- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Authors: Berteni, Francesca; Dada, Arianna; Grossi, Giovanna;doi: 10.3390/w13192679
handle: 11379/547796
The evaluation of sediment yield by water erosion taking into consideration the possible impact of climate change is the object of this work, concerning the use of the Modified Universal Soil Loss Equation (MUSLE) in an Italian case study. This empirical model was implemented in a Geographical Information System, taking into account Alpine hydrology and geomorphological and climate parameters, which are crucial in the analysis of the intensity and variability of sediment yield production processes. The case study is the Guerna Creek basin, a small-sized mountain watershed placed in Lombardy, in the South-Central Alps (Northern Italy). In recent decades it has been hit at the same time by floods and erosive phenomena, showing its hydraulic-hydrological weakness. Three future climate change scenarios from 2041 to 2060, around the middle of this century, were built according to CORDEX data referring to three different Representative Concentration Pathways (RCP 2.6, RCP 4.5, RCP 8.5). The findings showed that in the future climate, the sediment yield at the basin scale might change by 24–44% for a single heavy storm in the middle of the current century.
Water arrow_drop_down WaterOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4441/13/19/2679/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w13192679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Water arrow_drop_down WaterOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4441/13/19/2679/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w13192679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 ItalyPublisher:MDPI AG Funded by:EC | SciShops.euEC| SciShops.euAuthors: Berteni, Francesca; Grossi, Giovanna;handle: 11379/533780
Water erosion and evaluation of the average annual soil loss considering the potential effects of climate change are the focus of this study, based on the application of two empirical models, the RUSLE (Revised Universal Soil Loss Equation) and the EPM (Erosion Potential Method), to an Italian case study. A small mountain basin, the Guerna creek watershed, is located in the Central Southern Alps (Lombardy, Southern Alps, Bergamo), and it has been affected in the past by flooding and erosion events, which stressed the hydraulic weaknesses of the study area. Three different future climate scenarios were built for the middle of this century (from 2041 to 2060) on the basis of CORDEX data and Representative Concentration Pathways (RCP) set by the IPCC (Intergovernmental Panel on Climate Change) future scenarios: RCP 2.6, RCP 4.5, and RCP 8.5. As concerns climate, precipitation and air temperature are the variables used in the empirical models. On the other hand, potential effects on land use were also considered. Computed soil loss of 87 t/ha/year and 29.3 t/ha/year was achieved using the RUSLE equation and EPM method respectively, without considering the potential effects of climate change. The results achieved showed that climate change impacts on water erosion may not be negligible even by the middle of the current century (the annual average soil loss could change by 6–10% on a basin scale), and a major role is being played by seasonality in rainfall peak intensity.
Geosciences arrow_drop_down GeosciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3263/10/10/386/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences10100386&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3263/10/10/386/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences10100386&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ItalyPublisher:MDPI AG Falco S.; Brunetti G.; Grossi G.; Maiolo M.; Turco M.; Piro P.;doi: 10.3390/su12177196
handle: 20.500.11770/307332 , 11379/536251
At the outlet of the Vermicelli catchment—a peri-urban area located in the campus of University of Calabria (Cosenza, Southern Italy)—a sedimentation tank is located, aiming at collecting the basin surface runoff and improve its quality. First, experimental results of the treatment effects are here presented and analyzed. In addition, a monitoring campaign was conducted in order to characterize the particles transported by surface runoff and to determine the treatment efficiency of the tank. The analysis showed the presence of a pollutant load in the surface runoff of the Vermicelli basin and provided information on its particle-size distribution (PSD). Results were considered in terms of the treatment efficiency of the sedimentation tank, showing a good overall removal efficiency value, together with a high variability of the removal sedimentation efficiency. This variability is mainly due to the different grain size of the suspended solids and the characteristics of the rainfall event.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/17/7196/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio Istituzionale dell'Università della CalabriaArticle . 2020Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12177196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/17/7196/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio Istituzionale dell'Università della CalabriaArticle . 2020Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12177196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2024Publisher:MDPI AG Authors: Enrico Creaco; Arianna Dada; Giovanna Grossi; Sara Todeschini;The present work presents a bi-objective optimization methodology, which is aimed at simultaneously minimizing the total installation costs of management systems as well as urban flooding, as a tool to be conveniently adopted as part of a decision support system to help identify the optimal location of best management practices (BMPs). For each sub-catchment present in an urban drainage system, the decision variables include the rate of impervious areas to be used for BMP installation. The performance of the urban drainage system following optimal BMP installation is tested against climate change scenarios obtained from a real case study conducted in the industrial area of Brescia; the numerical model of this study can be obtained via the EPASWMM software.
https://doi.org/10.3... arrow_drop_down https://doi.org/10.3390/engpro...Conference object . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/engproc2024069189&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.3... arrow_drop_down https://doi.org/10.3390/engpro...Conference object . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/engproc2024069189&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Komal Jabeen; Giovanna Grossi; Michele Turco; Arianna Dada; Stefania A. Palermo; Behrouz Pirouz; Patrizia Piro; Ilaria Gnecco; Anna Palla;Urban green spaces, including green roofs (GRs), are vital infrastructure for climate resilience, retaining water in city landscapes and supporting ecohydrological processes. Quantifying the hydrologic performance of GRs in the urban environment for future climate scenarios is the original contribution of this research developed within the URCA! project. For this purpose, a continuous modelling approach is undertaken to evaluate the hydrological performance of GRs expressed by means of the runoff volume and peak flow reduction at the event scale for long data series (at least 20 years). To investigate the prediction of GRs performance in future climates, a simple methodological approach is proposed, using monthly projection factors for the definition of future rainfall and temperature time series, and transferring the system parametrization of the current model to the future one. The proposed approach is tested for experimental GR sites in Genoa and Rende, located in Northern and Southern Italy, respectively. Referring to both the Genoa and Rende experimental sites, simulation results are analysed to demonstrate how the GR performance varies with respect to rainfall event characteristics, including total depth, maximum rainfall intensity and ADWP for current and future scenarios.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/hydrology12020041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/hydrology12020041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Embargo end date: 01 Jan 2018 United Kingdom, China (People's Republic of), Slovenia, Italy, Netherlands, France, Italy, Switzerland, Slovenia, United Kingdom, China (People's Republic of), ItalyPublisher:Geological Society of London Brencic, M; Van Beek, &,; Tang, Anh Minh,; Hughes, P.,; Dijkstra, T.,; Askarinejad, A.; Brenčič, M.; Cui, Yu-Jun; Diez, J.,; Firgi, T.; Gajewska, B.; Gentile, F.; Grossi, G.; Jommi, C.; Kehagia, F.; Koda, E.; Ter Maat, H.,; Lenart, S.; Lourenco, S.; Oliveira, M.; Osinski, P.; Springman, S.,; Stirling, R.; Toll, D.,; Van Beek, V.;handle: 11379/506959 , 11311/1049598 , 10722/252140 , 11586/227520
In assessing the impact of climate change on infrastructure, it is essential to consider the interactions between the atmosphere, vegetation and the near-surface soil. This paper presents an overview of these processes, focusing on recent advances from the literature and those made by members of COST Action TU1202 – Impacts of climate change on engineered slopes for infrastructure. Climate- and vegetation-driven processes (suction generation, erosion, desiccation cracking, freeze–thaw effects) are expected to change in incidence and severity, which will affect the stability of new and existing infrastructure slopes. This paper identifies the climate- and vegetation-driven processes that are of greatest concern, the suite of known unknowns that require further research, and lists key aspect that should be considered for the design of engineered transport infrastructure slopes in the context of climate change.
RE.PUBLIC@POLIMI Res... arrow_drop_down Durham Research OnlineArticle . 2018 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/24894/1/24894.pdfData sources: Durham Research OnlineUniversity of Hong Kong: HKU Scholars HubArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/10722/252140Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2018Full-Text: http://hdl.handle.net/11586/227520Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/247111Data sources: Bielefeld Academic Search Engine (BASE)Durham University: Durham Research OnlineArticle . 2018License: CC BYFull-Text: http://dro.dur.ac.uk/24894/Data sources: Bielefeld Academic Search Engine (BASE)Quarterly Journal of Engineering Geology and HydrogeologyArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefQuarterly Journal of Engineering Geology and HydrogeologyArticleLicense: CC BYData sources: UnpayWallQuarterly Journal of Engineering Geology and HydrogeologyArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsQuarterly Journal of Engineering Geology and HydrogeologyJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1144/qjegh2017-103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 70 citations 70 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Durham Research OnlineArticle . 2018 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/24894/1/24894.pdfData sources: Durham Research OnlineUniversity of Hong Kong: HKU Scholars HubArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/10722/252140Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2018Full-Text: http://hdl.handle.net/11586/227520Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/247111Data sources: Bielefeld Academic Search Engine (BASE)Durham University: Durham Research OnlineArticle . 2018License: CC BYFull-Text: http://dro.dur.ac.uk/24894/Data sources: Bielefeld Academic Search Engine (BASE)Quarterly Journal of Engineering Geology and HydrogeologyArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefQuarterly Journal of Engineering Geology and HydrogeologyArticleLicense: CC BYData sources: UnpayWallQuarterly Journal of Engineering Geology and HydrogeologyArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsQuarterly Journal of Engineering Geology and HydrogeologyJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1144/qjegh2017-103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Embargo end date: 01 Mar 2027 Spain, Italy, SpainPublisher:Elsevier BV Liaqat, Muhammad Usman; Casanueva, Ana; Ansari, Rubina; Grossi, Giovanna; Ranzi, Roberto;handle: 11379/617167
High Mountain Asia (HMA), including the Hindu Kush-Karakoram Himalayas (HKH) is one of the world's key "water towers", with the resources supporting hundreds of millions of people. Currently, this region is experi encing significant demographic and socio-economic growth. Reliable hydrological projections of the future supply of water resources are essential, given the likelihood that water resources demand will continue to in crease. In this study, CORDEX South Asia (CORDEX-WAS44) regional climate models (RCMs) and the Physically Based Distributed Snow Land and Ice Model, that was calibrated with hourly meteorological data and daily runoff over eight years of monitoring period, are employed in the Naltar catchment located in the Hunza river basin, Upper Indus Basin, Pakistan to project glacio-hydrological regimes in the future climate. For each of the CORDEX-WAS44 simulations, climate change signals for near future (2040-2059) and far future (2080-2099) under three Representative Concentration Pathways (RCPs) namely RCP2.6, RCP4.5, and RCP8.5 are presented with respect to the corresponding present climate (1991-2010). Results show overall significant increases in mean temperature between (+0.9 to + 6.0 ºC, depending upon the scenario) and total precipitation (+6 to + 29 %) from April to September by the end of the century for RCP2.6, RCP4.5, and RCP8.5. The projected simulations of energy and mass balance indicate that snow and ice melt rate will increase consistently in both future periods with an earlier timing of the snowmelt as it appears in June in the near future (2040-2059) and in May in the far future (2080-2099) under the high emission scenario (RCP8.5). The increase in temperature, precipitation and winter snowpack changes are also expected to have a substantial impact on the hydrological regime in the Naltar catchment, with a peak flow occurring one to two months earlier and a total by 2090 and a decrease of total runoff in the monsoon season by -3 to -24 % in the near and far future, respectively, under RCP 8.5 scenario and more neutral changes (-2 to + 3 %) according to RCP 4.5. Based on these results and the discussion above, water availability in the Naltar catchment will be uncertain by the end of the century. The study covers one part of the PhD research work of the first author funded by the University of Brescia, Italy, and the Erasmus (Italy) Traineeship Program. The research was partially funded by the Regione Lombardia and CNR-IRPI grant on debris flow modeling in mountain areas. C.A. acknowledges support from Project COMPOUND (TED2021-131334A-I00) funded by MCIU/AEI/10.13039/501100011033 and by the European Union Next Generation EU/PRTR.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2024.132411&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2024.132411&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Authors: Berteni, Francesca; Dada, Arianna; Grossi, Giovanna;doi: 10.3390/w13192679
handle: 11379/547796
The evaluation of sediment yield by water erosion taking into consideration the possible impact of climate change is the object of this work, concerning the use of the Modified Universal Soil Loss Equation (MUSLE) in an Italian case study. This empirical model was implemented in a Geographical Information System, taking into account Alpine hydrology and geomorphological and climate parameters, which are crucial in the analysis of the intensity and variability of sediment yield production processes. The case study is the Guerna Creek basin, a small-sized mountain watershed placed in Lombardy, in the South-Central Alps (Northern Italy). In recent decades it has been hit at the same time by floods and erosive phenomena, showing its hydraulic-hydrological weakness. Three future climate change scenarios from 2041 to 2060, around the middle of this century, were built according to CORDEX data referring to three different Representative Concentration Pathways (RCP 2.6, RCP 4.5, RCP 8.5). The findings showed that in the future climate, the sediment yield at the basin scale might change by 24–44% for a single heavy storm in the middle of the current century.
Water arrow_drop_down WaterOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4441/13/19/2679/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w13192679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Water arrow_drop_down WaterOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4441/13/19/2679/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w13192679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 ItalyPublisher:MDPI AG Funded by:EC | SciShops.euEC| SciShops.euAuthors: Berteni, Francesca; Grossi, Giovanna;handle: 11379/533780
Water erosion and evaluation of the average annual soil loss considering the potential effects of climate change are the focus of this study, based on the application of two empirical models, the RUSLE (Revised Universal Soil Loss Equation) and the EPM (Erosion Potential Method), to an Italian case study. A small mountain basin, the Guerna creek watershed, is located in the Central Southern Alps (Lombardy, Southern Alps, Bergamo), and it has been affected in the past by flooding and erosion events, which stressed the hydraulic weaknesses of the study area. Three different future climate scenarios were built for the middle of this century (from 2041 to 2060) on the basis of CORDEX data and Representative Concentration Pathways (RCP) set by the IPCC (Intergovernmental Panel on Climate Change) future scenarios: RCP 2.6, RCP 4.5, and RCP 8.5. As concerns climate, precipitation and air temperature are the variables used in the empirical models. On the other hand, potential effects on land use were also considered. Computed soil loss of 87 t/ha/year and 29.3 t/ha/year was achieved using the RUSLE equation and EPM method respectively, without considering the potential effects of climate change. The results achieved showed that climate change impacts on water erosion may not be negligible even by the middle of the current century (the annual average soil loss could change by 6–10% on a basin scale), and a major role is being played by seasonality in rainfall peak intensity.
Geosciences arrow_drop_down GeosciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3263/10/10/386/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences10100386&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3263/10/10/386/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences10100386&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ItalyPublisher:MDPI AG Falco S.; Brunetti G.; Grossi G.; Maiolo M.; Turco M.; Piro P.;doi: 10.3390/su12177196
handle: 20.500.11770/307332 , 11379/536251
At the outlet of the Vermicelli catchment—a peri-urban area located in the campus of University of Calabria (Cosenza, Southern Italy)—a sedimentation tank is located, aiming at collecting the basin surface runoff and improve its quality. First, experimental results of the treatment effects are here presented and analyzed. In addition, a monitoring campaign was conducted in order to characterize the particles transported by surface runoff and to determine the treatment efficiency of the tank. The analysis showed the presence of a pollutant load in the surface runoff of the Vermicelli basin and provided information on its particle-size distribution (PSD). Results were considered in terms of the treatment efficiency of the sedimentation tank, showing a good overall removal efficiency value, together with a high variability of the removal sedimentation efficiency. This variability is mainly due to the different grain size of the suspended solids and the characteristics of the rainfall event.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/17/7196/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio Istituzionale dell'Università della CalabriaArticle . 2020Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12177196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/17/7196/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio Istituzionale dell'Università della CalabriaArticle . 2020Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12177196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2024Publisher:MDPI AG Authors: Enrico Creaco; Arianna Dada; Giovanna Grossi; Sara Todeschini;The present work presents a bi-objective optimization methodology, which is aimed at simultaneously minimizing the total installation costs of management systems as well as urban flooding, as a tool to be conveniently adopted as part of a decision support system to help identify the optimal location of best management practices (BMPs). For each sub-catchment present in an urban drainage system, the decision variables include the rate of impervious areas to be used for BMP installation. The performance of the urban drainage system following optimal BMP installation is tested against climate change scenarios obtained from a real case study conducted in the industrial area of Brescia; the numerical model of this study can be obtained via the EPASWMM software.
https://doi.org/10.3... arrow_drop_down https://doi.org/10.3390/engpro...Conference object . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/engproc2024069189&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.3... arrow_drop_down https://doi.org/10.3390/engpro...Conference object . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/engproc2024069189&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Komal Jabeen; Giovanna Grossi; Michele Turco; Arianna Dada; Stefania A. Palermo; Behrouz Pirouz; Patrizia Piro; Ilaria Gnecco; Anna Palla;Urban green spaces, including green roofs (GRs), are vital infrastructure for climate resilience, retaining water in city landscapes and supporting ecohydrological processes. Quantifying the hydrologic performance of GRs in the urban environment for future climate scenarios is the original contribution of this research developed within the URCA! project. For this purpose, a continuous modelling approach is undertaken to evaluate the hydrological performance of GRs expressed by means of the runoff volume and peak flow reduction at the event scale for long data series (at least 20 years). To investigate the prediction of GRs performance in future climates, a simple methodological approach is proposed, using monthly projection factors for the definition of future rainfall and temperature time series, and transferring the system parametrization of the current model to the future one. The proposed approach is tested for experimental GR sites in Genoa and Rende, located in Northern and Southern Italy, respectively. Referring to both the Genoa and Rende experimental sites, simulation results are analysed to demonstrate how the GR performance varies with respect to rainfall event characteristics, including total depth, maximum rainfall intensity and ADWP for current and future scenarios.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/hydrology12020041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/hydrology12020041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Embargo end date: 01 Jan 2018 United Kingdom, China (People's Republic of), Slovenia, Italy, Netherlands, France, Italy, Switzerland, Slovenia, United Kingdom, China (People's Republic of), ItalyPublisher:Geological Society of London Brencic, M; Van Beek, &,; Tang, Anh Minh,; Hughes, P.,; Dijkstra, T.,; Askarinejad, A.; Brenčič, M.; Cui, Yu-Jun; Diez, J.,; Firgi, T.; Gajewska, B.; Gentile, F.; Grossi, G.; Jommi, C.; Kehagia, F.; Koda, E.; Ter Maat, H.,; Lenart, S.; Lourenco, S.; Oliveira, M.; Osinski, P.; Springman, S.,; Stirling, R.; Toll, D.,; Van Beek, V.;handle: 11379/506959 , 11311/1049598 , 10722/252140 , 11586/227520
In assessing the impact of climate change on infrastructure, it is essential to consider the interactions between the atmosphere, vegetation and the near-surface soil. This paper presents an overview of these processes, focusing on recent advances from the literature and those made by members of COST Action TU1202 – Impacts of climate change on engineered slopes for infrastructure. Climate- and vegetation-driven processes (suction generation, erosion, desiccation cracking, freeze–thaw effects) are expected to change in incidence and severity, which will affect the stability of new and existing infrastructure slopes. This paper identifies the climate- and vegetation-driven processes that are of greatest concern, the suite of known unknowns that require further research, and lists key aspect that should be considered for the design of engineered transport infrastructure slopes in the context of climate change.
RE.PUBLIC@POLIMI Res... arrow_drop_down Durham Research OnlineArticle . 2018 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/24894/1/24894.pdfData sources: Durham Research OnlineUniversity of Hong Kong: HKU Scholars HubArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/10722/252140Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2018Full-Text: http://hdl.handle.net/11586/227520Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/247111Data sources: Bielefeld Academic Search Engine (BASE)Durham University: Durham Research OnlineArticle . 2018License: CC BYFull-Text: http://dro.dur.ac.uk/24894/Data sources: Bielefeld Academic Search Engine (BASE)Quarterly Journal of Engineering Geology and HydrogeologyArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefQuarterly Journal of Engineering Geology and HydrogeologyArticleLicense: CC BYData sources: UnpayWallQuarterly Journal of Engineering Geology and HydrogeologyArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsQuarterly Journal of Engineering Geology and HydrogeologyJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1144/qjegh2017-103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 70 citations 70 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Durham Research OnlineArticle . 2018 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/24894/1/24894.pdfData sources: Durham Research OnlineUniversity of Hong Kong: HKU Scholars HubArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/10722/252140Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2018Full-Text: http://hdl.handle.net/11586/227520Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BYFull-Text: https://eprints.ncl.ac.uk/247111Data sources: Bielefeld Academic Search Engine (BASE)Durham University: Durham Research OnlineArticle . 2018License: CC BYFull-Text: http://dro.dur.ac.uk/24894/Data sources: Bielefeld Academic Search Engine (BASE)Quarterly Journal of Engineering Geology and HydrogeologyArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefQuarterly Journal of Engineering Geology and HydrogeologyArticleLicense: CC BYData sources: UnpayWallQuarterly Journal of Engineering Geology and HydrogeologyArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsQuarterly Journal of Engineering Geology and HydrogeologyJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1144/qjegh2017-103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Embargo end date: 01 Mar 2027 Spain, Italy, SpainPublisher:Elsevier BV Liaqat, Muhammad Usman; Casanueva, Ana; Ansari, Rubina; Grossi, Giovanna; Ranzi, Roberto;handle: 11379/617167
High Mountain Asia (HMA), including the Hindu Kush-Karakoram Himalayas (HKH) is one of the world's key "water towers", with the resources supporting hundreds of millions of people. Currently, this region is experi encing significant demographic and socio-economic growth. Reliable hydrological projections of the future supply of water resources are essential, given the likelihood that water resources demand will continue to in crease. In this study, CORDEX South Asia (CORDEX-WAS44) regional climate models (RCMs) and the Physically Based Distributed Snow Land and Ice Model, that was calibrated with hourly meteorological data and daily runoff over eight years of monitoring period, are employed in the Naltar catchment located in the Hunza river basin, Upper Indus Basin, Pakistan to project glacio-hydrological regimes in the future climate. For each of the CORDEX-WAS44 simulations, climate change signals for near future (2040-2059) and far future (2080-2099) under three Representative Concentration Pathways (RCPs) namely RCP2.6, RCP4.5, and RCP8.5 are presented with respect to the corresponding present climate (1991-2010). Results show overall significant increases in mean temperature between (+0.9 to + 6.0 ºC, depending upon the scenario) and total precipitation (+6 to + 29 %) from April to September by the end of the century for RCP2.6, RCP4.5, and RCP8.5. The projected simulations of energy and mass balance indicate that snow and ice melt rate will increase consistently in both future periods with an earlier timing of the snowmelt as it appears in June in the near future (2040-2059) and in May in the far future (2080-2099) under the high emission scenario (RCP8.5). The increase in temperature, precipitation and winter snowpack changes are also expected to have a substantial impact on the hydrological regime in the Naltar catchment, with a peak flow occurring one to two months earlier and a total by 2090 and a decrease of total runoff in the monsoon season by -3 to -24 % in the near and far future, respectively, under RCP 8.5 scenario and more neutral changes (-2 to + 3 %) according to RCP 4.5. Based on these results and the discussion above, water availability in the Naltar catchment will be uncertain by the end of the century. The study covers one part of the PhD research work of the first author funded by the University of Brescia, Italy, and the Erasmus (Italy) Traineeship Program. The research was partially funded by the Regione Lombardia and CNR-IRPI grant on debris flow modeling in mountain areas. C.A. acknowledges support from Project COMPOUND (TED2021-131334A-I00) funded by MCIU/AEI/10.13039/501100011033 and by the European Union Next Generation EU/PRTR.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2024.132411&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2024.132411&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu