- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018 Italy, FrancePublisher:Frontiers Media SA Martha M. Yeshanew; Martha M. Yeshanew; Florian Paillet; Carole Barrau;Luigi Frunzo;
Luigi Frunzo
Luigi Frunzo in OpenAIREPiet N. L. Lens;
Piet N. L. Lens
Piet N. L. Lens in OpenAIREGiovanni Esposito;
Giovanni Esposito
Giovanni Esposito in OpenAIRERenaud Escudie;
Renaud Escudie
Renaud Escudie in OpenAIREEric Trably;
Eric Trably
Eric Trably in OpenAIREhandle: 11588/741700
The co-production of biohydrogen and methane from the organic fraction of municipal solid waste was investigated using a two-stage AD system, composed of a pilot scale dark fermenter (DF) and a continuous methanogenic biofilm reactor. From the DF process, a biohydrogen yield of 41.7 (+/- 2.3) ml H-2/gVS(added) was achieved. The liquid DF effluent (DFE) was rich in short chain volatile fatty acids, i.e., mainly acetic and butyric acid. The DFE was valorized by producing methane in the methanogenic biofilm reactor. Two methanogenic biofilm reactors were used to assess the biotic and abiotic role of the DFE on the performance of the reactors. Regardless of the different DFE feeding (i.e., biotic and abiotic), similar and stable operational performance of the two methanogenic biofilm reactors were observed with a respective methane yield and COD removal efficiency of 280-300 ml CH4/gCOD(removed) and 80-90%. Both methanogenic biofilm reactors showed significant resistance toward organic shock loads and recovered fast after reactor disturbance. The total estimated energy recovered in the form of hydrogen and methane gas was, respectively, 28 and 72%, of the initial COD.
Frontiers in Environ... arrow_drop_down Hyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02619976/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02619976/documentInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02619976Data sources: Bielefeld Academic Search Engine (BASE)Frontiers in Environmental ScienceArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2018.00041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Environ... arrow_drop_down Hyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02619976/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02619976/documentInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02619976Data sources: Bielefeld Academic Search Engine (BASE)Frontiers in Environmental ScienceArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2018.00041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2021 ItalyAuthors:Stefano Papirio;
Stefano Papirio
Stefano Papirio in OpenAIRESilvio Matassa;
Giuseppe d'Antonio;Silvio Matassa
Silvio Matassa in OpenAIREGiovanni Esposito;
+1 AuthorsGiovanni Esposito
Giovanni Esposito in OpenAIREStefano Papirio;
Stefano Papirio
Stefano Papirio in OpenAIRESilvio Matassa;
Giuseppe d'Antonio;Silvio Matassa
Silvio Matassa in OpenAIREGiovanni Esposito;
Giovanni Esposito
Giovanni Esposito in OpenAIREFrancesco Pirozzi;
Francesco Pirozzi
Francesco Pirozzi in OpenAIREhandle: 11588/856250
Among agricultural residues, lignocellulosic materials (LMs) are highly attractive substrates for anaerobic digestion (AD), given their high availability, low cost and no direct competition with food and feed production. Hemp (Cannabis sativa L.) is a multipurpose crop, and its cultivation has boosted again in the last years. Nevertheless, due to contrasting legislation, in some European Countries the harvesting and manufacturing of plant components (e.g. leaves and inflorescences) has stopped, resulting in a massive amount of lignocellulosic biomass to be diversely disposed. This research explores the valorization of hemp biomass (whole stalk, bast fiber, decorticated hurds, and a mixture of leaves and inflorescences) by AD, as a first major step for the establishment of a wider, future biorefinery platform. Both physical (grinding) and chemical (acid and alkali) pretreatments have been investigated to break down the lignocellulosic matrix of different hemp biomass components. Their biomethane yield has been then evaluated through batch biochemical methane potential (BMP) tests performed in 100 mL serum bottles under controlled mesophilic (37°C) conditions for 45 days. The highest cumulative biomethane production (422 mL CH4/g VS) was obtained with the raw bast fiber, while the BMP of the raw whole stalk and decorticated hurds reached 271 and 240 mL CH4/g VS, respectively. The alkali pretreatment with NaOH increased the BMP of the hurds by 15% obtaining a final biomethane yield of 277 mL CH4/g VS. The mixture of leaves and inflorescences resulted in the lowest BMP values, with the NaOH-pretreated material reaching approximately 150 mL CH4/g VS.
Archivio della ricer... arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2021Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11588/856250&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2021Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11588/856250&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Elsevier BV Authors: Javkhlan Ariunbaatar; Javkhlan Ariunbaatar;Francesco Pirozzi;
Francesco Pirozzi
Francesco Pirozzi in OpenAIREGiovanni Esposito;
+2 AuthorsGiovanni Esposito
Giovanni Esposito in OpenAIREJavkhlan Ariunbaatar; Javkhlan Ariunbaatar;Francesco Pirozzi;
Francesco Pirozzi
Francesco Pirozzi in OpenAIREGiovanni Esposito;
Giovanni Esposito
Giovanni Esposito in OpenAIREAntonio Panico;
Antonio Panico
Antonio Panico in OpenAIREPiet N.L. Lens;
Piet N.L. Lens
Piet N.L. Lens in OpenAIREhandle: 11588/576839 , 11591/442371 , 11580/36542
This paper reviews pretreatment techniques to enhance the anaerobic digestion of organic solid waste, including mechanical, thermal, chemical and biological methods. The effects of various pretreatment methods are discussed independently and in combination. Pretreatment methods are compared in terms of their efficiency, energy balance, environmental sustainability as well as capital, operational and maintenance costs. Based on the comparison, thermal pretreatment at low (<110 C) temperatures and twostage anaerobic digestion methods result in a more cost-effective process performance as compared to other pretreatment methods.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.02.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 736 citations 736 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.02.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Funded by:MIUR, EC | BioRECO2VERMIUR ,EC| BioRECO2VERAuthors:Piet N.L. Lens;
Piet N.L. Lens
Piet N.L. Lens in OpenAIREAngelo Fontana;
Laura Dipasquale;Angelo Fontana
Angelo Fontana in OpenAIRENirakar Pradhan;
+4 AuthorsNirakar Pradhan
Nirakar Pradhan in OpenAIREPiet N.L. Lens;
Piet N.L. Lens
Piet N.L. Lens in OpenAIREAngelo Fontana;
Laura Dipasquale;Angelo Fontana
Angelo Fontana in OpenAIRENirakar Pradhan;
Nirakar Pradhan; Antonio Panico;Nirakar Pradhan
Nirakar Pradhan in OpenAIREGiovanni Esposito;
Giovanni Esposito
Giovanni Esposito in OpenAIREGiuliana d'Ippolito;
Giuliana d'Ippolito
Giuliana d'Ippolito in OpenAIREThis study investigated the effect of the salinity level, buffering agent and carbon source on the hydrogen (H2) and lactic acid synthesis under capnophilic (CO2-assisted) lactic fermentation (CLF) by Thermotoga neapolitana cf capnolactica (DSM 33003). Several series of batch fermentation experiments were performed either in 0.12 L serum bottles for selection of the best performing conditions or in a 3 L fermenter for the best possible combination of conditions. The serum bottle study revealed that change in the salinity level of the culture medium from 0 to 35 g L−1 NaCl increased lactic acid synthesis by 7.5 times without affecting the H2 yield. Use of different buffers (MOPS, TRIS or HEPES) did not affect the average H2 yield of 3.0 ± 0.24 mol H2 mol−1 of glucose and lactic acid synthesis of 13.7 ± 1.03mM when the cultures were sparged by CO2. Among the carbon sources investigated, glucose was found to be the best performing carbon source for the CLF fermentation with 35 g L−1 of NaCl and 0.01M of phosphate buffer. Hence, an up-scale experiment using a 3 L fermenter and the combination of the best performing conditions showed a 2.2 times more lactic acid synthesis compared to the 0.12 L serum bottle experiments. The study reveals the robustness and flexibility of the CLF-based technology using T. neapolitana cf capnolactica fermentation under various operating environmental conditions.
IRIS Cnr arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2019Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2019.04.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 11 Powered bymore_vert IRIS Cnr arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2019Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2019.04.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Iannacone, Francesca; Di Capua, Francesco; Granata, Francesco; Gargano, Rudy;Esposito, Giovanni;
Esposito, Giovanni
Esposito, Giovanni in OpenAIREpmid: 33756183
handle: 11588/990992 , 11580/89205 , 11563/161169
This study investigated the feasibility of coupling simultaneous partial nitrification and denitrification (SPND) to biological phosphorus removal in continuous-flow intermittently-aerated moving bed biofilm reactors (MBBRs) fed with different carbon sources, i.e. ethanol and acetate. Bacterial cultivation at pH 8.2 (±0.2), 26-28 °C and SRT of 4 day and microaerobic/aerobic MBBR operation allowed to achieve average dissolved organic carbon (DOC), total inorganic nitrogen (TIN) and P-PO43- removal efficiencies (REs) of 100%, 81-88% and 83-86% at HRT of 1 day, dissolved oxygen (DO) range of 0.2-3 mg L-1 and feed C/N and C/P ratios of 3.6 and 11, respectively. Acetate supplementation favored a diversified microbial community, while overgrowth of heterotrophs was observed when increasing feed C/N ratio in ethanol-fed MBBR. Illumina sequencing displayed the presence of putative phosphorus accumulating organisms (PAOs) such as Hydrogenophaga and Pseudomonas in MBBR biofilm and suspended biomass, whereas no typical NOB was identified during the study.
Archivio della ricer... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2021.124958&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu89 citations 89 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2021.124958&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 ItalyPublisher:Elsevier BV Authors:Piet N.L. Lens;
Piet N.L. Lens
Piet N.L. Lens in OpenAIREFrancesco Pirozzi;
Francesco Pirozzi
Francesco Pirozzi in OpenAIRELuigi Frunzo;
Luigi Frunzo
Luigi Frunzo in OpenAIREGiovanni Esposito;
+2 AuthorsGiovanni Esposito
Giovanni Esposito in OpenAIREPiet N.L. Lens;
Piet N.L. Lens
Piet N.L. Lens in OpenAIREFrancesco Pirozzi;
Francesco Pirozzi
Francesco Pirozzi in OpenAIRELuigi Frunzo;
Luigi Frunzo
Luigi Frunzo in OpenAIREGiovanni Esposito;
Martha Minale Yeshanew; Martha Minale Yeshanew;Giovanni Esposito
Giovanni Esposito in OpenAIREThe continuous production of biohythane (mixture of biohydrogen and methane) from food waste using an integrated system of a continuously stirred tank reactor (CSTR) and anaerobic fixed bed reactor (AFBR) was carried out in this study. The system performance was evaluated for an operation period of 200days, by stepwise shortening the hydraulic retention time (HRT). An increasing trend of biohydrogen in the CSTR and methane production rate in the AFBR was observed regardless of the HRT shortening. The highest biohydrogen yield in the CSTR and methane yield in the AFBR were 115.2 (±5.3)L H2/kgVSadded and 334.7 (±18.6)L CH4/kgCODadded, respectively. The AFBR presented a stable operation and excellent performance, indicated by the increased methane production rate at each shortened HRT. Besides, recirculation of the AFBR effluent to the CSTR was effective in providing alkalinity, maintaining the pH in optimal ranges (5.0-5.3) for the hydrogen producing bacteria.
Archivio della ricer... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2016.08.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 114 citations 114 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2016.08.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Authors:Moscariello, Carlo;
Moscariello, Carlo
Moscariello, Carlo in OpenAIREMatassa, Silvio;
Matassa, Silvio
Matassa, Silvio in OpenAIREEsposito, Giovanni;
Esposito, Giovanni
Esposito, Giovanni in OpenAIREPapirio, Stefano;
Papirio, Stefano
Papirio, Stefano in OpenAIREhandle: 11588/856633
Abstract In the emerging context of circular bioeconomy, industrial hemp (Cannabis Sativa L.) biomass is a valuable resource for the sustainable implementation of second-generation biorefineries. Potentially, all the main hemp components can find application within different biorefinery approaches, adding value to the conventional production of hemp fibres and seeds. Hurds, leaves and inflorescences, constituting most of the hemp plant biomass, and often considered as low-value residues, can indeed play a key role in the sustainable production of both bioenergy and high-value bioproducts. The present article reviews the advances and outlines the potential future perspectives of hemp-based biorefineries. After critically overviewing some of the most established applications of hemp, spanning from soil bioremediation to bioenergy and biofuel production, particular attention is given to novel valorisation schemes to synthetize highly demanded bioproducts such as microbial protein and biopolymers. Our preliminary calculations show that hemp biomass can sustain high biodiesel yield (1.6 g/g VS (volatile solids)) and related revenues (510–868 €/ha•year), while bioethanol production can yield 0.10–0.33 mL/g VS, profiting between 75–325 €/ha•year. Moreover, hemp suits biomethane production by yielding and profiting 98–426 mL/g VS and 60–380 €/ha•year, respectively. High yields of polyhydroxybutyrate (0.13 g/g VS) can be obtained, albeit high production costs might restrain their marketability. Finally, the biomethane-to-microbial protein pathway can yield and profit 0.03–0.15 g/g VS and 141–893 €/ha•year, respectively, while the volatile fatty acids-to-microbial protein pathway 0.04 g/g VS and 91–362 €/ha•year.
Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2021.105864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2021.105864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Italy, FrancePublisher:Springer Science and Business Media LLC Authors:Mattei, M R;
Mattei, M R
Mattei, M R in OpenAIREFrunzo, L;
D'Acunto, B;Frunzo, L
Frunzo, L in OpenAIREPechaud, Y;
+2 AuthorsPechaud, Y
Pechaud, Y in OpenAIREMattei, M R;
Mattei, M R
Mattei, M R in OpenAIREFrunzo, L;
D'Acunto, B;Frunzo, L
Frunzo, L in OpenAIREPechaud, Y;
Pechaud, Y
Pechaud, Y in OpenAIREPirozzi, F;
Pirozzi, F
Pirozzi, F in OpenAIREEsposito, Giovanni;
Esposito, Giovanni
Esposito, Giovanni in OpenAIREThe scientific community has recognized that almost 99% of the microbial life on earth is represented by biofilms. Considering the impacts of their sessile lifestyle on both natural and human activities, extensive experimental activity has been carried out to understand how biofilms grow and interact with the environment. Many mathematical models have also been developed to simulate and elucidate the main processes characterizing the biofilm growth. Two main mathematical approaches for biomass representation can be distinguished: continuum and discrete. This review is aimed at exploring the main characteristics of each approach. Continuum models can simulate the biofilm processes in a quantitative and deterministic way. However, they require a multidimensional formulation to take into account the biofilm spatial heterogeneity, which makes the models quite complicated, requiring significant computational effort. Discrete models are more recent and can represent the typical multidimensional structural heterogeneity of biofilm reflecting the experimental expectations, but they generate computational results including elements of randomness and introduce stochastic effects into the solutions.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2018Data sources: INRIA a CCSD electronic archive serverJournal of Mathematical BiologyArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00285-017-1165-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu95 citations 95 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2018Data sources: INRIA a CCSD electronic archive serverJournal of Mathematical BiologyArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00285-017-1165-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Giuliana d'Ippolito;Giovanni Esposito;
Antonio Panico;Giovanni Esposito
Giovanni Esposito in OpenAIREPiet N.L. Lens;
+3 AuthorsPiet N.L. Lens
Piet N.L. Lens in OpenAIREGiuliana d'Ippolito;Giovanni Esposito;
Antonio Panico;Giovanni Esposito
Giovanni Esposito in OpenAIREPiet N.L. Lens;
Piet N.L. Lens
Piet N.L. Lens in OpenAIREAngelo Fontana;
Laura Dipasquale;Angelo Fontana
Angelo Fontana in OpenAIRENirakar Pradhan;
Nirakar Pradhan
Nirakar Pradhan in OpenAIREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2021.105999&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2021.105999&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 ItalyPublisher:Elsevier BV Authors:Esposito G.;
Esposito G.
Esposito G. in OpenAIREFRUNZO, LUIGI;
FRUNZO, LUIGI
FRUNZO, LUIGI in OpenAIREPanico A.;
Panico A.
Panico A. in OpenAIREPIROZZI, FRANCESCO;
PIROZZI, FRANCESCO
PIROZZI, FRANCESCO in OpenAIREhandle: 11588/388683 , 11591/442390 , 11580/14715
Abstract A dynamic mathematical model capable to predict the methane production in an anaerobic completely stirred tank reactor (CSTR), performing the co-digestion of the organic fraction of municipal solid waste (OFMSW) and sewage sludge, is used to assess the effect of the organic loading rate (OLR) and OFMSW particle size on the reactor performances. The model is based on the approach proposed by the IWA Anaerobic Digestion Model no. 1 (ADM1), which has been modified to take into account the peculiarities of a co-digestion process. The main distinctiveness of the proposed model consists in considering two separate influent substrates (i.e. sewage sludge and OFMSW), which are modelled with different biodegradation kinetics. The sewage sludge degradation is modelled according to the ADM1 while a surface based kinetics is used to simulate the OFMSW disintegration process, which depends on particle size distribution (PSD) of the solid waste to be disintegrated. The methane production of a full scale municipal wastewater treatment plant (MWWTP) digester has been evaluated to assess the model capability to estimate the potential energy production under different process conditions. In particular, a sensitivity analysis on two key operational parameters of the CSTR co-digestion process, i.e. OLR and OFMSW particle size, has been carried out. This analysis shows the model suitability to assess the combined effect of such parameters on the digester performances, predicting the process failure occurrence.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.procbio.2010.10.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu101 citations 101 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.procbio.2010.10.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu