scenarios. To this end we first put forward two possible household consumption expenditure patterns up to 2050 using the Working–Leser model, taking into account total expenditure increase and urbanization. For comparison, both expenditure patterns are then incorporated in a hybrid recursive dynamic computable general equilibrium model. The results reveal that as income level increases in the coming decades, the direct and indirect household energy requirements and CO2 emissions would rise drastically. When household expenditure shifts from material products and transport to service-oriented goods, around 21,000 mtce 1 of primary energy and 45 billion tons of CO2 emissions would be saved over the 45-year period from 2005 to 2050. Moreover, carbon prices in the dematerialized mitigation scenario would fall by 13% in 2050, thus reducing the economic cost.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2012.08.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu152 citations 152 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2012.08.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Authors:Shinichiro Fujimori;
Chan Park;Shinichiro Fujimori
Shinichiro Fujimori in OpenAIREKiyoshi Takahashi;
Tomoko Hasegawa; +2 AuthorsKiyoshi Takahashi
Kiyoshi Takahashi in OpenAIREShinichiro Fujimori;
Chan Park;Shinichiro Fujimori
Shinichiro Fujimori in OpenAIREKiyoshi Takahashi;
Tomoko Hasegawa; Toshihiko Masui; Yasuaki Hijioka;Kiyoshi Takahashi
Kiyoshi Takahashi in OpenAIREAbstractThe building sector is highly sensitive to climate change, where energy is used for numerous purposes such as heating, cooling, cooking and lighting. Space heating and cooling account for a large proportion of overall energy use, and the associated energy demand is also affected by climate change. Here, we project the economic impact of changes in energy demand for space heating and cooling under multiple climatic conditions. We use an economic model coupled with an end-use technology model to explicitly represent the investment costs for air-conditioning technologies, which influence the macroeconomy. We conclude that the negative effects on the economy from increases in the use of space cooling are sufficiently large to neutralize the positive impacts from reductions in space heating usage under climate change, which results in significant economic loss. The economic loss under the highest emissions scenario (RCP8.5) would correspond to a −0.34% (−0.39% to −0.18%) change in global gross domestic product (GDP) in 2100 compared with GDP without any climate change, while the impact under the lowest emissions scenario (RCP2.6) would result in a −0.03% (−0.07% to −0.01%) change in global GDP in 2100. The economic losses are mainly generated by incremental technological costs and not by changes in energy demand itself. The amount of economic loss can vary substantially based on assumptions of technological costs, population and income. To reduce the negative impacts of climate change measures for reducing the costs of air conditioning will be an important consideration for the building sector in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1057/palcomms.2016.13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1057/palcomms.2016.13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 JapanPublisher:American Geophysical Union (AGU) Authors:Jun'ya Takakura;
Jun'ya Takakura
Jun'ya Takakura in OpenAIREShinichiro Fujimori;
Shinichiro Fujimori
Shinichiro Fujimori in OpenAIREKiyoshi Takahashi;
Tomoko Hasegawa; +4 AuthorsKiyoshi Takahashi
Kiyoshi Takahashi in OpenAIREJun'ya Takakura;
Jun'ya Takakura
Jun'ya Takakura in OpenAIREShinichiro Fujimori;
Shinichiro Fujimori
Shinichiro Fujimori in OpenAIREKiyoshi Takahashi;
Tomoko Hasegawa; Yasushi Honda;Kiyoshi Takahashi
Kiyoshi Takahashi in OpenAIRENaota Hanasaki;
Yasuaki Hijioka; Toshihiko Masui;Naota Hanasaki
Naota Hanasaki in OpenAIREdoi: 10.1029/2018ef000883
handle: 2433/235250
AbstractClimate change increases workers' exposure to heat stress. To prevent heat‐related illnesses, according to occupational‐health recommendations, labor capacity must be reduced. However, this preventive measure is expected to be costly, and the costs are likely to rise as the scale and scope of climate change impacts increase over time. Shifting the start of the working day to earlier in the morning could be an effective adaptation measure for avoiding the impacts of labor capacity reduction. However, the plausibility and efficacy of such an intervention have never been quantitatively assessed. Here we investigate whether working time shifts can offset the economic impacts of labor capacity reduction due to climate change. Incorporating a temporally (1 hr) and spatially (0.5° × 0.5°) high‐resolution heat exposure index into an integrated assessment model, we calculated the working time shift necessary to offset labor capacity reduction and economic loss under hypothetical with‐ and without‐realistic‐adaptation scenarios. The results of a normative scenario analysis indicated that a global average shift of 5.7 (4.0–6.1) hours is required, assuming extreme climate conditions in the 2090s. Although a realistic (<3 hr) shift nearly halves the economic cost, a substantial cost corresponding to 1.6% (1.0–2.4%) of global total gross domestic product is expected to remain. In contrast, if stringent climate‐change mitigation is achieved, a realistic shift limits the remaining cost to 0.14% (0.12–0.47%) of global total gross domestic product. Although shifting working time is shown to be effective as an adaptation measure, climate‐change mitigation remains indispensable to minimize the impact.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018ef000883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018ef000883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 Netherlands, Italy, Germany, Austria, Italy, Netherlands, Netherlands, United Kingdom, NetherlandsPublisher:Elsevier BV Funded by:EC | PATHWAYS, EC | ADVANCE, EC | LUC4CEC| PATHWAYS ,EC| ADVANCE ,EC| LUC4CAuthors:Brian C. O'Neill;
Tomoko Hasegawa;Brian C. O'Neill
Brian C. O'Neill in OpenAIREDetlef P. van Vuuren;
Detlef P. van Vuuren
Detlef P. van Vuuren in OpenAIREAlexander Popp;
+47 AuthorsAlexander Popp
Alexander Popp in OpenAIREBrian C. O'Neill;
Tomoko Hasegawa;Brian C. O'Neill
Brian C. O'Neill in OpenAIREDetlef P. van Vuuren;
Detlef P. van Vuuren
Detlef P. van Vuuren in OpenAIREAlexander Popp;
Alexander Popp
Alexander Popp in OpenAIREShinichiro Fujimori;
Shinichiro Fujimori
Shinichiro Fujimori in OpenAIREPetr Havlik;
Petr Havlik
Petr Havlik in OpenAIREGiacomo Marangoni;
Tom Kram;Giacomo Marangoni
Giacomo Marangoni in OpenAIREHermann Lotze-Campen;
Hermann Lotze-Campen;Hermann Lotze-Campen
Hermann Lotze-Campen in OpenAIREFlorian Humpenöder;
Florian Humpenöder
Florian Humpenöder in OpenAIREGunnar Luderer;
Gunnar Luderer
Gunnar Luderer in OpenAIREMassimo Tavoni;
Massimo Tavoni; David E.H.J. Gernaat;Massimo Tavoni
Massimo Tavoni in OpenAIREJohannes Emmerling;
Johannes Emmerling
Johannes Emmerling in OpenAIREKiyoshi Takahashi;
Steve Smith; Mathijs Harmsen;Kiyoshi Takahashi
Kiyoshi Takahashi in OpenAIREValentina Bosetti;
Valentina Bosetti; Jessica Strefler;Valentina Bosetti
Valentina Bosetti in OpenAIREAndrzej Tabeau;
Andrzej Tabeau
Andrzej Tabeau in OpenAIREJoeri Rogelj;
Joeri Rogelj
Joeri Rogelj in OpenAIREJiyong Eom;
Jiyong Eom; Samir Kc; Samir Kc; Leiwen Jiang; Katherine Calvin; Kristie L. Ebi; Mikiko Kainuma; Jesus Crespo Cuaresma; Rob Dellink; Lavinia Baumstark; Wolfgang Lutz; Toshihiko Masui; Marian Leimbach; Lara Aleluia Da Silva;Jiyong Eom
Jiyong Eom in OpenAIRELaurent Drouet;
Laurent Drouet
Laurent Drouet in OpenAIREOliver Fricko;
Oliver Fricko
Oliver Fricko in OpenAIRENico Bauer;
Jae Edmonds; Michael Obersteiner;Nico Bauer
Nico Bauer in OpenAIREVolker Krey;
Volker Krey
Volker Krey in OpenAIREZbigniew Klimont;
Shilpa Rao; Elke Stehfest;Zbigniew Klimont
Zbigniew Klimont in OpenAIREKeywan Riahi;
Keywan Riahi
Keywan Riahi in OpenAIREElmar Kriegler;
Elmar Kriegler
Elmar Kriegler in OpenAIREJonathan C. Doelman;
Jonathan C. Doelman
Jonathan C. Doelman in OpenAIREhandle: 11565/3990588 , 10044/1/78069
This paper presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400–1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100. The associated annual CO2 emissions of the baseline scenarios range from about 25 GtCO2 to more than 120 GtCO2 per year by 2100. With respect to mitigation, we find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socio-economic narrative, and (3) the stringency of the target. The carbon price for reaching the target of 2.6 W/m2 that is consistent with a temperature change limit of 2 °C, differs in our analysis thus by about a factor of three across the SSP marker scenarios. Moreover, many models could not reach this target from the SSPs with high mitigation challenges. While the SSPs were designed to represent different mitigation and adaptation challenges, the resulting narratives and quantifications span a wide range of different futures broadly representative of the current literature. This allows their subsequent use and development in new assessments and research projects. Critical next steps for the community scenario process will, among others, involve regional and sectoral extensions, further elaboration of the adaptation and impacts dimension, as well as employing the SSP scenarios with the new generation of earth system models as part of the 6th climate model intercomparison project (CMIP6).
IIASA PURE arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/78069Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Global Environmental ChangeArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Global Environmental ChangeArticle . 2017License: CC BYData sources: BASE (Open Access Aggregator)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital RepositoryWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationshttp://dx.doi.org/10.1016/j.gl...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2016.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4K citations 3,991 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert IIASA PURE arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/78069Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Global Environmental ChangeArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Global Environmental ChangeArticle . 2017License: CC BYData sources: BASE (Open Access Aggregator)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital RepositoryWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationshttp://dx.doi.org/10.1016/j.gl...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2016.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2018 JapanPublisher:MDPI AG Authors: Qian Zhou;Naota Hanasaki;
Naota Hanasaki
Naota Hanasaki in OpenAIREShinichiro Fujimori;
Shinichiro Fujimori
Shinichiro Fujimori in OpenAIREhandle: 2433/235241
Currently, thermal power is the largest source of power in the world. Although the impacts of climate change on cooling water sufficiency in thermal power plants have been extensively assessed globally and regionally, their economic consequences have seldom been evaluated. In this study, the Asia-Pacific Integrated Model Computable General Equilibrium model (AIM/CGE) was used to evaluate the economic consequences of projected future cooling water insufficiency on a global basis, which was simulated using the H08 global hydrological model. This approach enabled us to investigate how the physical impacts of climate change on thermal power generation influence economic activities in regions and industrial sectors. To account for the uncertainty of climate change projections, five global climate models and two representative concentration pathways (RCPs 2.6 and 8.5) were used. The ensemble-mean results showed that the global gross domestic product (GDP) loss in 2070–2095 due to cooling water insufficiency in the thermal power sector was −0.21% (−0.12%) in RCP8.5 (RCP2.6). Among the five regions, the largest GDP loss of −0.57% (−0.27%) was observed in the Middle East and Africa. Medium-scale losses of −0.18% (−0.12%) and −0.14% (−0.12%) were found in OECD90 (the member countries of the Organization for Economic Co-operation and Development as of 1990) and Eastern Europe and the Former Soviet Union, respectively. The smallest losses of −0.05% (−0.06%) and −0.09% (−0.08%) were found in Latin America and Asia, respectively. The economic impact of cooling water insufficiency was non-negligible and should be considered as one of the threats induced by climate change.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/10/2686/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11102686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/10/2686/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11102686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Austria, JapanPublisher:Springer Science and Business Media LLC Authors:Shinichiro Fujimori;
Shinichiro Fujimori
Shinichiro Fujimori in OpenAIREKen Oshiro;
Ken Oshiro
Ken Oshiro in OpenAIREHiroto Shiraki;
Hiroto Shiraki
Hiroto Shiraki in OpenAIRETomoko Hasegawa;
Tomoko Hasegawa
Tomoko Hasegawa in OpenAIREAbstractThe costs of climate change mitigation policy are one of the main concerns in decarbonizing the economy. The macroeconomic and sectoral implications of policy interventions are typically estimated by economic models, which tend be higher than the additional energy system costs projected by energy system models. Here, we show the extent to which policy costs can be lower than those from conventional economic models by integrating an energy system and an economic model, applying Japan’s mid-century climate mitigation target. The GDP losses estimated with the integrated model were significantly lower than those in the conventional economic model by more than 50% in 2050. The representation of industry and service sector energy consumption is the main factor causing these differences. Our findings suggest that this type of integrated approach would contribute new insights by providing improved estimates of GDP losses, which can be critical information for setting national climate policies.
IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-12730-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-12730-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustriaPublisher:IOP Publishing Authors: Tomoko Hasegawa; Tomoko Hasegawa;Chan Park;
Chan Park
Chan Park in OpenAIREShinichiro Fujimori;
+4 AuthorsShinichiro Fujimori
Shinichiro Fujimori in OpenAIRETomoko Hasegawa; Tomoko Hasegawa;Chan Park;
Chan Park
Chan Park in OpenAIREShinichiro Fujimori;
Shinichiro Fujimori; Yasuaki Hijioka; Jun’ya Takakura;Shinichiro Fujimori
Shinichiro Fujimori in OpenAIREKiyoshi Takahashi;
Kiyoshi Takahashi
Kiyoshi Takahashi in OpenAIREEnergy demand associated with space heating and cooling is expected to be affected by climate change. There are several global projections of space heating and cooling use that take into consideration climate change, but a comprehensive uncertainty of socioeconomic and climate conditions, including a 1.5 °C global mean temperature change, has never been assessed. This paper shows the economic impact of changes in energy demand for space heating and cooling under multiple socioeconomic and climatic conditions. We use three shared socioeconomic pathways as socioeconomic conditions. For climate conditions, we use two representative concentration pathways that correspond to 4.0 °C and 2.0 °C scenarios, and a 1.5 °C scenario driven from the 2.0 °C scenario with assumption in conjunction with five general circulation models. We find that the economic impacts of climate change are largely affected by socioeconomic assumptions, and global GDP change rates range from +0.21% to −2.01% in 2100 under the 4.0 °C scenario, depending on the socioeconomic condition. Sensitivity analysis that differentiates the thresholds of heating and cooling degree days clarifies that the threshold is a strong factor that generates these differences. Meanwhile, the impact of the 1.5 °C is small regardless of socioeconomic assumptions (−0.02% to −0.06%). The economic loss caused by differences in socioeconomic assumption under the 1.5 °C scenario is much smaller than that under the 2 °C scenario, which implies that stringent climate mitigation can work as a risk hedge to socioeconomic development diversity.
IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aab724&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aab724&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors:Yang Xie;
Yang Xie
Yang Xie in OpenAIREHancheng Dai;
Xinghan Xu;Hancheng Dai
Hancheng Dai in OpenAIREShinichiro Fujimori;
+4 AuthorsShinichiro Fujimori
Shinichiro Fujimori in OpenAIREYang Xie;
Yang Xie
Yang Xie in OpenAIREHancheng Dai;
Xinghan Xu;Hancheng Dai
Hancheng Dai in OpenAIREShinichiro Fujimori;
Tomoko Hasegawa;Shinichiro Fujimori
Shinichiro Fujimori in OpenAIREKan Yi;
Toshihiko Masui; Gakuji Kurata;pmid: 29990951
Climate change mitigation involves reducing fossil fuel consumption and greenhouse gas emissions, which is expensive, particularly under stringent mitigation targets. The co-benefits of reducing air pollutants and improving human health are often ignored, but can play significant roles in decision-making. In this study, we quantified the co-benefits of climate change mitigation on ambient air quality and human health in both physical and monetary terms with a particular focus on Asia, where air quality will likely be degraded in the next few decades if mitigation measures are not undertaken. We used an integrated assessment framework that incorporated economic, air chemistry transport, and health assessment models. Air pollution reduction through climate change mitigation under the 2 °C goal could reduce premature deaths in Asia by 0.79 million (95% confidence interval: 0.75-1.8 million) by 2050. This co-benefit is equivalent to a life value savings of approximately 2.8 trillion United States dollars (USD) (6% of the gross domestic product [GDP]), which is decidedly more than the climate mitigation cost (840 billion USD, 2% of GDP). At the national level, India has the highest potential net benefit of 1.4 trillion USD, followed by China (330 billion USD) and Japan (68 billion USD). Furthermore, in most Asian countries, per capita GDP gain and life value savings would increase with per capita GDP increasing. We robustly confirmed this qualitative conclusion under several socioeconomic and exposure-response function assumptions.
Environment Internat... arrow_drop_down Environment InternationalArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envint.2018.07.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environment Internat... arrow_drop_down Environment InternationalArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envint.2018.07.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu