- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 United KingdomPublisher:Elsevier BV Meng Cheng; Stephen J. Galsworthy; Yue Zhou; William H. Hung; N. P. Gargov; Jianzhong Wu;As a result of the increasing integration of Renewable Energy Source (RES), maintenance of the balance between supply and demand in the power system is more challenging because of RES’s intermittency and uncontrollability. The smart control of demand is able to contribute to the balance by providing the grid frequency response. This paper uses the industrial Melting Pot (MP) loads as an example. A thermodynamic model depicting the physical characteristics of MPs was firstly developed based on field measurements carried out by Open Energi. A distributed control was applied to each MP which dynamically changes the aggregated power consumption of MPs in proportion to changes in grid frequency while maintaining the primary heating function of each MP. An aggregation of individual MP models equipped with the control was integrated with the Great Britain (GB) power system models. Case studies verified that the aggregated MPs are able to provide frequency response to the power system. The response from MPs is similar but faster than the conventional generators and therefore contributes to the reduction of carbon emissions by replacing the spinning reserve capacity of fossil-fuel generators. Through the reviews of the present balancing services in the GB power system, with the proposed frequency control strategy, the Firm Frequency Response service is most beneficial at present for demand aggregators to tender for. All studies have been conducted in partnership between Cardiff University, Open Energi London – Demand Aggregator, and National Grid – System Operator in GB to ensure the quality and compliance of results.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.12.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.12.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Yanda Huo; Peng Li; Haoran Ji; Hao Yu; Jinyue Yan; Jianzhong Wu; Chengshan Wang;The highly penetrated distributed generators (DGs) aggravate the voltage violations in active distribution networks (ADNs). The coordination of various regulation devices such as on-load tap changers (OLTCs) and DG inverters can effectively address the voltage issues. Considering the problems of inaccurate network parameters and rapid DG fluctuation in practical operation, multi-source data can be utilized to establish the data-driven control model. In this paper, a data-driven coordinated voltage control method with the coordination of OLTC and DG inverters on multiple time-scales is proposed without relying on the accurate physical model. First, based on the multi-source data, a data-driven voltage control model is established. Multiple regulation devices such as OLTC and DG are coordinated on multiple time-scales to maintain voltages within the desired range. Then, a critical measurement selection method is proposed to guarantee the voltage control performance under the partial measurements in practical ADNs. Finally, the proposed method is validated on the modified IEEE 33-node and IEEE 123-node test cases. Case studies illustrate the effectiveness of the proposed method, as well as the adaptability to DG uncertainties.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2022.3172667&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2022.3172667&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Elsevier BV Authors: Vedantham Lakshmi Srinivas; Jianzhong Wu; Bhim Singh; Sukumar Mishra;La estimación estatal juega un papel vital para monitorear, observar y comprender la red combinada de calor y electricidad. En este documento, se presenta un marco híbrido para estimar con precisión los estados del sistema de la red de distribución eléctrica y la red de calor, utilizando las mediciones limitadas no redundantes obtenidas del control de supervisión y la adquisición de datos y los sistemas avanzados de infraestructura de medición. El marco híbrido presentado implica dos pasos, a saber, la previsión del estado y la estimación del estado. El pronóstico de estado utiliza una red neuronal profunda para pronosticar los estados del sistema cada quince minutos, mientras que estos estados pronosticados son utilizados por el estimador híbrido, que utiliza un filtro Kalman extendido robusto para estimar los estados del sistema con la ayuda de ambos conjuntos de datos correspondientes al control de supervisión y la adquisición de datos y los sistemas de infraestructura de medición avanzada, a intervalos de una hora. El marco propuesto no se basa completamente en el modelo del sistema en diferentes instantes. La efectividad del método se valida a través de comparaciones exhaustivas con estudios de simulación realizados utilizando el sistema de prueba Barry Island, Reino Unido. Se observa un rendimiento satisfactorio incluso con la presencia de datos incorrectos en las mediciones. L'estimation de l'état joue un rôle essentiel pour surveiller, observer et comprendre le réseau combiné de chaleur et d'électricité. Dans cet article, un cadre hybride est présenté pour estimer avec précision les états du système du réseau de distribution électrique et du réseau de chaleur, en utilisant les mesures non redondantes limitées obtenues à partir des systèmes de contrôle de surveillance et d'acquisition de données et d'infrastructure de mesure avancée. Le cadre hybride présenté comprend deux étapes, à savoir la prévision de l'état et l'estimation de l'état. La prévision d'état utilise un réseau neuronal profond pour prévoir les états du système toutes les quinze minutes, tandis que ces états prévus sont en outre utilisés par l'estimateur hybride, qui utilise un filtre de Kalman étendu robuste pour estimer les états du système à l'aide des deux ensembles de données correspondant au contrôle de supervision et à l'acquisition de données et aux systèmes d'infrastructure de mesure avancés, à intervalle horaire. Le cadre proposé ne repose pas entièrement sur le modèle du système à différents instants. L'efficacité de la méthode est validée par des comparaisons approfondies avec des études de simulation réalisées à l'aide du système de test Barry Island, Royaume-Uni. Des performances satisfaisantes sont observées même avec la présence de mauvaises données dans les mesures. State-estimation plays a vital role to monitor, observe and understand the combined heat and electric network. In this paper, a hybrid framework is presented to accurately estimate the system states of electric distribution network and heat network, using the limited non-redundant measurements obtained from supervisory control and data acquisition and advanced metering infrastructure systems. The presented hybrid framework involves two steps, namely, the state-forecasting and the state-estimation. The state-forecasting uses a deep neural network to forecast the system states at every fifteen minutes interval, while these forecasted states are further used by the hybrid estimator, which uses a robust extended Kalman filter to estimate the system states with help of both datasets corresponding to supervisory control and data acquisition and advanced metering infrastructure systems, at hourly interval. The proposed framework does not completely rely on the system model at different instants. The effectiveness of the method is validated through thorough comparisons with simulation studies carried out using the Barry Island test system, United Kingdom. Satisfactory performance is observed even with the presence of bad data in the measurements. يلعب تقدير الحالة دورًا حيويًا في مراقبة وملاحظة وفهم الشبكة الحرارية والكهربائية المدمجة. في هذه الورقة، يتم تقديم إطار عمل هجين لتقدير حالات نظام شبكة التوزيع الكهربائية والشبكة الحرارية بدقة، باستخدام القياسات المحدودة غير الزائدة عن الحاجة التي تم الحصول عليها من التحكم الإشرافي والحصول على البيانات وأنظمة البنية التحتية المتقدمة للقياس. يتضمن الإطار الهجين المقدم خطوتين، وهما التنبؤ بالحالة وتقدير الحالة. يستخدم التنبؤ بالحالة شبكة عصبية عميقة للتنبؤ بحالات النظام كل خمسة عشر دقيقة، في حين يتم استخدام هذه الحالات المتوقعة بشكل أكبر من قبل المقدر الهجين، والذي يستخدم مرشح كالمان الممتد القوي لتقدير حالات النظام بمساعدة كل من مجموعات البيانات المقابلة للتحكم الإشرافي والحصول على البيانات وأنظمة البنية التحتية المتقدمة للقياس، على فترات كل ساعة. لا يعتمد الإطار المقترح بشكل كامل على نموذج النظام في لحظات مختلفة. يتم التحقق من فعالية الطريقة من خلال مقارنات شاملة مع دراسات المحاكاة التي أجريت باستخدام نظام اختبار جزيرة باري، المملكة المتحدة. يلاحظ الأداء المرضي حتى مع وجود بيانات سيئة في القياسات.
International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2023.109726&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2023.109726&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2013Publisher:IEEE Authors: Nick Jenkins; Jianzhong Wu; Oluwole Daniel Adeuyi;The development of the North Sea Supergrid is closely linked to three main topological ideas: (i) Business as Usual; (ii) Local Coordination; and (iii) Fully Integrated. In this paper, the three proposed topologies were simplified, analysed and compared for power export from offshore wind farms unto onshore grids. A review on the state-of-the-art HVAC and HVDC offshore transmission technologies was carried out. The national offshore network development strategies of the six countries surrounding the North Sea were summarised. The number of HVAC and HVDC assets required for all three topologies were calculated. It was evident from calculations that, by 2030, the Fully Integrated Topology will achieve approximately 8% asset savings than the Local Coordination Topology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/upec.2013.6714967&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/upec.2013.6714967&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Rui Bo; Linquan Bai; Antonio J. Conejo; Jianzhong Wu; Tao Jiang; Fei Ding; Babak Enayati;IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2022.3228852&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2022.3228852&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Funded by:UKRI | HubNet: Research Leadersh..., UKRI | SUPERGEN 1 Renewal Core -..., UKRI | SUPERGEN HDPS - COREUKRI| HubNet: Research Leadership and Networking for Energy Networks ,UKRI| SUPERGEN 1 Renewal Core - FlexNet: Renewal of the Supergen consortium on Future Network Technologies ,UKRI| SUPERGEN HDPS - COREAuthors: Marc Rees; Jianzhong Wu; Muditha Abeysekera; Nick Jenkins;AbstractThe carbon constrained design of energy supply infrastructure for new build schemes was investigated. This was considered as an optimization problem with the objective of finding the mix of on-site energy supply technologies that meet green house gas emissions targets at a minimum build cost to the developer. An integrated design tool was developed by combining a social cognitive optimisation solver, an infrastructure model and a set of analysis modules to provide the technical design, the evaluation of greenhouse gas emissions and the financial appraisal for the scheme. The integrated design tool was applied to a new build scheme in the UK with a 60% target reduction of regulated emissions. It was shown that the optimal design and corresponding cost was sensitive to the year of build completion and to the assumptions applied when determining the emissions intensity of the marginal central generators.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.08.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.08.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Elsevier BV Teng, F; Mu, Y; Jia, H; Wu, J; Zeng, P; Strbac, G;handle: 10044/1/39732
As the integration of wind generation displaces conventional plants, system inertia provided by rotating mass declines, causing concerns over system frequency stability. This paper implements an advanced stochastic scheduling model with inertia-dependent fast frequency response requirements to investigate the challenges on the primary frequency control in the future Great Britain electricity system. The results suggest that the required volume and the associated cost of primary frequency response increase significantly along with the increased capacity of wind plants. Alternative measures (e.g. electric vehicles) have been proposed to alleviate these concerns. Therefore, this paper also analyses the benefits of primary frequency response support from electric vehicles in reducing system operation cost, wind curtailment and carbon emissions.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/39732Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.06.123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/39732Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.06.123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Elsevier BV Funded by:UKRI | Increasing the Observabil..., UKRI | SUPERGEN 1 Renewal Core -...UKRI| Increasing the Observability of Electrical Distribution Systems using Smart Meters (IOSM) ,UKRI| SUPERGEN 1 Renewal Core - FlexNet: Renewal of the Supergen consortium on Future Network TechnologiesAuthors: Drysdale, Brian; Wu, Jianzhong; Jenkins, Nick;AbstractIn order to meet greenhouse gas emissions targets the Great Britain (GB) future electricity supply will include a higher fraction of non-dispatchable generation, increasing opportunities for demand side management to maintain a supply/demand balance. This paper examines the extent of flexible domestic demand (FDD) in GB, its usefulness in system balancing and appropriate incentives to encourage consumers to participate. FDD, classified as electric space and water heating (ESWH), and cold and wet appliances, amounts to 59TWh in 2012 (113TWh total domestic demand) and is calculated to increase to 67TWh in 2030. Summer and winter daily load profiles for flexible loads show significant seasonal and diurnal variations in the total flexible load and between load categories. Low levels of reflective consumer engagement with electricity consumption and a resistance to automation present barriers to effective access to FDD. A value of £1.97/household/year has been calculated for cold appliance loads used for frequency response in 2030, using 2013 market rates. The introduction of smart meters in GB by 2020 will allow access to FDD for system balancing. The low commercial value of individual domestic loads increases the attractiveness of non-financial incentives to fully exploit FDD. It was shown that appliance loads have different characteristics which can contribute to an efficient power system in different ways.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.11.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 86 citations 86 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.11.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Institute of Electrical and Electronics Engineers (IEEE) Jidong Wang; Dan Wang; Yiqiang Zhang; Yue Zhou; Jianzhong Wu; Chengshan Wang;Robust-index method is proposed to tackle the challenges of uncertainties caused by customer behavior in order to minimize comfort violation in household load scheduling. Robust indexes for different kinds of loads are developed and integrated into the load scheduling optimization problems in the form of additional constraints, and thus the obtained load schedules are able to reach the expected robust level. The robust-index method is simple in modeling, independent of historical data, and with low additional computational burden. Simulation results verified the validity of the proposed method and demonstrated their application in load scheduling.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2015 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2015.2403411&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu78 citations 78 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2015 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2015.2403411&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 United KingdomPublisher:Elsevier BV Authors: Meysam Qadrdan; Nick Jenkins; Meng Cheng; Jianzhong Wu;AbstractActive demand side response (DSR) will provide a significant opportunity to enhance the power system flexibility in the Great Britain (GB). Although electricity peak shaving has a clear reduction on required investments in the power system, the benefits on the gas supply network have not been examined. Using a Combined Gas and Electricity Networks expansion model (CGEN+), the impact of DSR on the electricity and gas supply systems in GB was investigated for the time horizon from 2010 to 2050s. The results showed a significant reduction in the capacity of new gas-fired power plants, caused by electricity peak shaving. The reduction of gas-fired power plants achieved through DSR consequently reduced the requirements for gas import capacity up to 90 million cubic meter per day by 2050. The cost savings resulted from the deployment of DSR over a 50-year time horizon from 2010 was estimated to be around £60 billion for the GB power system. Although, the cost saving achieved in the gas network was not significant, it was shown that the DSR will have a crucial role to play in the improvement of security of gas supply.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.10.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.10.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 United KingdomPublisher:Elsevier BV Meng Cheng; Stephen J. Galsworthy; Yue Zhou; William H. Hung; N. P. Gargov; Jianzhong Wu;As a result of the increasing integration of Renewable Energy Source (RES), maintenance of the balance between supply and demand in the power system is more challenging because of RES’s intermittency and uncontrollability. The smart control of demand is able to contribute to the balance by providing the grid frequency response. This paper uses the industrial Melting Pot (MP) loads as an example. A thermodynamic model depicting the physical characteristics of MPs was firstly developed based on field measurements carried out by Open Energi. A distributed control was applied to each MP which dynamically changes the aggregated power consumption of MPs in proportion to changes in grid frequency while maintaining the primary heating function of each MP. An aggregation of individual MP models equipped with the control was integrated with the Great Britain (GB) power system models. Case studies verified that the aggregated MPs are able to provide frequency response to the power system. The response from MPs is similar but faster than the conventional generators and therefore contributes to the reduction of carbon emissions by replacing the spinning reserve capacity of fossil-fuel generators. Through the reviews of the present balancing services in the GB power system, with the proposed frequency control strategy, the Firm Frequency Response service is most beneficial at present for demand aggregators to tender for. All studies have been conducted in partnership between Cardiff University, Open Energi London – Demand Aggregator, and National Grid – System Operator in GB to ensure the quality and compliance of results.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.12.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.12.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Yanda Huo; Peng Li; Haoran Ji; Hao Yu; Jinyue Yan; Jianzhong Wu; Chengshan Wang;The highly penetrated distributed generators (DGs) aggravate the voltage violations in active distribution networks (ADNs). The coordination of various regulation devices such as on-load tap changers (OLTCs) and DG inverters can effectively address the voltage issues. Considering the problems of inaccurate network parameters and rapid DG fluctuation in practical operation, multi-source data can be utilized to establish the data-driven control model. In this paper, a data-driven coordinated voltage control method with the coordination of OLTC and DG inverters on multiple time-scales is proposed without relying on the accurate physical model. First, based on the multi-source data, a data-driven voltage control model is established. Multiple regulation devices such as OLTC and DG are coordinated on multiple time-scales to maintain voltages within the desired range. Then, a critical measurement selection method is proposed to guarantee the voltage control performance under the partial measurements in practical ADNs. Finally, the proposed method is validated on the modified IEEE 33-node and IEEE 123-node test cases. Case studies illustrate the effectiveness of the proposed method, as well as the adaptability to DG uncertainties.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2022.3172667&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2022.3172667&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Elsevier BV Authors: Vedantham Lakshmi Srinivas; Jianzhong Wu; Bhim Singh; Sukumar Mishra;La estimación estatal juega un papel vital para monitorear, observar y comprender la red combinada de calor y electricidad. En este documento, se presenta un marco híbrido para estimar con precisión los estados del sistema de la red de distribución eléctrica y la red de calor, utilizando las mediciones limitadas no redundantes obtenidas del control de supervisión y la adquisición de datos y los sistemas avanzados de infraestructura de medición. El marco híbrido presentado implica dos pasos, a saber, la previsión del estado y la estimación del estado. El pronóstico de estado utiliza una red neuronal profunda para pronosticar los estados del sistema cada quince minutos, mientras que estos estados pronosticados son utilizados por el estimador híbrido, que utiliza un filtro Kalman extendido robusto para estimar los estados del sistema con la ayuda de ambos conjuntos de datos correspondientes al control de supervisión y la adquisición de datos y los sistemas de infraestructura de medición avanzada, a intervalos de una hora. El marco propuesto no se basa completamente en el modelo del sistema en diferentes instantes. La efectividad del método se valida a través de comparaciones exhaustivas con estudios de simulación realizados utilizando el sistema de prueba Barry Island, Reino Unido. Se observa un rendimiento satisfactorio incluso con la presencia de datos incorrectos en las mediciones. L'estimation de l'état joue un rôle essentiel pour surveiller, observer et comprendre le réseau combiné de chaleur et d'électricité. Dans cet article, un cadre hybride est présenté pour estimer avec précision les états du système du réseau de distribution électrique et du réseau de chaleur, en utilisant les mesures non redondantes limitées obtenues à partir des systèmes de contrôle de surveillance et d'acquisition de données et d'infrastructure de mesure avancée. Le cadre hybride présenté comprend deux étapes, à savoir la prévision de l'état et l'estimation de l'état. La prévision d'état utilise un réseau neuronal profond pour prévoir les états du système toutes les quinze minutes, tandis que ces états prévus sont en outre utilisés par l'estimateur hybride, qui utilise un filtre de Kalman étendu robuste pour estimer les états du système à l'aide des deux ensembles de données correspondant au contrôle de supervision et à l'acquisition de données et aux systèmes d'infrastructure de mesure avancés, à intervalle horaire. Le cadre proposé ne repose pas entièrement sur le modèle du système à différents instants. L'efficacité de la méthode est validée par des comparaisons approfondies avec des études de simulation réalisées à l'aide du système de test Barry Island, Royaume-Uni. Des performances satisfaisantes sont observées même avec la présence de mauvaises données dans les mesures. State-estimation plays a vital role to monitor, observe and understand the combined heat and electric network. In this paper, a hybrid framework is presented to accurately estimate the system states of electric distribution network and heat network, using the limited non-redundant measurements obtained from supervisory control and data acquisition and advanced metering infrastructure systems. The presented hybrid framework involves two steps, namely, the state-forecasting and the state-estimation. The state-forecasting uses a deep neural network to forecast the system states at every fifteen minutes interval, while these forecasted states are further used by the hybrid estimator, which uses a robust extended Kalman filter to estimate the system states with help of both datasets corresponding to supervisory control and data acquisition and advanced metering infrastructure systems, at hourly interval. The proposed framework does not completely rely on the system model at different instants. The effectiveness of the method is validated through thorough comparisons with simulation studies carried out using the Barry Island test system, United Kingdom. Satisfactory performance is observed even with the presence of bad data in the measurements. يلعب تقدير الحالة دورًا حيويًا في مراقبة وملاحظة وفهم الشبكة الحرارية والكهربائية المدمجة. في هذه الورقة، يتم تقديم إطار عمل هجين لتقدير حالات نظام شبكة التوزيع الكهربائية والشبكة الحرارية بدقة، باستخدام القياسات المحدودة غير الزائدة عن الحاجة التي تم الحصول عليها من التحكم الإشرافي والحصول على البيانات وأنظمة البنية التحتية المتقدمة للقياس. يتضمن الإطار الهجين المقدم خطوتين، وهما التنبؤ بالحالة وتقدير الحالة. يستخدم التنبؤ بالحالة شبكة عصبية عميقة للتنبؤ بحالات النظام كل خمسة عشر دقيقة، في حين يتم استخدام هذه الحالات المتوقعة بشكل أكبر من قبل المقدر الهجين، والذي يستخدم مرشح كالمان الممتد القوي لتقدير حالات النظام بمساعدة كل من مجموعات البيانات المقابلة للتحكم الإشرافي والحصول على البيانات وأنظمة البنية التحتية المتقدمة للقياس، على فترات كل ساعة. لا يعتمد الإطار المقترح بشكل كامل على نموذج النظام في لحظات مختلفة. يتم التحقق من فعالية الطريقة من خلال مقارنات شاملة مع دراسات المحاكاة التي أجريت باستخدام نظام اختبار جزيرة باري، المملكة المتحدة. يلاحظ الأداء المرضي حتى مع وجود بيانات سيئة في القياسات.
International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2023.109726&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2023.109726&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2013Publisher:IEEE Authors: Nick Jenkins; Jianzhong Wu; Oluwole Daniel Adeuyi;The development of the North Sea Supergrid is closely linked to three main topological ideas: (i) Business as Usual; (ii) Local Coordination; and (iii) Fully Integrated. In this paper, the three proposed topologies were simplified, analysed and compared for power export from offshore wind farms unto onshore grids. A review on the state-of-the-art HVAC and HVDC offshore transmission technologies was carried out. The national offshore network development strategies of the six countries surrounding the North Sea were summarised. The number of HVAC and HVDC assets required for all three topologies were calculated. It was evident from calculations that, by 2030, the Fully Integrated Topology will achieve approximately 8% asset savings than the Local Coordination Topology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/upec.2013.6714967&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/upec.2013.6714967&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Rui Bo; Linquan Bai; Antonio J. Conejo; Jianzhong Wu; Tao Jiang; Fei Ding; Babak Enayati;IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2022.3228852&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2022.3228852&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Funded by:UKRI | HubNet: Research Leadersh..., UKRI | SUPERGEN 1 Renewal Core -..., UKRI | SUPERGEN HDPS - COREUKRI| HubNet: Research Leadership and Networking for Energy Networks ,UKRI| SUPERGEN 1 Renewal Core - FlexNet: Renewal of the Supergen consortium on Future Network Technologies ,UKRI| SUPERGEN HDPS - COREAuthors: Marc Rees; Jianzhong Wu; Muditha Abeysekera; Nick Jenkins;AbstractThe carbon constrained design of energy supply infrastructure for new build schemes was investigated. This was considered as an optimization problem with the objective of finding the mix of on-site energy supply technologies that meet green house gas emissions targets at a minimum build cost to the developer. An integrated design tool was developed by combining a social cognitive optimisation solver, an infrastructure model and a set of analysis modules to provide the technical design, the evaluation of greenhouse gas emissions and the financial appraisal for the scheme. The integrated design tool was applied to a new build scheme in the UK with a 60% target reduction of regulated emissions. It was shown that the optimal design and corresponding cost was sensitive to the year of build completion and to the assumptions applied when determining the emissions intensity of the marginal central generators.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.08.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.08.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Elsevier BV Teng, F; Mu, Y; Jia, H; Wu, J; Zeng, P; Strbac, G;handle: 10044/1/39732
As the integration of wind generation displaces conventional plants, system inertia provided by rotating mass declines, causing concerns over system frequency stability. This paper implements an advanced stochastic scheduling model with inertia-dependent fast frequency response requirements to investigate the challenges on the primary frequency control in the future Great Britain electricity system. The results suggest that the required volume and the associated cost of primary frequency response increase significantly along with the increased capacity of wind plants. Alternative measures (e.g. electric vehicles) have been proposed to alleviate these concerns. Therefore, this paper also analyses the benefits of primary frequency response support from electric vehicles in reducing system operation cost, wind curtailment and carbon emissions.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/39732Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.06.123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/39732Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.06.123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Elsevier BV Funded by:UKRI | Increasing the Observabil..., UKRI | SUPERGEN 1 Renewal Core -...UKRI| Increasing the Observability of Electrical Distribution Systems using Smart Meters (IOSM) ,UKRI| SUPERGEN 1 Renewal Core - FlexNet: Renewal of the Supergen consortium on Future Network TechnologiesAuthors: Drysdale, Brian; Wu, Jianzhong; Jenkins, Nick;AbstractIn order to meet greenhouse gas emissions targets the Great Britain (GB) future electricity supply will include a higher fraction of non-dispatchable generation, increasing opportunities for demand side management to maintain a supply/demand balance. This paper examines the extent of flexible domestic demand (FDD) in GB, its usefulness in system balancing and appropriate incentives to encourage consumers to participate. FDD, classified as electric space and water heating (ESWH), and cold and wet appliances, amounts to 59TWh in 2012 (113TWh total domestic demand) and is calculated to increase to 67TWh in 2030. Summer and winter daily load profiles for flexible loads show significant seasonal and diurnal variations in the total flexible load and between load categories. Low levels of reflective consumer engagement with electricity consumption and a resistance to automation present barriers to effective access to FDD. A value of £1.97/household/year has been calculated for cold appliance loads used for frequency response in 2030, using 2013 market rates. The introduction of smart meters in GB by 2020 will allow access to FDD for system balancing. The low commercial value of individual domestic loads increases the attractiveness of non-financial incentives to fully exploit FDD. It was shown that appliance loads have different characteristics which can contribute to an efficient power system in different ways.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.11.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 86 citations 86 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.11.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Institute of Electrical and Electronics Engineers (IEEE) Jidong Wang; Dan Wang; Yiqiang Zhang; Yue Zhou; Jianzhong Wu; Chengshan Wang;Robust-index method is proposed to tackle the challenges of uncertainties caused by customer behavior in order to minimize comfort violation in household load scheduling. Robust indexes for different kinds of loads are developed and integrated into the load scheduling optimization problems in the form of additional constraints, and thus the obtained load schedules are able to reach the expected robust level. The robust-index method is simple in modeling, independent of historical data, and with low additional computational burden. Simulation results verified the validity of the proposed method and demonstrated their application in load scheduling.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2015 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2015.2403411&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu78 citations 78 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2015 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2015.2403411&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 United KingdomPublisher:Elsevier BV Authors: Meysam Qadrdan; Nick Jenkins; Meng Cheng; Jianzhong Wu;AbstractActive demand side response (DSR) will provide a significant opportunity to enhance the power system flexibility in the Great Britain (GB). Although electricity peak shaving has a clear reduction on required investments in the power system, the benefits on the gas supply network have not been examined. Using a Combined Gas and Electricity Networks expansion model (CGEN+), the impact of DSR on the electricity and gas supply systems in GB was investigated for the time horizon from 2010 to 2050s. The results showed a significant reduction in the capacity of new gas-fired power plants, caused by electricity peak shaving. The reduction of gas-fired power plants achieved through DSR consequently reduced the requirements for gas import capacity up to 90 million cubic meter per day by 2050. The cost savings resulted from the deployment of DSR over a 50-year time horizon from 2010 was estimated to be around £60 billion for the GB power system. Although, the cost saving achieved in the gas network was not significant, it was shown that the DSR will have a crucial role to play in the improvement of security of gas supply.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.10.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.10.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu