- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023Publisher:IOP Publishing Christopher E Doughty; Camille Gaillard; Patrick Burns; Jenna M Keany; Andrew J Abraham; Yadvinder Malhi; Jesus Aguirre-Gutierrez; George Koch; Patrick Jantz; Alexander Shenkin; Hao Tang;Abstract The stratified nature of tropical forest structure had been noted by early explorers, but until recent use of satellite-based LiDAR (GEDI, or Global Ecosystems Dynamics Investigation LiDAR), it was not possible to quantify stratification across all tropical forests. Understanding stratification is important because by some estimates, a majority of the world’s species inhabit tropical forest canopies. Stratification can modify vertical microenvironment, and thus can affect a species’ susceptibility to anthropogenic climate change. Here we find that, based on analyzing each GEDI 25 m diameter footprint in tropical forests (after screening for human impact), most footprints (60%–90%) do not have multiple layers of vegetation. The most common forest structure has a minimum plant area index (PAI) at ∼40 m followed by an increase in PAI until ∼15 m followed by a decline in PAI to the ground layer (described hereafter as a one peak footprint). There are large geographic patterns to forest structure within the Amazon basin (ranging between 60% and 90% one peak) and between the Amazon (79 ± 9% sd) and SE Asia or Africa (72 ± 14% v 73 ± 11%). The number of canopy layers is significantly correlated with tree height (r 2 = 0.12) and forest biomass (r 2 = 0.14). Environmental variables such as maximum temperature (T max) (r 2 = 0.05), vapor pressure deficit (VPD) (r 2 = 0.03) and soil fertility proxies (e.g. total cation exchange capacity −r 2 = 0.01) were also statistically significant but less strongly correlated given the complex and heterogeneous local structural to regional climatic interactions. Certain boundaries, like the Pebas Formation and Ecoregions, clearly delineate continental scale structural changes. More broadly, deviation from more ideal conditions (e.g. lower fertility or higher temperatures) leads to shorter, less stratified forests with lower biomass.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2752-664x/ace723&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2752-664x/ace723&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Wiley Jiaqi Tian; Xiangzhong Luo; Hao Xu; Julia K. Green; Hao Tang; Jin Wu; Shilong Piao;pmid: 38273503
AbstractThe dry tropics occupy ~40% of the tropical land surface and play a dominant role in the trend and interannual variability of the global carbon cycle. Previous studies have reported considerable changes in the dry tropical precipitation seasonality due to climate change, however, the accompanied changes in the length of the vegetation growing season (LGS)—the key period of carbon sequestration—have not been examined. Here, we used long‐term satellite observations along with in‐situ flux measurements to investigate phenological changes in the dry tropics over the past 40 years. We found that only ~18% of the dry tropics show a significant (p ≤ .1) increasing trend in LGS, while ~13% show a significant decreasing trend. The direction of the LGS change depended not only on the direction of precipitation seasonality change but also on the vegetation water use strategy (i.e. isohydricity) as an adaptation to the long‐term average precipitation seasonality (i.e. whether the most of LGS is in the wet season or dry season). Meanwhile, we found that the rate of LGS change was on average ~23% slower than that of precipitation seasonality, caused by a buffering effect from soil moisture. This study uncovers potential mechanisms driving phenological changes in the dry tropics, offering guidance for regional vegetation and carbon cycle studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, United Kingdom, United Kingdom, United States, United Kingdom, Singapore, FrancePublisher:Elsevier BV Scott Hensley; Alfonso Alonso; Kathryn J. Jeffery; Pulchérie Bissiengou; S. Marselis; Michelle Hofton; Ghislain Moussavou; John R. Poulsen; Sassan Saatchi; Temilola Fatoyinbo; Memiaghe Herve; Lee T. J. White; Steven Hancock; Christy Hansen; David Kenfack; Naiara Pinto; Marc Simard; Nicolas Barbier; Nicolas Labrière; Michael Denbina; Kathleen Hibbard; Simon L. Lewis; J. Armston; Brian Hawkins; Ralph Dubayah; Laura Duncanson; Hao Tang; Hao Tang; Bryan Blair; Yunling Lou; Marco Lavalle; Carlos A. Silva; Carlos A. Silva;In 2015 and 2016, the AfriSAR campaign was carried out as a collaborative effort among international space and National Park agencies (ESA, NASA, ONERA, DLR, ANPN and AGEOS) in support of the upcoming ESA BIOMASS, NASA-ISRO Synthetic Aperture Radar (NISAR) and NASA Global Ecosystem Dynamics Initiative (GEDI) missions. The NASA contribution to the campaign was conducted in 2016 with the NASA LVIS (Land Vegetation and Ice Sensor) Lidar, the NASA L-band UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar). A central motivation for the AfriSAR deployment was the common AGBD estimation requirement for the three future spaceborne missions, the lack of sufficient airborne and ground calibration data covering the full range of ABGD in tropical forest systems, and the intercomparison and fusion of the technologies. During the campaign, over 7000 km2 of waveform Lidar data from LVIS and 30,000 km2 of UAVSAR data were collected over 10 key sites and transects. In addition, field measurements of forest structure and biomass were collected in sixteen 1-hectare sized plots. The campaign produced gridded Lidar canopy structure products, gridded aboveground biomass and associated uncertainties, Lidar based vegetation canopy cover profile products, Polarimetric Interferometric SAR and Tomographic SAR products and field measurements. Our results showcase the types of data products and scientific results expected from the spaceborne Lidar and SAR missions; we also expect that the AfriSAR campaign data will facilitate further analysis and use of waveform lidar and multiple baseline polarimetric SAR datasets for carbon cycle, biodiversity, water resources and more applications by the greater scientific community.
CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.umontpellier.fr/hal-03283894Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/1893/33024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2021.112533&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 62 citations 62 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.umontpellier.fr/hal-03283894Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/1893/33024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2021.112533&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Sweden, United KingdomPublisher:IOP Publishing Ralph Dubayah; John Armston; Sean P Healey; Jamis M Bruening; Paul L Patterson; James R Kellner; Laura Duncanson; Svetlana Saarela; Göran Ståhl; Zhiqiang Yang; Hao Tang; J Bryan Blair; Lola Fatoyinbo; Scott Goetz; Steven Hancock; Matthew Hansen; Michelle Hofton; George Hurtt; Scott Luthcke;Abstract Accurate estimation of aboveground forest biomass stocks is required to assess the impacts of land use changes such as deforestation and subsequent regrowth on concentrations of atmospheric CO2. The Global Ecosystem Dynamics Investigation (GEDI) is a lidar mission launched by NASA to the International Space Station in 2018. GEDI was specifically designed to retrieve vegetation structure within a novel, theoretical sampling design that explicitly quantifies biomass and its uncertainty across a variety of spatial scales. In this paper we provide the estimates of pan-tropical and temperate biomass derived from two years of GEDI observations. We present estimates of mean biomass densities at 1 km resolution, as well as estimates aggregated to the national level for every country GEDI observes, and at the sub-national level for the United States. For all estimates we provide the standard error of the mean biomass. These data serve as a baseline for current biomass stocks and their future changes, and the mission’s integrated use of formal statistical inference points the way towards the possibility of a new generation of powerful monitoring tools from space.
SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac8694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu123 citations 123 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac8694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 France, Denmark, United StatesPublisher:Elsevier BV Qin, Yuanwei; Xiao, Xiangming; Wigneron, Jean-Pierre; Ciais, Philippe; Canadell, Josep; Brandt, Martin; Li, Xiaojun; Fan, Lei; Wu, Xiaocui; Tang, Hao; Dubayah, Ralph; Doughty, Russell; Crowell, Sean; Zheng, Bo; Moore, Berrien;Australia experienced multi-year drought and record high temperatures, and massive forest fires occurred across the southeast in 2019 and early 2020. In the fire-affected forest areas, understory and often tree canopies were burned, and in-situ observations in late 2020 reported rapid vegetation recovery, including grasses, shrubs, and tree canopies from burned-but-not-dead eucalyptus trees. Considering the strong fire resilience and resistance of eucalyptus trees and above-average rainfall in 2020, we assessed how much and how quickly vegetation structure and biomass changed from loss to post-fire and drought recovery in 2020 for all forest areas in Australia. Here, we analyzed space-borne optical, thermal, and microwave images to assess changes in the structure and function of vegetation using four vegetation indices (VIs), leaf area index (LAI), solar-induced chlorophyll fluorescence (SIF), gross primary production (GPP), and aboveground biomass (AGB). We found that all eight variables show large losses in 2019, driven by fires and climate (drought and high temperature), but large gains in 2020, resulting from the high resilience of most trees to fire and rapid growth of understory vegetation under wet condition in 2020. In 2019, the forest area has an AGB loss of 0.20 Pg C, which is ~15% of the pre-fire AGB. Attribution analyses showed that both fire and climate (prior and co-occurring severe drought and record high temperatures) are responsible for the AGB loss in 2019, approximately 0.09 Pg C (fire) and 0.11 Pg C (climate), respectively. In 2020, the forest area has a total AGB gain of 0.26 Pg C, composed of 0.22 Pg C from fire-affected forest area and 0.04 Pg C from fire-unaffected forest area. Fire-adapted Eucalyptus forests and above-average annual precipitation in 2020 brought by a moderate La Niña drove the recovery of vegetation cover, productivity, and AGB. The results from this study shows the potential of multiple sensors for monitoring and assessing the impacts of fire and climate on the forest areas in Australia and their post-fire recovery.
Caltech Authors (Cal... arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2022Full-Text: https://doi.org/10.1016/j.rse.2022.113087Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Remote Sensing of EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2022.113087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 53 citations 53 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Caltech Authors (Cal... arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2022Full-Text: https://doi.org/10.1016/j.rse.2022.113087Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Remote Sensing of EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2022.113087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 United KingdomPublisher:Elsevier BV Dubayah, Ralph; Blair, James Bryan; Goetz, Scott; Fatoyinbo, Lola; Hansen, Matthew; Healey, Sean; Hofton, Michelle; Hurtt, George; Kellner, James; Luthcke, Scott; Armston, John; Tang, Hao; Duncanson, Laura; Hancock, Steven; Jantz, Patrick; Marselis, Suzanne; Patterson, Paul L.; Qi, Wenlu; Silva, Carlos;Obtaining accurate and widespread measurements of the vertical structure of the Earth’s forests has been a long-sought goal for the ecological community. Such observations are critical for accurately assessing the existing biomass of forests, and how changes in this biomass caused by human activities or variations in climate may impact atmospheric CO2 concentrations. Additionally, the three-dimensional structure of forests is a key component of habitat quality and biodiversity at local to regional scales. The Global Ecosystem Dynamics Investigation (GEDI) was launched to the International Space Station in late 2018 to provide high-quality measurements of forest vertical structure in temperate and tropical forests between 51.6° N & S latitude. The GEDI instrument is a geodetic-class laser altimeter/waveform lidar comprised of 3 lasers that produce 8 transects of structural information. Over its two-year nominal lifetime GEDI is anticipated to provide over 10 billion waveforms at a footprint resolution of 25 m. These data will be used to derive a variety of footprint and gridded products, including canopy height, canopy foliar profiles, Leaf Area Index (LAI), sub-canopy topography and biomass. Additionally, data from GEDI are used to demonstrate the efficacy of its measurements for prognostic ecosystem modeling, habit and biodiversity studies, and for fusion using radar and other remote sensing instruments. GEDI science and technology are unique: no other space-based mission has been created that is specifically optimized for retrieving vegetation vertical structure. As such, GEDI promises to advance our understanding of the importance of canopy vertical variations within an ecological paradigm based on structure, composition and function.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.srs.2020.100002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 645 citations 645 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.srs.2020.100002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley Jennifer de Mooy; Edil A. Sepúlveda Carlo; Dena Gonsalves; Shawn Lehman; Christopher Martin; Tee Jay Boudreau; Hong-Hanh Chu; Madeleine Guy; Lei Ma; Alexander Rudee; Nathan E. Hultman; Nathan Robbins; Cary Lynch; Cary Lynch; Christopher Skoglund; Rachel L. Lamb; Elliott Campbell; Bennet Leon; Andrew J. Lister; George C. Hurtt; Hao Tang; Ralph Dubayah; C. E. Silva;Abstract International frameworks for climate mitigation that build from national actions have been developed under the United National Framework Convention on Climate Change and advanced most recently through the Paris Climate Agreement. In parallel, sub-national actors have set greenhouse gas (GHG) reduction goals and developed corresponding climate mitigation plans. Within the U.S., multi-state coalitions have formed to facilitate coordination of related science and policy. Here, utilizing the forum of the NASA Carbon Monitoring System’s Multi-State Working Group, we collected and reviewed climate mitigation plans for 11 states in the Regional Greenhouse Gas Initiative region of the Eastern U.S. For each state we reviewed the (a) policy framework for climate mitigation, (b) GHG reduction goals, (c) inclusion of forest activities in the state’s climate action plan, (d) existing science used to quantify forest carbon estimates, and (e) stated needs for forest carbon monitoring science. Across the region, we found important differences across all categories. While all states have GHG reduction goals and framework documents, nearly three-quarters of all states do not account for forest carbon when planning GHG reductions; those that do account for forest carbon use a variety of scientific methods with various levels of planning detail and guidance. We suggest that a common, efficient, standardized forest carbon monitoring system would provide important benefits to states and the geographic region as a whole. In addition, such a system would allow for more effective transparency and progress tracking to support state, national, and international efforts to increase ambition and implementation of climate goals.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/essoar.10505328.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/essoar.10505328.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:IOP Publishing Authors: Yuchuan Zhou; David M Taylor; Hao Tang;Abstract NASA’s Global Ecosystem Dynamics Investigation (GEDI) presents an unprecedented opportunity for cost-effective estimations of above-ground biomass density (AGBD) using spaceborne Light Detection And Ranging technology. Current performance of the GEDI Level 4 A (L4A) AGBD product is, however, subject to model choice and availability of calibration data. Here, we identified biases in the current GEDI L4A AGBD product compared to National Forest Inventory (NFI) data for the Southeast Asian country of Laos, with absolute bias values ranging from −54.24 to 106.23 Mg Ha−1 across different forest types. We optimised the GEDI L4A AGBD model configurations for natural forests in Laos and calibrated them with ancillary variables. The biases were significantly reduced (average bias reduction for all forest types = 42.2 Mg Ha−1), with the greatest reduction for the evergreen (EG) forest type. The calibrated GEDI footprints were aggregated to produce a country-wide map of AGBD for natural forests. The approach also enabled the updating of national-level estimates of average AGBD stock for each forest class in Laos using a model-assisted estimator complementary to the existing NFI design-based estimator. Results highlight the importance of localised calibration in remote sensing applications used in estimating forest biomass, and offer a replicable framework for application in other regions with limited availability of ground data and/or extensive, remote areas of forest.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ad9aba&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ad9aba&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:IOP Publishing Christopher E Doughty; Camille Gaillard; Patrick Burns; Jenna M Keany; Andrew J Abraham; Yadvinder Malhi; Jesus Aguirre-Gutierrez; George Koch; Patrick Jantz; Alexander Shenkin; Hao Tang;Abstract The stratified nature of tropical forest structure had been noted by early explorers, but until recent use of satellite-based LiDAR (GEDI, or Global Ecosystems Dynamics Investigation LiDAR), it was not possible to quantify stratification across all tropical forests. Understanding stratification is important because by some estimates, a majority of the world’s species inhabit tropical forest canopies. Stratification can modify vertical microenvironment, and thus can affect a species’ susceptibility to anthropogenic climate change. Here we find that, based on analyzing each GEDI 25 m diameter footprint in tropical forests (after screening for human impact), most footprints (60%–90%) do not have multiple layers of vegetation. The most common forest structure has a minimum plant area index (PAI) at ∼40 m followed by an increase in PAI until ∼15 m followed by a decline in PAI to the ground layer (described hereafter as a one peak footprint). There are large geographic patterns to forest structure within the Amazon basin (ranging between 60% and 90% one peak) and between the Amazon (79 ± 9% sd) and SE Asia or Africa (72 ± 14% v 73 ± 11%). The number of canopy layers is significantly correlated with tree height (r 2 = 0.12) and forest biomass (r 2 = 0.14). Environmental variables such as maximum temperature (T max) (r 2 = 0.05), vapor pressure deficit (VPD) (r 2 = 0.03) and soil fertility proxies (e.g. total cation exchange capacity −r 2 = 0.01) were also statistically significant but less strongly correlated given the complex and heterogeneous local structural to regional climatic interactions. Certain boundaries, like the Pebas Formation and Ecoregions, clearly delineate continental scale structural changes. More broadly, deviation from more ideal conditions (e.g. lower fertility or higher temperatures) leads to shorter, less stratified forests with lower biomass.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2752-664x/ace723&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2752-664x/ace723&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Wiley Jiaqi Tian; Xiangzhong Luo; Hao Xu; Julia K. Green; Hao Tang; Jin Wu; Shilong Piao;pmid: 38273503
AbstractThe dry tropics occupy ~40% of the tropical land surface and play a dominant role in the trend and interannual variability of the global carbon cycle. Previous studies have reported considerable changes in the dry tropical precipitation seasonality due to climate change, however, the accompanied changes in the length of the vegetation growing season (LGS)—the key period of carbon sequestration—have not been examined. Here, we used long‐term satellite observations along with in‐situ flux measurements to investigate phenological changes in the dry tropics over the past 40 years. We found that only ~18% of the dry tropics show a significant (p ≤ .1) increasing trend in LGS, while ~13% show a significant decreasing trend. The direction of the LGS change depended not only on the direction of precipitation seasonality change but also on the vegetation water use strategy (i.e. isohydricity) as an adaptation to the long‐term average precipitation seasonality (i.e. whether the most of LGS is in the wet season or dry season). Meanwhile, we found that the rate of LGS change was on average ~23% slower than that of precipitation seasonality, caused by a buffering effect from soil moisture. This study uncovers potential mechanisms driving phenological changes in the dry tropics, offering guidance for regional vegetation and carbon cycle studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, United Kingdom, United Kingdom, United States, United Kingdom, Singapore, FrancePublisher:Elsevier BV Scott Hensley; Alfonso Alonso; Kathryn J. Jeffery; Pulchérie Bissiengou; S. Marselis; Michelle Hofton; Ghislain Moussavou; John R. Poulsen; Sassan Saatchi; Temilola Fatoyinbo; Memiaghe Herve; Lee T. J. White; Steven Hancock; Christy Hansen; David Kenfack; Naiara Pinto; Marc Simard; Nicolas Barbier; Nicolas Labrière; Michael Denbina; Kathleen Hibbard; Simon L. Lewis; J. Armston; Brian Hawkins; Ralph Dubayah; Laura Duncanson; Hao Tang; Hao Tang; Bryan Blair; Yunling Lou; Marco Lavalle; Carlos A. Silva; Carlos A. Silva;In 2015 and 2016, the AfriSAR campaign was carried out as a collaborative effort among international space and National Park agencies (ESA, NASA, ONERA, DLR, ANPN and AGEOS) in support of the upcoming ESA BIOMASS, NASA-ISRO Synthetic Aperture Radar (NISAR) and NASA Global Ecosystem Dynamics Initiative (GEDI) missions. The NASA contribution to the campaign was conducted in 2016 with the NASA LVIS (Land Vegetation and Ice Sensor) Lidar, the NASA L-band UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar). A central motivation for the AfriSAR deployment was the common AGBD estimation requirement for the three future spaceborne missions, the lack of sufficient airborne and ground calibration data covering the full range of ABGD in tropical forest systems, and the intercomparison and fusion of the technologies. During the campaign, over 7000 km2 of waveform Lidar data from LVIS and 30,000 km2 of UAVSAR data were collected over 10 key sites and transects. In addition, field measurements of forest structure and biomass were collected in sixteen 1-hectare sized plots. The campaign produced gridded Lidar canopy structure products, gridded aboveground biomass and associated uncertainties, Lidar based vegetation canopy cover profile products, Polarimetric Interferometric SAR and Tomographic SAR products and field measurements. Our results showcase the types of data products and scientific results expected from the spaceborne Lidar and SAR missions; we also expect that the AfriSAR campaign data will facilitate further analysis and use of waveform lidar and multiple baseline polarimetric SAR datasets for carbon cycle, biodiversity, water resources and more applications by the greater scientific community.
CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.umontpellier.fr/hal-03283894Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/1893/33024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2021.112533&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 62 citations 62 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.umontpellier.fr/hal-03283894Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/1893/33024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2021.112533&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Sweden, United KingdomPublisher:IOP Publishing Ralph Dubayah; John Armston; Sean P Healey; Jamis M Bruening; Paul L Patterson; James R Kellner; Laura Duncanson; Svetlana Saarela; Göran Ståhl; Zhiqiang Yang; Hao Tang; J Bryan Blair; Lola Fatoyinbo; Scott Goetz; Steven Hancock; Matthew Hansen; Michelle Hofton; George Hurtt; Scott Luthcke;Abstract Accurate estimation of aboveground forest biomass stocks is required to assess the impacts of land use changes such as deforestation and subsequent regrowth on concentrations of atmospheric CO2. The Global Ecosystem Dynamics Investigation (GEDI) is a lidar mission launched by NASA to the International Space Station in 2018. GEDI was specifically designed to retrieve vegetation structure within a novel, theoretical sampling design that explicitly quantifies biomass and its uncertainty across a variety of spatial scales. In this paper we provide the estimates of pan-tropical and temperate biomass derived from two years of GEDI observations. We present estimates of mean biomass densities at 1 km resolution, as well as estimates aggregated to the national level for every country GEDI observes, and at the sub-national level for the United States. For all estimates we provide the standard error of the mean biomass. These data serve as a baseline for current biomass stocks and their future changes, and the mission’s integrated use of formal statistical inference points the way towards the possibility of a new generation of powerful monitoring tools from space.
SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac8694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu123 citations 123 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac8694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 France, Denmark, United StatesPublisher:Elsevier BV Qin, Yuanwei; Xiao, Xiangming; Wigneron, Jean-Pierre; Ciais, Philippe; Canadell, Josep; Brandt, Martin; Li, Xiaojun; Fan, Lei; Wu, Xiaocui; Tang, Hao; Dubayah, Ralph; Doughty, Russell; Crowell, Sean; Zheng, Bo; Moore, Berrien;Australia experienced multi-year drought and record high temperatures, and massive forest fires occurred across the southeast in 2019 and early 2020. In the fire-affected forest areas, understory and often tree canopies were burned, and in-situ observations in late 2020 reported rapid vegetation recovery, including grasses, shrubs, and tree canopies from burned-but-not-dead eucalyptus trees. Considering the strong fire resilience and resistance of eucalyptus trees and above-average rainfall in 2020, we assessed how much and how quickly vegetation structure and biomass changed from loss to post-fire and drought recovery in 2020 for all forest areas in Australia. Here, we analyzed space-borne optical, thermal, and microwave images to assess changes in the structure and function of vegetation using four vegetation indices (VIs), leaf area index (LAI), solar-induced chlorophyll fluorescence (SIF), gross primary production (GPP), and aboveground biomass (AGB). We found that all eight variables show large losses in 2019, driven by fires and climate (drought and high temperature), but large gains in 2020, resulting from the high resilience of most trees to fire and rapid growth of understory vegetation under wet condition in 2020. In 2019, the forest area has an AGB loss of 0.20 Pg C, which is ~15% of the pre-fire AGB. Attribution analyses showed that both fire and climate (prior and co-occurring severe drought and record high temperatures) are responsible for the AGB loss in 2019, approximately 0.09 Pg C (fire) and 0.11 Pg C (climate), respectively. In 2020, the forest area has a total AGB gain of 0.26 Pg C, composed of 0.22 Pg C from fire-affected forest area and 0.04 Pg C from fire-unaffected forest area. Fire-adapted Eucalyptus forests and above-average annual precipitation in 2020 brought by a moderate La Niña drove the recovery of vegetation cover, productivity, and AGB. The results from this study shows the potential of multiple sensors for monitoring and assessing the impacts of fire and climate on the forest areas in Australia and their post-fire recovery.
Caltech Authors (Cal... arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2022Full-Text: https://doi.org/10.1016/j.rse.2022.113087Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Remote Sensing of EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2022.113087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 53 citations 53 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Caltech Authors (Cal... arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2022Full-Text: https://doi.org/10.1016/j.rse.2022.113087Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemUniversity of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Remote Sensing of EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2022.113087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 United KingdomPublisher:Elsevier BV Dubayah, Ralph; Blair, James Bryan; Goetz, Scott; Fatoyinbo, Lola; Hansen, Matthew; Healey, Sean; Hofton, Michelle; Hurtt, George; Kellner, James; Luthcke, Scott; Armston, John; Tang, Hao; Duncanson, Laura; Hancock, Steven; Jantz, Patrick; Marselis, Suzanne; Patterson, Paul L.; Qi, Wenlu; Silva, Carlos;Obtaining accurate and widespread measurements of the vertical structure of the Earth’s forests has been a long-sought goal for the ecological community. Such observations are critical for accurately assessing the existing biomass of forests, and how changes in this biomass caused by human activities or variations in climate may impact atmospheric CO2 concentrations. Additionally, the three-dimensional structure of forests is a key component of habitat quality and biodiversity at local to regional scales. The Global Ecosystem Dynamics Investigation (GEDI) was launched to the International Space Station in late 2018 to provide high-quality measurements of forest vertical structure in temperate and tropical forests between 51.6° N & S latitude. The GEDI instrument is a geodetic-class laser altimeter/waveform lidar comprised of 3 lasers that produce 8 transects of structural information. Over its two-year nominal lifetime GEDI is anticipated to provide over 10 billion waveforms at a footprint resolution of 25 m. These data will be used to derive a variety of footprint and gridded products, including canopy height, canopy foliar profiles, Leaf Area Index (LAI), sub-canopy topography and biomass. Additionally, data from GEDI are used to demonstrate the efficacy of its measurements for prognostic ecosystem modeling, habit and biodiversity studies, and for fusion using radar and other remote sensing instruments. GEDI science and technology are unique: no other space-based mission has been created that is specifically optimized for retrieving vegetation vertical structure. As such, GEDI promises to advance our understanding of the importance of canopy vertical variations within an ecological paradigm based on structure, composition and function.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.srs.2020.100002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 645 citations 645 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.srs.2020.100002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley Jennifer de Mooy; Edil A. Sepúlveda Carlo; Dena Gonsalves; Shawn Lehman; Christopher Martin; Tee Jay Boudreau; Hong-Hanh Chu; Madeleine Guy; Lei Ma; Alexander Rudee; Nathan E. Hultman; Nathan Robbins; Cary Lynch; Cary Lynch; Christopher Skoglund; Rachel L. Lamb; Elliott Campbell; Bennet Leon; Andrew J. Lister; George C. Hurtt; Hao Tang; Ralph Dubayah; C. E. Silva;Abstract International frameworks for climate mitigation that build from national actions have been developed under the United National Framework Convention on Climate Change and advanced most recently through the Paris Climate Agreement. In parallel, sub-national actors have set greenhouse gas (GHG) reduction goals and developed corresponding climate mitigation plans. Within the U.S., multi-state coalitions have formed to facilitate coordination of related science and policy. Here, utilizing the forum of the NASA Carbon Monitoring System’s Multi-State Working Group, we collected and reviewed climate mitigation plans for 11 states in the Regional Greenhouse Gas Initiative region of the Eastern U.S. For each state we reviewed the (a) policy framework for climate mitigation, (b) GHG reduction goals, (c) inclusion of forest activities in the state’s climate action plan, (d) existing science used to quantify forest carbon estimates, and (e) stated needs for forest carbon monitoring science. Across the region, we found important differences across all categories. While all states have GHG reduction goals and framework documents, nearly three-quarters of all states do not account for forest carbon when planning GHG reductions; those that do account for forest carbon use a variety of scientific methods with various levels of planning detail and guidance. We suggest that a common, efficient, standardized forest carbon monitoring system would provide important benefits to states and the geographic region as a whole. In addition, such a system would allow for more effective transparency and progress tracking to support state, national, and international efforts to increase ambition and implementation of climate goals.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/essoar.10505328.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/essoar.10505328.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:IOP Publishing Authors: Yuchuan Zhou; David M Taylor; Hao Tang;Abstract NASA’s Global Ecosystem Dynamics Investigation (GEDI) presents an unprecedented opportunity for cost-effective estimations of above-ground biomass density (AGBD) using spaceborne Light Detection And Ranging technology. Current performance of the GEDI Level 4 A (L4A) AGBD product is, however, subject to model choice and availability of calibration data. Here, we identified biases in the current GEDI L4A AGBD product compared to National Forest Inventory (NFI) data for the Southeast Asian country of Laos, with absolute bias values ranging from −54.24 to 106.23 Mg Ha−1 across different forest types. We optimised the GEDI L4A AGBD model configurations for natural forests in Laos and calibrated them with ancillary variables. The biases were significantly reduced (average bias reduction for all forest types = 42.2 Mg Ha−1), with the greatest reduction for the evergreen (EG) forest type. The calibrated GEDI footprints were aggregated to produce a country-wide map of AGBD for natural forests. The approach also enabled the updating of national-level estimates of average AGBD stock for each forest class in Laos using a model-assisted estimator complementary to the existing NFI design-based estimator. Results highlight the importance of localised calibration in remote sensing applications used in estimating forest biomass, and offer a replicable framework for application in other regions with limited availability of ground data and/or extensive, remote areas of forest.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ad9aba&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ad9aba&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu