- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Funded by:EC | RENergeticEC| RENergeticHassan Bazazzadeh; Peiman Pilechiha; Adam Nadolny; Mohammadjavad Mahdavinejad; Seyedeh sara Hashemi safaei;doi: 10.3390/en14144084
A substantial share of the building sector in global energy demand has attracted scholars to focus on the energy efficiency of the building sector. The building’s energy consumption has been projected to increase due to mass urbanization, high living comfort standards, and, more importantly, climate change. While climate change has potential impacts on the rate of energy consumption in buildings, several studies have shown that these impacts differ from one region to another. In response, this paper aimed to investigate the impact of climate change on the heating and cooling energy demands of buildings as influential variables in building energy consumption in the city of Poznan, Poland. In this sense, through the statistical downscaling method and considering the most recent Typical Meteorological Year (2004–2018) as the baseline, the future weather data for 2050 and 2080 of the city of Poznan were produced according to the HadCM3 and A2 GHG scenario. These generated files were then used to simulate the energy demands in 16 building prototypes of the ASHRAE 90.1 standard. The results indicate an average increase in cooling load and a decrease in heating load at 135% and 40%, respectively, by 2080. Due to the higher share of heating load, the total thermal load of the buildings decreased within the study period. Therefore, while the total thermal load is currently under the decrease, to avoid its rise in the future, serious measures should be taken to control the increased cooling demand and, consequently, thermal load and GHG emissions.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/14/4084/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 39 citations 39 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/14/4084/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:Elsevier BV Assareh E.; Hoseinzadeh S.; Karami A.; Bazazzadeh H.; Groppi D.; Astiaso Garcia D.;handle: 11573/1727876
This study focuses on modeling and optimizing a multifaceted geothermal-based energy production system within the context of Denmark. The primary objectives revolve around enhancing system efficiency and reducing operational costs. The system under investigation comprises geothermal components, an organic Rankine cycle, a compressed air energy storage facility, and an absorption chiller. The organic Rankine cycle operates using refrigerants R123 and ammonia, effectively converting thermal energy into electricity and thermal energy for various applications. Optimization was carried out employing the Response Surface Method in tandem with Design-Expert software, facilitating the fine-tuning of objective functions. Two key objectives were selected: Exergy Round Trip Efficiency and cost rate, aimed at improving technical performance and curbing economic expenditure. A range of design variables were considered for optimization, including turbine and pump inlet temperatures, geothermal mass flow rate, turbine and pump efficiencies, compressor and gas turbine efficiency, inlet pressure to the compressed air energy storage tank, and evaporator pinch point temperature. The system reached an impressive exergy efficiency peak of 77.98 %, accompanied by a modest cost rate of 5.48 $/h. The costliest components in the system were the compressed air energy storage unit, followed closely by organic Rankine cycle 1 and organic Rankine cycle 2. In contemplating the practical implementation of this innovative energy system, ten cities in Denmark underwent rigorous analysis, accounting for technical and economic factors. Subsequent assessments identified Aarhus as the optimal location to initiate the system. The environmental results showed that by producing 13981.9 MW of electricity annually in Arhus City, it is possible to help reduce CO2 emissions by 2853.2 tons of CO2/year and avoid environmental costs of 68455.3 $/year. The environmental assessment also highlighted the potential for substantial green space expansion, estimating an additional 13 ha of green areas in the city of Aarhus, Denmark.
Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2024License: CC BY NC NDFull-Text: https://iris.uniroma1.it/bitstream/11573/1727876/1/Assareh_The-performance-analysis_2024.pdfData sources: Archivio della ricerca- Università di Roma La SapienzaCase Studies in Thermal EngineeringArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2024.105448&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2024License: CC BY NC NDFull-Text: https://iris.uniroma1.it/bitstream/11573/1727876/1/Assareh_The-performance-analysis_2024.pdfData sources: Archivio della ricerca- Università di Roma La SapienzaCase Studies in Thermal EngineeringArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2024.105448&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:European Center of Sustainable Development Authors: Adam Nadolny; Hassan Bazazzadeh; Seyedeh Sara Hashemi Safaei;The growth of urban population as the result of economic and industrial development has changed our place of living from a prosperous place to where the resources are carelessly consumed. On the other hand, long-term climate change, i.e. global warming, has had adverse impact on our resources. Certain resources are on the verge of depletion as the consequence of climate change and inconsiderate consumption of resources, unless serious measures are implemented immediately. The building sector, whose share in the municipal energy consumption is considerably high, is a key player that may successfully solve the problem. This paper aims to study the effects of climate change on the energy consumption of buildings and analyze its magnitude to increase the awareness of how construction can reduce the overall global energy consumption. A descriptive-analytical method has been applied to analyze valid models of energy consumption according to different scenarios and to interpret the conditions underlying current and future energy consumption of buildings. The results clearly show that the energy consumption in the building sector increasingly depends on the cooling demand. With that being said, we can expect the reduction of overall energy consumption of buildings in regions with high heating demands, whereas rising the energy consumption in buildings is expected in regions with high cooling demand. To conclude, the long-term climate change (e.g. global warming) underlies the increased energy consumption for the cooling demand whose share in total energy consumption of buildings much outweighs the heating demand. Therefore, to conserve our resources, urban energy planning and management should focus on working up a proper framework of guidelines on how to mitigate the cooling loads in the energy consumption patterns of buildings.
European Journal of ... arrow_drop_down European Journal of Sustainable DevelopmentArticle . 2021 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14207/ejsd.2021.v10n2p1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert European Journal of ... arrow_drop_down European Journal of Sustainable DevelopmentArticle . 2021 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14207/ejsd.2021.v10n2p1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Ehsanolah Assareh; Mohammad Zoghi; Ali Zare; Hassan Bazazzadeh; Adnan Alboghobeysh; Saleh Mobayen; Nima Izadyar; Siamak Hoseinzadeh;This research investigates the design and optimization of energy consumption for a five-story residential building in Copenhagen, Denmark, comprising ten units of 100 square meters each. The primary objective is to achieve the Zero Energy Building (ZEB) standard. Utilizing BEopt software for simulation and optimization, the study found that the building's annual electricity consumption is approximately 2789,416 kWh.A crucial aspect of energy analysis is the building's orientation. As energy optimization becomes increasingly vital, this research not only focuses on enhancing the building's energy system but also evaluates the optimal directional placement of the structure. The analysis revealed that the south-facing orientation results in the lowest cooling energy consumption at 90,511 kWh, while the east side records the least heating energy consumption at approximately 2133,357 kWh.To fulfill the building's energy requirements, a renewable geothermal energy system was proposed, capable of generating electricity, cooling, and heating. This proposed co-generation system incorporates a modified Organic Rankine Cycle (ORC) equipped with an ejector and preheater for electricity generation, utilizing waste heat for cooling and heating purposes. Modeling was conducted using the widely recognized EES software, while system optimization employed a combination of neural networks and intelligent optimization algorithms. The optimized configuration achieved an exergy efficiency of 63.79 % and a cost rate of $57.82 per hour. Economic analysis indicated that the heat recovery steam generator (HRVG) incurs the highest cost rate at $20.06 per hour. Additionally, a feasibility study incorporating Copenhagen's climate data demonstrated that the system could produce 10,465,920 kWh of electricity, 6340,320 kWh of cooling, and 7160,992 kWh of heating annually. The findings confirm that the geothermal system can adequately meet the energy demands of the five-story residential building throughout in one year.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rineng.2025.104873&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rineng.2025.104873&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:MDPI AG Mohammad Adibhesami; Hirou Karimi; Ayyoob Sharifi; Borhan Sepehri; Hassan Bazazzadeh; Umberto Berardi;doi: 10.3390/en16010119
handle: 11589/262615
Sustainable energy strategies have been a critical subject for sustainable development, especially in cities. Citizens, as an integral part of the urban environment, play a significant role in urban spaces, as does their health. An accurate understanding of citizens’ mental, social, and physical health in urban settings is required to design and plan better cities. This study aims to assess the level of alignment with health factors in Mahabad, a major medium-sized city in Iran. Previous studies indicate that the built environment can influence health dimensions. Health factors depend to a great extent on how well the environment is formed and how it is put together. This research is a descriptive, analytical, cross-sectional study that analyzes the environment’s psychological elements and physical and mental health factors of Mahabad’s citizens. According to the Cochran model, 384 questionnaires were distributed among households. For data analysis, SPSS 12 and Arc GIS software were used. The main results of this research show that five factors, “Environmental quality”, “Identity and social relationships”, and “Readability”, have the most impact on the physical and mental health of citizens (respondents). These issues are much more pronounced in the downtown neighborhoods. This study showed that urban experts can understand different levels of public health by knowing the historical, social, cultural, and economic factors and characteristics. The result will help decision makers, city authorities, designers, and urban planners to be more informed about citizens’ health and the ways to improve it.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/1/119/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio Istituzionale della Ricerca - Politecnico di BariArticle . 2023add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/1/119/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio Istituzionale della Ricerca - Politecnico di BariArticle . 2023add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Hassan Bazazzadeh; Barbara Świt-Jankowska; Nasim Fazeli; Adam Nadolny; Behnaz Safar ali najar; Seyedeh sara Hashemi safaei; Mohammadjavad Mahdavinejad;doi: 10.3390/en14248272
(1) Background: considering multiple, and somehow conflicting, design objectives can potentially make achieving a high-performance design a complex task to perform. For instance, shading devices can dramatically affect the building performance in various ways, such as energy consumption and daylight. This paper introduces a novel procedure for designing shading devices as an integral part of daylightophil architecture for office buildings by considering daylight and energy performance as objectives to be optimal. (2) Methods: to address the topic, a three-step research method was used. Firstly, three different window shades (fixed and dynamic) were modeled, one of which was inspired by traditional Iranian structures, as the main options for evaluation. Secondly, each option was evaluated for energy performance and daylight-related variables in critical days throughout the year in terms of climatic conditions and daylight situations (equinoxes and solstices including 20 March, 21 June, 22 September, and 21 December). Finally, to achieve a reliable result, apart from the results of the comparison of three options, all possible options for fixed and dynamic shades were analyzed through a multi-objective optimization to compare fixed and dynamic options and to find the optimal condition for dynamic options at different times of the day. (3) Results: through different stages of analysis, the findings suggest that, firstly, dynamic shading devices are more efficient than fixed shading devices in terms of energy efficiency, occupants’ visual comfort, and efficient use of daylight (roughly 10%). Moreover, through analyzing dynamic shading devices in different seasons and different times of the year, the optimal form of this shading device was determined. The results indicate that considering proper shading devices can have a significant improvement on achieving high-performance architecture in office buildings. This implies good potential for daylightophil architecture, but would require further studies to be confirmed as a principle for designing office buildings.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/24/8272/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248272&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/24/8272/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248272&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Switzerland, ItalyPublisher:Elsevier BV Authors: Mohammadjavad Mahdavinejad; Hassan Bazazzadeh; Fatemeh Mehrvarz; Umberto Berardi; +3 AuthorsMohammadjavad Mahdavinejad; Hassan Bazazzadeh; Fatemeh Mehrvarz; Umberto Berardi; Tahereh Nasr; Somayeh Pourbagher; Siamak Hoseinzadeh;handle: 11589/267726
In recent years, there has been a heightened emphasis improving visual comfort and energy efficiency. Various solutions have been explored to achieve high-performance design. Shading devices play a crucial role in enhancing building performance by redusing solar gains, excessive daylight, and improving both energy efficiency and occupants' visual comfort. This research aims to investigate the effect of facade geometry on visual comfort and energy consumption in four different climates of Iran and categorize each variable based on effectiveness for each location. Parametric office modeling was done by using Grasshopper and Rhino software. Then, the effect of the facade on the interior lighting and energy consumption was analyzed by Radiance, Daysim, and EnergyPlus calculation engines. The Non-Dominated Sorting Genetic Algorithm (NSGA-II) was selected to optimize solutions, minimize energy consumption, maximize useful daylight illuminance, and view quality. In addition, the methodology was used to explore the framework for optimizing office facade design in Iran's diverse climatic zones. The simulation results indicate that window-to-wall ratio and inclined wall were essential for balancing daylighting performance and energy consumption. This research stated that using a self-shading design could increase the quality of view up to 75% while reducing energy consumption and the risk of glare. Results proposed a design framework to improve visual comfort and save energy. The rotating façade's wall 10°-30° reduced cooling energy demand and energy usage intensity in selected models. So, an inclined wall could be an efficient shading device to improve building's performance in Iran.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2023.11.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2023.11.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Hassan Bazazzadeh; Adam Nadolny; Koorosh Attarian; Behnaz Safar ali najar; Seyedeh sara Hashemi safaei;doi: 10.3390/su12125109
The role of the cultural assets as one of the pillars of sustainable development is undeniably of great significance in the cultural sustainability of cities. Indeed, the way users understand and interpret cultural heritage sites would be highly critical to managing cultural organizations properly. It means by improving users’ perception of these sites, it can expect a fair distribution of comprehensive awareness among generations about the values of cultural assets. Past studies in spatial psychology have demonstrated that environmental properties can positively Influence human emotions. On the other hand, using computational–mathematical methods used to examine spatio-visual properties have rarely been compared to human perceptions. This paper examines the impact of spatio-visual properties on human perception as a clever cultural management strategy to promote cultural sustainability. It is discussed how environmental features in general, and visibility in particular, can shape the way users interpret cultural heritage. Results indicate that not only visibility of users’ paths within cultural heritage sites can be an influential factor for the development of users’ perception, but also the visibility of the entrance of these complexes can change their understanding. This means that decision-makers, architects, and managers of the cultural organizations can apply these findings as cultural management framework by defining predefined paths in these sites in the way that they possess high visibility and visible entrance. Consequently, the distribution of public awareness among generations can be improved to strengthen the role of cultural aspects in sustainable development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12125109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12125109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Hirou Karimi; Mohammad Anvar Adibhesami; Hassan Bazazzadeh; Sahar Movafagh;doi: 10.3390/en16093681
The rapid growth of the global population and urbanization has led to environmental degradation, resulting in a worldwide energy crisis. In response, the quality of architecture has evolved to prioritize energy efficiency, impacting indoor human health in the process. Green buildings have emerged as a solution to this problem, aiming to improve indoor environmental quality (IEQ) and human well-being while minimizing negative environmental impacts. This comprehensive review focuses on the role of green buildings in enhancing indoor human health and energy efficiency. It examines the published research on the effects of green buildings on IEQ and occupant health, highlighting sustainable architectural practices that promote good health. The study concludes that green buildings provide healthier environments for their occupants by creating healthy indoor environments, and minimizing negative environmental impacts. The study also explores the link between sustainable architecture and health promotion, with a focus on IEQ. It presents evidence-based and biophilic design strategies that can impact treatments and health promotion in the built environment. Overall, this review emphasizes the critical role that green buildings can play in addressing the global energy crisis while promoting the health and well-being of building occupants.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16093681&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16093681&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Raziyeh Rezadoost Dezfuli; Mohammad Mehrakizadeh; Behnaz Safar Ali Najar; Hassan Bazazzadeh; +1 AuthorsRaziyeh Rezadoost Dezfuli; Mohammad Mehrakizadeh; Behnaz Safar Ali Najar; Hassan Bazazzadeh; Mohammadjavad Mahdavinejad;Due to the importance of the historical context of Dezful City, investigating historic buildings is necessary. But unfortunately, a large part of it is being destroyed. For this reason, it is essential to discover the guidelines and logic behind the architectural design of these buildings to help their reconstruction or restoration. Regrettably, there is no logical information about the components of this context and the reconstructions are usually done according to taste and based on architecture tested or personal preference. Therefore, it is necessary to find a logic behind these critical components that support the whole plan or parts of it in a particular style. The purpose of this research is to discover and find the logic behind the design of this building in the historical context of Dezful. Finding geometrical proportions can significantly help to reconstruct buildings better and more accurately. For this purpose, 30 historical houses of Dezful were randomly selected, and their input information was drawn in 2D form in AutoCAD. Then, the length, width, and height proportions were measured, and the obtained ratios were compared with the golden proportions and dynamic rectangles. This paper studies entrance based on ratios of 2, 3, 4, 5, 1.25 and φ (the golden section). The results show that golden proportions and proportions derived from dynamic rectangles are present in the wording of all cases. Moreover, the range of ratios in the plan is from 1.34 to 2, and the content of changes in the section is from 1.22 to 2. The results can help architects, and particularly building owners, to reconstruct based on existing logic by discovering the proportions of the entrances of the houses. It is possible to administer a part of the damaged tissue and estimate its dimensions and sizes because the proportions' completeness can help revive half-destroyed historical buildings.
Frontiers of Archite... arrow_drop_down Frontiers of Architectural ResearchArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foar.2023.09.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Frontiers of Archite... arrow_drop_down Frontiers of Architectural ResearchArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foar.2023.09.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Funded by:EC | RENergeticEC| RENergeticHassan Bazazzadeh; Peiman Pilechiha; Adam Nadolny; Mohammadjavad Mahdavinejad; Seyedeh sara Hashemi safaei;doi: 10.3390/en14144084
A substantial share of the building sector in global energy demand has attracted scholars to focus on the energy efficiency of the building sector. The building’s energy consumption has been projected to increase due to mass urbanization, high living comfort standards, and, more importantly, climate change. While climate change has potential impacts on the rate of energy consumption in buildings, several studies have shown that these impacts differ from one region to another. In response, this paper aimed to investigate the impact of climate change on the heating and cooling energy demands of buildings as influential variables in building energy consumption in the city of Poznan, Poland. In this sense, through the statistical downscaling method and considering the most recent Typical Meteorological Year (2004–2018) as the baseline, the future weather data for 2050 and 2080 of the city of Poznan were produced according to the HadCM3 and A2 GHG scenario. These generated files were then used to simulate the energy demands in 16 building prototypes of the ASHRAE 90.1 standard. The results indicate an average increase in cooling load and a decrease in heating load at 135% and 40%, respectively, by 2080. Due to the higher share of heating load, the total thermal load of the buildings decreased within the study period. Therefore, while the total thermal load is currently under the decrease, to avoid its rise in the future, serious measures should be taken to control the increased cooling demand and, consequently, thermal load and GHG emissions.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/14/4084/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 39 citations 39 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/14/4084/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:Elsevier BV Assareh E.; Hoseinzadeh S.; Karami A.; Bazazzadeh H.; Groppi D.; Astiaso Garcia D.;handle: 11573/1727876
This study focuses on modeling and optimizing a multifaceted geothermal-based energy production system within the context of Denmark. The primary objectives revolve around enhancing system efficiency and reducing operational costs. The system under investigation comprises geothermal components, an organic Rankine cycle, a compressed air energy storage facility, and an absorption chiller. The organic Rankine cycle operates using refrigerants R123 and ammonia, effectively converting thermal energy into electricity and thermal energy for various applications. Optimization was carried out employing the Response Surface Method in tandem with Design-Expert software, facilitating the fine-tuning of objective functions. Two key objectives were selected: Exergy Round Trip Efficiency and cost rate, aimed at improving technical performance and curbing economic expenditure. A range of design variables were considered for optimization, including turbine and pump inlet temperatures, geothermal mass flow rate, turbine and pump efficiencies, compressor and gas turbine efficiency, inlet pressure to the compressed air energy storage tank, and evaporator pinch point temperature. The system reached an impressive exergy efficiency peak of 77.98 %, accompanied by a modest cost rate of 5.48 $/h. The costliest components in the system were the compressed air energy storage unit, followed closely by organic Rankine cycle 1 and organic Rankine cycle 2. In contemplating the practical implementation of this innovative energy system, ten cities in Denmark underwent rigorous analysis, accounting for technical and economic factors. Subsequent assessments identified Aarhus as the optimal location to initiate the system. The environmental results showed that by producing 13981.9 MW of electricity annually in Arhus City, it is possible to help reduce CO2 emissions by 2853.2 tons of CO2/year and avoid environmental costs of 68455.3 $/year. The environmental assessment also highlighted the potential for substantial green space expansion, estimating an additional 13 ha of green areas in the city of Aarhus, Denmark.
Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2024License: CC BY NC NDFull-Text: https://iris.uniroma1.it/bitstream/11573/1727876/1/Assareh_The-performance-analysis_2024.pdfData sources: Archivio della ricerca- Università di Roma La SapienzaCase Studies in Thermal EngineeringArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2024.105448&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2024License: CC BY NC NDFull-Text: https://iris.uniroma1.it/bitstream/11573/1727876/1/Assareh_The-performance-analysis_2024.pdfData sources: Archivio della ricerca- Università di Roma La SapienzaCase Studies in Thermal EngineeringArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2024.105448&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:European Center of Sustainable Development Authors: Adam Nadolny; Hassan Bazazzadeh; Seyedeh Sara Hashemi Safaei;The growth of urban population as the result of economic and industrial development has changed our place of living from a prosperous place to where the resources are carelessly consumed. On the other hand, long-term climate change, i.e. global warming, has had adverse impact on our resources. Certain resources are on the verge of depletion as the consequence of climate change and inconsiderate consumption of resources, unless serious measures are implemented immediately. The building sector, whose share in the municipal energy consumption is considerably high, is a key player that may successfully solve the problem. This paper aims to study the effects of climate change on the energy consumption of buildings and analyze its magnitude to increase the awareness of how construction can reduce the overall global energy consumption. A descriptive-analytical method has been applied to analyze valid models of energy consumption according to different scenarios and to interpret the conditions underlying current and future energy consumption of buildings. The results clearly show that the energy consumption in the building sector increasingly depends on the cooling demand. With that being said, we can expect the reduction of overall energy consumption of buildings in regions with high heating demands, whereas rising the energy consumption in buildings is expected in regions with high cooling demand. To conclude, the long-term climate change (e.g. global warming) underlies the increased energy consumption for the cooling demand whose share in total energy consumption of buildings much outweighs the heating demand. Therefore, to conserve our resources, urban energy planning and management should focus on working up a proper framework of guidelines on how to mitigate the cooling loads in the energy consumption patterns of buildings.
European Journal of ... arrow_drop_down European Journal of Sustainable DevelopmentArticle . 2021 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14207/ejsd.2021.v10n2p1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert European Journal of ... arrow_drop_down European Journal of Sustainable DevelopmentArticle . 2021 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14207/ejsd.2021.v10n2p1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Ehsanolah Assareh; Mohammad Zoghi; Ali Zare; Hassan Bazazzadeh; Adnan Alboghobeysh; Saleh Mobayen; Nima Izadyar; Siamak Hoseinzadeh;This research investigates the design and optimization of energy consumption for a five-story residential building in Copenhagen, Denmark, comprising ten units of 100 square meters each. The primary objective is to achieve the Zero Energy Building (ZEB) standard. Utilizing BEopt software for simulation and optimization, the study found that the building's annual electricity consumption is approximately 2789,416 kWh.A crucial aspect of energy analysis is the building's orientation. As energy optimization becomes increasingly vital, this research not only focuses on enhancing the building's energy system but also evaluates the optimal directional placement of the structure. The analysis revealed that the south-facing orientation results in the lowest cooling energy consumption at 90,511 kWh, while the east side records the least heating energy consumption at approximately 2133,357 kWh.To fulfill the building's energy requirements, a renewable geothermal energy system was proposed, capable of generating electricity, cooling, and heating. This proposed co-generation system incorporates a modified Organic Rankine Cycle (ORC) equipped with an ejector and preheater for electricity generation, utilizing waste heat for cooling and heating purposes. Modeling was conducted using the widely recognized EES software, while system optimization employed a combination of neural networks and intelligent optimization algorithms. The optimized configuration achieved an exergy efficiency of 63.79 % and a cost rate of $57.82 per hour. Economic analysis indicated that the heat recovery steam generator (HRVG) incurs the highest cost rate at $20.06 per hour. Additionally, a feasibility study incorporating Copenhagen's climate data demonstrated that the system could produce 10,465,920 kWh of electricity, 6340,320 kWh of cooling, and 7160,992 kWh of heating annually. The findings confirm that the geothermal system can adequately meet the energy demands of the five-story residential building throughout in one year.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rineng.2025.104873&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rineng.2025.104873&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:MDPI AG Mohammad Adibhesami; Hirou Karimi; Ayyoob Sharifi; Borhan Sepehri; Hassan Bazazzadeh; Umberto Berardi;doi: 10.3390/en16010119
handle: 11589/262615
Sustainable energy strategies have been a critical subject for sustainable development, especially in cities. Citizens, as an integral part of the urban environment, play a significant role in urban spaces, as does their health. An accurate understanding of citizens’ mental, social, and physical health in urban settings is required to design and plan better cities. This study aims to assess the level of alignment with health factors in Mahabad, a major medium-sized city in Iran. Previous studies indicate that the built environment can influence health dimensions. Health factors depend to a great extent on how well the environment is formed and how it is put together. This research is a descriptive, analytical, cross-sectional study that analyzes the environment’s psychological elements and physical and mental health factors of Mahabad’s citizens. According to the Cochran model, 384 questionnaires were distributed among households. For data analysis, SPSS 12 and Arc GIS software were used. The main results of this research show that five factors, “Environmental quality”, “Identity and social relationships”, and “Readability”, have the most impact on the physical and mental health of citizens (respondents). These issues are much more pronounced in the downtown neighborhoods. This study showed that urban experts can understand different levels of public health by knowing the historical, social, cultural, and economic factors and characteristics. The result will help decision makers, city authorities, designers, and urban planners to be more informed about citizens’ health and the ways to improve it.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/1/119/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio Istituzionale della Ricerca - Politecnico di BariArticle . 2023add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/1/119/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio Istituzionale della Ricerca - Politecnico di BariArticle . 2023add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Hassan Bazazzadeh; Barbara Świt-Jankowska; Nasim Fazeli; Adam Nadolny; Behnaz Safar ali najar; Seyedeh sara Hashemi safaei; Mohammadjavad Mahdavinejad;doi: 10.3390/en14248272
(1) Background: considering multiple, and somehow conflicting, design objectives can potentially make achieving a high-performance design a complex task to perform. For instance, shading devices can dramatically affect the building performance in various ways, such as energy consumption and daylight. This paper introduces a novel procedure for designing shading devices as an integral part of daylightophil architecture for office buildings by considering daylight and energy performance as objectives to be optimal. (2) Methods: to address the topic, a three-step research method was used. Firstly, three different window shades (fixed and dynamic) were modeled, one of which was inspired by traditional Iranian structures, as the main options for evaluation. Secondly, each option was evaluated for energy performance and daylight-related variables in critical days throughout the year in terms of climatic conditions and daylight situations (equinoxes and solstices including 20 March, 21 June, 22 September, and 21 December). Finally, to achieve a reliable result, apart from the results of the comparison of three options, all possible options for fixed and dynamic shades were analyzed through a multi-objective optimization to compare fixed and dynamic options and to find the optimal condition for dynamic options at different times of the day. (3) Results: through different stages of analysis, the findings suggest that, firstly, dynamic shading devices are more efficient than fixed shading devices in terms of energy efficiency, occupants’ visual comfort, and efficient use of daylight (roughly 10%). Moreover, through analyzing dynamic shading devices in different seasons and different times of the year, the optimal form of this shading device was determined. The results indicate that considering proper shading devices can have a significant improvement on achieving high-performance architecture in office buildings. This implies good potential for daylightophil architecture, but would require further studies to be confirmed as a principle for designing office buildings.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/24/8272/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248272&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/24/8272/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248272&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Switzerland, ItalyPublisher:Elsevier BV Authors: Mohammadjavad Mahdavinejad; Hassan Bazazzadeh; Fatemeh Mehrvarz; Umberto Berardi; +3 AuthorsMohammadjavad Mahdavinejad; Hassan Bazazzadeh; Fatemeh Mehrvarz; Umberto Berardi; Tahereh Nasr; Somayeh Pourbagher; Siamak Hoseinzadeh;handle: 11589/267726
In recent years, there has been a heightened emphasis improving visual comfort and energy efficiency. Various solutions have been explored to achieve high-performance design. Shading devices play a crucial role in enhancing building performance by redusing solar gains, excessive daylight, and improving both energy efficiency and occupants' visual comfort. This research aims to investigate the effect of facade geometry on visual comfort and energy consumption in four different climates of Iran and categorize each variable based on effectiveness for each location. Parametric office modeling was done by using Grasshopper and Rhino software. Then, the effect of the facade on the interior lighting and energy consumption was analyzed by Radiance, Daysim, and EnergyPlus calculation engines. The Non-Dominated Sorting Genetic Algorithm (NSGA-II) was selected to optimize solutions, minimize energy consumption, maximize useful daylight illuminance, and view quality. In addition, the methodology was used to explore the framework for optimizing office facade design in Iran's diverse climatic zones. The simulation results indicate that window-to-wall ratio and inclined wall were essential for balancing daylighting performance and energy consumption. This research stated that using a self-shading design could increase the quality of view up to 75% while reducing energy consumption and the risk of glare. Results proposed a design framework to improve visual comfort and save energy. The rotating façade's wall 10°-30° reduced cooling energy demand and energy usage intensity in selected models. So, an inclined wall could be an efficient shading device to improve building's performance in Iran.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2023.11.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2023.11.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Hassan Bazazzadeh; Adam Nadolny; Koorosh Attarian; Behnaz Safar ali najar; Seyedeh sara Hashemi safaei;doi: 10.3390/su12125109
The role of the cultural assets as one of the pillars of sustainable development is undeniably of great significance in the cultural sustainability of cities. Indeed, the way users understand and interpret cultural heritage sites would be highly critical to managing cultural organizations properly. It means by improving users’ perception of these sites, it can expect a fair distribution of comprehensive awareness among generations about the values of cultural assets. Past studies in spatial psychology have demonstrated that environmental properties can positively Influence human emotions. On the other hand, using computational–mathematical methods used to examine spatio-visual properties have rarely been compared to human perceptions. This paper examines the impact of spatio-visual properties on human perception as a clever cultural management strategy to promote cultural sustainability. It is discussed how environmental features in general, and visibility in particular, can shape the way users interpret cultural heritage. Results indicate that not only visibility of users’ paths within cultural heritage sites can be an influential factor for the development of users’ perception, but also the visibility of the entrance of these complexes can change their understanding. This means that decision-makers, architects, and managers of the cultural organizations can apply these findings as cultural management framework by defining predefined paths in these sites in the way that they possess high visibility and visible entrance. Consequently, the distribution of public awareness among generations can be improved to strengthen the role of cultural aspects in sustainable development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12125109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12125109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Hirou Karimi; Mohammad Anvar Adibhesami; Hassan Bazazzadeh; Sahar Movafagh;doi: 10.3390/en16093681
The rapid growth of the global population and urbanization has led to environmental degradation, resulting in a worldwide energy crisis. In response, the quality of architecture has evolved to prioritize energy efficiency, impacting indoor human health in the process. Green buildings have emerged as a solution to this problem, aiming to improve indoor environmental quality (IEQ) and human well-being while minimizing negative environmental impacts. This comprehensive review focuses on the role of green buildings in enhancing indoor human health and energy efficiency. It examines the published research on the effects of green buildings on IEQ and occupant health, highlighting sustainable architectural practices that promote good health. The study concludes that green buildings provide healthier environments for their occupants by creating healthy indoor environments, and minimizing negative environmental impacts. The study also explores the link between sustainable architecture and health promotion, with a focus on IEQ. It presents evidence-based and biophilic design strategies that can impact treatments and health promotion in the built environment. Overall, this review emphasizes the critical role that green buildings can play in addressing the global energy crisis while promoting the health and well-being of building occupants.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16093681&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16093681&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Raziyeh Rezadoost Dezfuli; Mohammad Mehrakizadeh; Behnaz Safar Ali Najar; Hassan Bazazzadeh; +1 AuthorsRaziyeh Rezadoost Dezfuli; Mohammad Mehrakizadeh; Behnaz Safar Ali Najar; Hassan Bazazzadeh; Mohammadjavad Mahdavinejad;Due to the importance of the historical context of Dezful City, investigating historic buildings is necessary. But unfortunately, a large part of it is being destroyed. For this reason, it is essential to discover the guidelines and logic behind the architectural design of these buildings to help their reconstruction or restoration. Regrettably, there is no logical information about the components of this context and the reconstructions are usually done according to taste and based on architecture tested or personal preference. Therefore, it is necessary to find a logic behind these critical components that support the whole plan or parts of it in a particular style. The purpose of this research is to discover and find the logic behind the design of this building in the historical context of Dezful. Finding geometrical proportions can significantly help to reconstruct buildings better and more accurately. For this purpose, 30 historical houses of Dezful were randomly selected, and their input information was drawn in 2D form in AutoCAD. Then, the length, width, and height proportions were measured, and the obtained ratios were compared with the golden proportions and dynamic rectangles. This paper studies entrance based on ratios of 2, 3, 4, 5, 1.25 and φ (the golden section). The results show that golden proportions and proportions derived from dynamic rectangles are present in the wording of all cases. Moreover, the range of ratios in the plan is from 1.34 to 2, and the content of changes in the section is from 1.22 to 2. The results can help architects, and particularly building owners, to reconstruct based on existing logic by discovering the proportions of the entrances of the houses. It is possible to administer a part of the damaged tissue and estimate its dimensions and sizes because the proportions' completeness can help revive half-destroyed historical buildings.
Frontiers of Archite... arrow_drop_down Frontiers of Architectural ResearchArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foar.2023.09.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Frontiers of Archite... arrow_drop_down Frontiers of Architectural ResearchArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foar.2023.09.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu