Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mark Fielding; orcid Ian G. Enting;
    Ian G. Enting
    ORCID
    Harvested from ORCID Public Data File

    Ian G. Enting in OpenAIRE
    orcid David Etheridge;
    David Etheridge
    ORCID
    Harvested from ORCID Public Data File

    David Etheridge in OpenAIRE
    David Etheridge;

    Abstract A simple climate model is used to calculate the benefit, over time, of geosequestration of CO2 that would otherwise be released to the atmosphere. The analysis is performed relative to two reference cases. The first case is defined by a CO2 concentration profile leading to stabilisation at 500 ppm. The second case is defined by ‘business-as-usual’ (IS92a) CO2 emissions until 2100. The benefits are considered in terms of incremental change (per unit of displaced emission) in temperature and its rate of change, concentrating on the period to 2200. An automatic differentiation procedure has proved a convenient way of performing the calculations. The ‘temperature benefit’ of avoided carbon emission is found to be of order 1 mK/GtC on the time-scale of decades to centuries. This result is model-specific and would scale in proportion to the climate sensitivity of the model. Because of non-linearities in carbon-climate processes, the results have a small dependence (of order 10–20%) on the future emission scenario with a rather smaller contribution to uncertainty arising from model calibration uncertainties that reflect uncertainties in the 20th century carbon budget. Analysis over the longer term, to 2500, considers the effect of leakage of geologically stored CO2 to the atmosphere, and shows that even at 0.1% per annum leakage, about half the climate benefit remains after 500 years.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Greenhouse Gas Control
    Article . 2008 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    27
    citations27
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Greenhouse Gas Control
      Article . 2008 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid A BUSCH;
    A BUSCH
    ORCID
    Harvested from ORCID Public Data File

    A BUSCH in OpenAIRE
    M KUHN; orcid D ETHERIDGE;
    D ETHERIDGE
    ORCID
    Harvested from ORCID Public Data File

    D ETHERIDGE in OpenAIRE
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Greenhouse Gas Control
    Article . 2008 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Greenhouse Gas Control
      Article . 2008 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Ashok K. Luhar;
    Ashok K. Luhar
    ORCID
    Harvested from ORCID Public Data File

    Ashok K. Luhar in OpenAIRE
    orcid Bronwyn Dunse;
    Bronwyn Dunse
    ORCID
    Harvested from ORCID Public Data File

    Bronwyn Dunse in OpenAIRE
    orcid David Etheridge;
    David Etheridge
    ORCID
    Harvested from ORCID Public Data File

    David Etheridge in OpenAIRE
    David Etheridge; +2 Authors

    Abstract The paper describes various techniques for measuring emissions to the atmosphere from geologically stored carbon dioxide, from point, line and area sources at scales of metres to several kilometres. Flux chambers are suitable for measuring small leakage rates from sources at known locations but many samples are required because of large spatial heterogeneity in the fluxes. Micrometeorological eddy covariance, relaxed eddy accumulation and flux-gradient techniques are suitable for measuring leakage from large area sources, while integrated horizontal mass balance, tracer methods and plume dispersion approaches are applicable for line and point sources. Distinguishing between leakage signals and natural fluctuations in CO2 concentrations due to biogenic sources pose significant challenges and the use of naturally occurring tracers such as CO2 isotopologues or introduced tracers such as SF6 added to the sequestered CO2 will assist with this problem. Forward Lagrangian dispersion calculations showed that CO2 concentrations 0–80 m downwind of a point source would be readily detectable above all natural variations for point sources >0.3 g CO2 s−1 (about 10 tonnes of CO2 per year). The inverse problem involves solving for the unknown emission rate from measured wind fields and down wind concentration perturbations. An optimum monitoring strategy for inverse analysis will require continuous measurements of CO2 and tracer compounds upwind and downwind of the possible leak location, coupled with transport modelling to determine leakage fluxes, and to differentiate them from other sources. Computations using The air pollution model (TAPM) showed that expected perturbations in CO2 concentrations at distances of several hundred metres from a leak of 32 g CO2 s−1 (about 1000 tonnes CO2 per year, or about 0.01% per year of a typical amount to be stored) will be detectable, but this anomaly will be very small compared to natural variations, thereby complicating the inverse analysis. While the techniques canvassed here have proven successful for measuring fluxes in other applications, none has yet been demonstrated for geosequestration. The next step is to test them in the field.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Greenhouse Gas Control
    Article . 2008 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    91
    citations91
    popularityTop 10%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Greenhouse Gas Control
      Article . 2008 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
Powered by OpenAIRE graph