- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Samia Sadaf; Muhammad Ammar; Muhammad Waqas; Muhammad Waqas; Muhammad Kamran; Muhammad Qasim;In this manuscript, a numerical investigation on the temperature gradient of a magnetic refrigerator using different geometric configurations of a parallel plate regenerator is presented. The parallel plate regenerator is made up of gadolinium (Gd) as a magnetocaloric material with rectangular channels. The parallel plate regenerator is modeled and numerically investigated for 3D conjugated fluid convection and conduction heat transfer using Ansys Fluent. Two piston-cylinder displacers drive water as the working fluid through the regenerator loop. The hot and cold end heat exchangers are treated with the e-NTU method. The effect of changing the parallel plate regenerator’s dimensional parameters on temperature span is examined against the utilization factor of 0.1, keeping the regenerator’s porosity constant. The maximum temperature span is predicted by comparing simulated parallel plate magnetic regenerators for two diverse sets of dimensional parameters and surface areas is 36.5 K for magnetic field intensity of 0.8 T.
Journal of Mechanica... arrow_drop_down Journal of Mechanical Science and TechnologyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12206-021-0438-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Mechanica... arrow_drop_down Journal of Mechanical Science and TechnologyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12206-021-0438-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Samia Sadaf; Muhammad Ammar; Muhammad Waqas; Muhammad Waqas; Muhammad Kamran; Muhammad Qasim;In this manuscript, a numerical investigation on the temperature gradient of a magnetic refrigerator using different geometric configurations of a parallel plate regenerator is presented. The parallel plate regenerator is made up of gadolinium (Gd) as a magnetocaloric material with rectangular channels. The parallel plate regenerator is modeled and numerically investigated for 3D conjugated fluid convection and conduction heat transfer using Ansys Fluent. Two piston-cylinder displacers drive water as the working fluid through the regenerator loop. The hot and cold end heat exchangers are treated with the e-NTU method. The effect of changing the parallel plate regenerator’s dimensional parameters on temperature span is examined against the utilization factor of 0.1, keeping the regenerator’s porosity constant. The maximum temperature span is predicted by comparing simulated parallel plate magnetic regenerators for two diverse sets of dimensional parameters and surface areas is 36.5 K for magnetic field intensity of 0.8 T.
Journal of Mechanica... arrow_drop_down Journal of Mechanical Science and TechnologyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12206-021-0438-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Mechanica... arrow_drop_down Journal of Mechanical Science and TechnologyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12206-021-0438-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Muhammad Usman; Muhammad Ammar; Muddassir Ali; Muhammad Zafar; Muhammad Zeeshan;Environment Developm... arrow_drop_down Environment Development and SustainabilityArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10668-022-02273-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environment Developm... arrow_drop_down Environment Development and SustainabilityArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10668-022-02273-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Muhammad Usman; Muhammad Ammar; Muddassir Ali; Muhammad Zafar; Muhammad Zeeshan;Environment Developm... arrow_drop_down Environment Development and SustainabilityArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10668-022-02273-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environment Developm... arrow_drop_down Environment Development and SustainabilityArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10668-022-02273-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Wiley Ashfaq Ahmed; Ashfaq Ahmed; Muhammad Ammar; Chunshan Li; Yi Li; Muhammad Amin; Young-Kwon Park; Suojiang Zhang;doi: 10.1002/er.7211
International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.7211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.7211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Wiley Ashfaq Ahmed; Ashfaq Ahmed; Muhammad Ammar; Chunshan Li; Yi Li; Muhammad Amin; Young-Kwon Park; Suojiang Zhang;doi: 10.1002/er.7211
International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.7211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.7211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Muhammad Yasar Javaid; Muhammad Kamran; Muhammad Ali Jamal; Muhammad Ammar; Muhammad Qasim;In this research paper, the forced convective heat transfer enhancement of a Suzuki Mehran (VXR) 2016 radiator (heat exchanger) along with pressure drop and friction factor by utilizing Zinc oxide (ZnO) water based nanofluids has been experimentally studied. Three types of nanofluids with different volumetric concentrations of ZnO nanoparticles (0–0.3%) were employed in order to understand its effect on heat transfer enhancement. The experimental setup was completely designed as closely as possible to the car cooling system. The experimentation has been done under laminar flow conditions (186≤Re≤1127) at different fluid volume flow rates (2–12 L/min) and constant fluid inlet temperature (70°C) to the automobile radiator. A maximum enhancement in heat transfer rate, overall heat transfer coefficient and Nusselt number was obtained up to 41%, 50% and 31% by using nanofluid with 0.2% volumetric concentration of nanoparticles respectively. On the other hand, the mean enhancement in pressure drop and friction factor was obtained up to 47% and 46% by using nanofluid with the same volumetric concentration of nanoparticles i.e. 0.2% respectively. The experimental results also revealed that the heat transfer rate, overall heat transfer coefficient and Nusselt number of nanofluids increases by increasing the volume flow rates and volumetric concentration of nanoparticles. However, these thermal performance parameters of nanofluids started to decline when the volumetric concentration of nanoparticles was increased from 0.2% to 0.3%. Furthermore, pressure drop and friction factor of nanofluids increase by increasing the volumetric concentration of nanoparticles, while pressure drop increases and friction factor decreases by increasing the volume flow rate of nanofluids respectively. At the end, the thermal efficiency of automobile radiator with high cooling rates was obtained by using nanofluid with 0.2% volumetric concentration of nanoparticles.
Journal of Thermal S... arrow_drop_down Journal of Thermal ScienceArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11630-020-1263-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Thermal S... arrow_drop_down Journal of Thermal ScienceArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11630-020-1263-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Muhammad Yasar Javaid; Muhammad Kamran; Muhammad Ali Jamal; Muhammad Ammar; Muhammad Qasim;In this research paper, the forced convective heat transfer enhancement of a Suzuki Mehran (VXR) 2016 radiator (heat exchanger) along with pressure drop and friction factor by utilizing Zinc oxide (ZnO) water based nanofluids has been experimentally studied. Three types of nanofluids with different volumetric concentrations of ZnO nanoparticles (0–0.3%) were employed in order to understand its effect on heat transfer enhancement. The experimental setup was completely designed as closely as possible to the car cooling system. The experimentation has been done under laminar flow conditions (186≤Re≤1127) at different fluid volume flow rates (2–12 L/min) and constant fluid inlet temperature (70°C) to the automobile radiator. A maximum enhancement in heat transfer rate, overall heat transfer coefficient and Nusselt number was obtained up to 41%, 50% and 31% by using nanofluid with 0.2% volumetric concentration of nanoparticles respectively. On the other hand, the mean enhancement in pressure drop and friction factor was obtained up to 47% and 46% by using nanofluid with the same volumetric concentration of nanoparticles i.e. 0.2% respectively. The experimental results also revealed that the heat transfer rate, overall heat transfer coefficient and Nusselt number of nanofluids increases by increasing the volume flow rates and volumetric concentration of nanoparticles. However, these thermal performance parameters of nanofluids started to decline when the volumetric concentration of nanoparticles was increased from 0.2% to 0.3%. Furthermore, pressure drop and friction factor of nanofluids increase by increasing the volumetric concentration of nanoparticles, while pressure drop increases and friction factor decreases by increasing the volume flow rate of nanofluids respectively. At the end, the thermal efficiency of automobile radiator with high cooling rates was obtained by using nanofluid with 0.2% volumetric concentration of nanoparticles.
Journal of Thermal S... arrow_drop_down Journal of Thermal ScienceArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11630-020-1263-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Thermal S... arrow_drop_down Journal of Thermal ScienceArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11630-020-1263-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Samia Sadaf; Muhammad Ammar; Muhammad Waqas; Muhammad Waqas; Muhammad Kamran; Muhammad Qasim;In this manuscript, a numerical investigation on the temperature gradient of a magnetic refrigerator using different geometric configurations of a parallel plate regenerator is presented. The parallel plate regenerator is made up of gadolinium (Gd) as a magnetocaloric material with rectangular channels. The parallel plate regenerator is modeled and numerically investigated for 3D conjugated fluid convection and conduction heat transfer using Ansys Fluent. Two piston-cylinder displacers drive water as the working fluid through the regenerator loop. The hot and cold end heat exchangers are treated with the e-NTU method. The effect of changing the parallel plate regenerator’s dimensional parameters on temperature span is examined against the utilization factor of 0.1, keeping the regenerator’s porosity constant. The maximum temperature span is predicted by comparing simulated parallel plate magnetic regenerators for two diverse sets of dimensional parameters and surface areas is 36.5 K for magnetic field intensity of 0.8 T.
Journal of Mechanica... arrow_drop_down Journal of Mechanical Science and TechnologyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12206-021-0438-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Mechanica... arrow_drop_down Journal of Mechanical Science and TechnologyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12206-021-0438-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Samia Sadaf; Muhammad Ammar; Muhammad Waqas; Muhammad Waqas; Muhammad Kamran; Muhammad Qasim;In this manuscript, a numerical investigation on the temperature gradient of a magnetic refrigerator using different geometric configurations of a parallel plate regenerator is presented. The parallel plate regenerator is made up of gadolinium (Gd) as a magnetocaloric material with rectangular channels. The parallel plate regenerator is modeled and numerically investigated for 3D conjugated fluid convection and conduction heat transfer using Ansys Fluent. Two piston-cylinder displacers drive water as the working fluid through the regenerator loop. The hot and cold end heat exchangers are treated with the e-NTU method. The effect of changing the parallel plate regenerator’s dimensional parameters on temperature span is examined against the utilization factor of 0.1, keeping the regenerator’s porosity constant. The maximum temperature span is predicted by comparing simulated parallel plate magnetic regenerators for two diverse sets of dimensional parameters and surface areas is 36.5 K for magnetic field intensity of 0.8 T.
Journal of Mechanica... arrow_drop_down Journal of Mechanical Science and TechnologyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12206-021-0438-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Mechanica... arrow_drop_down Journal of Mechanical Science and TechnologyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12206-021-0438-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Muhammad Usman; Muhammad Ammar; Muddassir Ali; Muhammad Zafar; Muhammad Zeeshan;Environment Developm... arrow_drop_down Environment Development and SustainabilityArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10668-022-02273-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environment Developm... arrow_drop_down Environment Development and SustainabilityArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10668-022-02273-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Muhammad Usman; Muhammad Ammar; Muddassir Ali; Muhammad Zafar; Muhammad Zeeshan;Environment Developm... arrow_drop_down Environment Development and SustainabilityArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10668-022-02273-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environment Developm... arrow_drop_down Environment Development and SustainabilityArticle . 2022 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10668-022-02273-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Wiley Ashfaq Ahmed; Ashfaq Ahmed; Muhammad Ammar; Chunshan Li; Yi Li; Muhammad Amin; Young-Kwon Park; Suojiang Zhang;doi: 10.1002/er.7211
International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.7211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.7211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Wiley Ashfaq Ahmed; Ashfaq Ahmed; Muhammad Ammar; Chunshan Li; Yi Li; Muhammad Amin; Young-Kwon Park; Suojiang Zhang;doi: 10.1002/er.7211
International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.7211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.7211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Muhammad Yasar Javaid; Muhammad Kamran; Muhammad Ali Jamal; Muhammad Ammar; Muhammad Qasim;In this research paper, the forced convective heat transfer enhancement of a Suzuki Mehran (VXR) 2016 radiator (heat exchanger) along with pressure drop and friction factor by utilizing Zinc oxide (ZnO) water based nanofluids has been experimentally studied. Three types of nanofluids with different volumetric concentrations of ZnO nanoparticles (0–0.3%) were employed in order to understand its effect on heat transfer enhancement. The experimental setup was completely designed as closely as possible to the car cooling system. The experimentation has been done under laminar flow conditions (186≤Re≤1127) at different fluid volume flow rates (2–12 L/min) and constant fluid inlet temperature (70°C) to the automobile radiator. A maximum enhancement in heat transfer rate, overall heat transfer coefficient and Nusselt number was obtained up to 41%, 50% and 31% by using nanofluid with 0.2% volumetric concentration of nanoparticles respectively. On the other hand, the mean enhancement in pressure drop and friction factor was obtained up to 47% and 46% by using nanofluid with the same volumetric concentration of nanoparticles i.e. 0.2% respectively. The experimental results also revealed that the heat transfer rate, overall heat transfer coefficient and Nusselt number of nanofluids increases by increasing the volume flow rates and volumetric concentration of nanoparticles. However, these thermal performance parameters of nanofluids started to decline when the volumetric concentration of nanoparticles was increased from 0.2% to 0.3%. Furthermore, pressure drop and friction factor of nanofluids increase by increasing the volumetric concentration of nanoparticles, while pressure drop increases and friction factor decreases by increasing the volume flow rate of nanofluids respectively. At the end, the thermal efficiency of automobile radiator with high cooling rates was obtained by using nanofluid with 0.2% volumetric concentration of nanoparticles.
Journal of Thermal S... arrow_drop_down Journal of Thermal ScienceArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11630-020-1263-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Thermal S... arrow_drop_down Journal of Thermal ScienceArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11630-020-1263-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Muhammad Yasar Javaid; Muhammad Kamran; Muhammad Ali Jamal; Muhammad Ammar; Muhammad Qasim;In this research paper, the forced convective heat transfer enhancement of a Suzuki Mehran (VXR) 2016 radiator (heat exchanger) along with pressure drop and friction factor by utilizing Zinc oxide (ZnO) water based nanofluids has been experimentally studied. Three types of nanofluids with different volumetric concentrations of ZnO nanoparticles (0–0.3%) were employed in order to understand its effect on heat transfer enhancement. The experimental setup was completely designed as closely as possible to the car cooling system. The experimentation has been done under laminar flow conditions (186≤Re≤1127) at different fluid volume flow rates (2–12 L/min) and constant fluid inlet temperature (70°C) to the automobile radiator. A maximum enhancement in heat transfer rate, overall heat transfer coefficient and Nusselt number was obtained up to 41%, 50% and 31% by using nanofluid with 0.2% volumetric concentration of nanoparticles respectively. On the other hand, the mean enhancement in pressure drop and friction factor was obtained up to 47% and 46% by using nanofluid with the same volumetric concentration of nanoparticles i.e. 0.2% respectively. The experimental results also revealed that the heat transfer rate, overall heat transfer coefficient and Nusselt number of nanofluids increases by increasing the volume flow rates and volumetric concentration of nanoparticles. However, these thermal performance parameters of nanofluids started to decline when the volumetric concentration of nanoparticles was increased from 0.2% to 0.3%. Furthermore, pressure drop and friction factor of nanofluids increase by increasing the volumetric concentration of nanoparticles, while pressure drop increases and friction factor decreases by increasing the volume flow rate of nanofluids respectively. At the end, the thermal efficiency of automobile radiator with high cooling rates was obtained by using nanofluid with 0.2% volumetric concentration of nanoparticles.
Journal of Thermal S... arrow_drop_down Journal of Thermal ScienceArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11630-020-1263-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Thermal S... arrow_drop_down Journal of Thermal ScienceArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11630-020-1263-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu