- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Authors: G. R. Kanagachidambaresan; R. Maheswar;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11276-020-02269-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11276-020-02269-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Authors: G. R. Kanagachidambaresan; R. Maheswar;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11276-020-02269-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11276-020-02269-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV R. Ganesh; Umashankar Subramaniyan; K. Padmanathan; Rajesh Ravi; G. Maheswaran; V. Manikandan; Srinivasan Alavandar; K. Shanmugasundaram; R. Maheswar;Abstract Life, on earth, is active only because of water devouring. Nature has provided a number of water resources such as surface water for instance rivers, lakes, springs, ground water and so on. By artificial means, man has created water storage systems such as excavated dams, check dams, reservoirs, tanks etc., to meet the basic water requirements throughout the year. But ever-growing population and poor water management skills of individuals have driven the globe towards serious water crisis. Solar distillation fills the gap between water scarcity and water productivity and remains one of the simplest methods of producing pure drinking water. Though many models in solar stills are being used across the globe, tilted wick type still excels with outstanding performance in the production of pure water. In this review, an attempt has been made in particular to study the factors that are involved in increasing the performance of tilted wick type solar distillation stills. This review covered the initiatives taken from the year 1985 being the first initiative in tilted wick type model to final tilted wick model on 2020 based on published articles.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.04.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.04.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV R. Ganesh; Umashankar Subramaniyan; K. Padmanathan; Rajesh Ravi; G. Maheswaran; V. Manikandan; Srinivasan Alavandar; K. Shanmugasundaram; R. Maheswar;Abstract Life, on earth, is active only because of water devouring. Nature has provided a number of water resources such as surface water for instance rivers, lakes, springs, ground water and so on. By artificial means, man has created water storage systems such as excavated dams, check dams, reservoirs, tanks etc., to meet the basic water requirements throughout the year. But ever-growing population and poor water management skills of individuals have driven the globe towards serious water crisis. Solar distillation fills the gap between water scarcity and water productivity and remains one of the simplest methods of producing pure drinking water. Though many models in solar stills are being used across the globe, tilted wick type still excels with outstanding performance in the production of pure water. In this review, an attempt has been made in particular to study the factors that are involved in increasing the performance of tilted wick type solar distillation stills. This review covered the initiatives taken from the year 1985 being the first initiative in tilted wick type model to final tilted wick model on 2020 based on published articles.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.04.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.04.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: James Deva Koresh Hezekiah; Karnam Chandrakumar Ramya; Mercy Paul Selvan; Vishnu Murthy Kumarasamy; +4 AuthorsJames Deva Koresh Hezekiah; Karnam Chandrakumar Ramya; Mercy Paul Selvan; Vishnu Murthy Kumarasamy; Dipak Kumar Sah; Malathi Devendran; Sivakumar Sabapathy Arumugam; Rajagopal Maheswar;doi: 10.3390/en16207021
Wireless Sensor Networks (WSN) play a major role in various applications, yet maintaining energy efficiency remains a critical challenge due to their limited energy availability. Network lifetime is one of the primary parameters for analyzing the performance of a WSN. This proposed work aims to improve the network lifetime of a WSN by enhancing its energy utilization through the Enhanced Monkey Search Algorithm (E-MSA). The E-MSA provides an optimum solution for this issue by finding a better routing decision by analyzing the available energy on the nodes and the distance between the source and destination. Additionally, a Class Topper Optimization (CTO) algorithm is also included in the work for determining an efficient node to be the cluster head and lead cluster head. In this technique, the data packets are collected by the lead cluster head from the other cluster heads for sending the information in a sequential manner to the base station for reducing data loss. A simulation model is implemented in the NS2 platform with 700 nodes in a 300 × 300 square meter area with 0.5 J of energy to each node for finding the efficiency of the proposed E-MSA with CTO algorithm over the traditional On-Demand Distance Vector (ODV) and Destination-Sequenced Distance Vector (DSDV) approaches. The experimental outcome indicates that the proposed work can reach a maximum lifetime of 1579 s which is comparatively better than the ODV and DSDV approaches by 212 and 358 s, respectively. Similarly, a packet delivery ratio of 79% is achieved with a throughput of 0.85 Mbps along with a delay of 0.48 s for the operation of all 700 nodes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16207021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16207021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: James Deva Koresh Hezekiah; Karnam Chandrakumar Ramya; Mercy Paul Selvan; Vishnu Murthy Kumarasamy; +4 AuthorsJames Deva Koresh Hezekiah; Karnam Chandrakumar Ramya; Mercy Paul Selvan; Vishnu Murthy Kumarasamy; Dipak Kumar Sah; Malathi Devendran; Sivakumar Sabapathy Arumugam; Rajagopal Maheswar;doi: 10.3390/en16207021
Wireless Sensor Networks (WSN) play a major role in various applications, yet maintaining energy efficiency remains a critical challenge due to their limited energy availability. Network lifetime is one of the primary parameters for analyzing the performance of a WSN. This proposed work aims to improve the network lifetime of a WSN by enhancing its energy utilization through the Enhanced Monkey Search Algorithm (E-MSA). The E-MSA provides an optimum solution for this issue by finding a better routing decision by analyzing the available energy on the nodes and the distance between the source and destination. Additionally, a Class Topper Optimization (CTO) algorithm is also included in the work for determining an efficient node to be the cluster head and lead cluster head. In this technique, the data packets are collected by the lead cluster head from the other cluster heads for sending the information in a sequential manner to the base station for reducing data loss. A simulation model is implemented in the NS2 platform with 700 nodes in a 300 × 300 square meter area with 0.5 J of energy to each node for finding the efficiency of the proposed E-MSA with CTO algorithm over the traditional On-Demand Distance Vector (ODV) and Destination-Sequenced Distance Vector (DSDV) approaches. The experimental outcome indicates that the proposed work can reach a maximum lifetime of 1579 s which is comparatively better than the ODV and DSDV approaches by 212 and 358 s, respectively. Similarly, a packet delivery ratio of 79% is achieved with a throughput of 0.85 Mbps along with a delay of 0.48 s for the operation of all 700 nodes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16207021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16207021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Rajagopal Maheswar; Murugan Kathirvelu; Kuppusamy Mohanasundaram;doi: 10.3390/en17020417
The pervasive integration of wireless devices across diverse sectors has experienced an unprecedented surge in recent years [...]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17020417&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17020417&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Rajagopal Maheswar; Murugan Kathirvelu; Kuppusamy Mohanasundaram;doi: 10.3390/en17020417
The pervasive integration of wireless devices across diverse sectors has experienced an unprecedented surge in recent years [...]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17020417&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17020417&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: James Deva Koresh Hezekiah; Karnam Chandrakumar Ramya; Sathya Bama Krishna Radhakrishnan; Vishnu Murthy Kumarasamy; +3 AuthorsJames Deva Koresh Hezekiah; Karnam Chandrakumar Ramya; Sathya Bama Krishna Radhakrishnan; Vishnu Murthy Kumarasamy; Malathi Devendran; Avudaiammal Ramalingam; Rajagopal Maheswar;doi: 10.3390/en16135174
Wireless methodologies are the focal point of electronic devices, including telephones, computers, sensors, mobile phones, laptops, and wearables. However, wireless technology is not yet utilized extensively in underwater and deep-space communications applications, and it is also not applied in certain critical medical, military, and industrial applications due to its limited battery life. Self-energy-harvesting techniques overcome this issue by converting ambient energy from the surroundings into usable power for electronic devices; devices that use such techniques are next-generation wireless devices that can operate without relying on external power sources. This methodology improves the sustainability of the wireless device and ensures its prolonged operation. This article gives an in-depth analysis of the recent techniques that are implemented to design an efficient energy-harvesting wireless device. It also summarizes the most preferred energy sources and generator systems in the present trends. This review and its summary explore the common scope of researchers in narrowing their focus in designing new self-energy-harvesting wireless devices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16135174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16135174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: James Deva Koresh Hezekiah; Karnam Chandrakumar Ramya; Sathya Bama Krishna Radhakrishnan; Vishnu Murthy Kumarasamy; +3 AuthorsJames Deva Koresh Hezekiah; Karnam Chandrakumar Ramya; Sathya Bama Krishna Radhakrishnan; Vishnu Murthy Kumarasamy; Malathi Devendran; Avudaiammal Ramalingam; Rajagopal Maheswar;doi: 10.3390/en16135174
Wireless methodologies are the focal point of electronic devices, including telephones, computers, sensors, mobile phones, laptops, and wearables. However, wireless technology is not yet utilized extensively in underwater and deep-space communications applications, and it is also not applied in certain critical medical, military, and industrial applications due to its limited battery life. Self-energy-harvesting techniques overcome this issue by converting ambient energy from the surroundings into usable power for electronic devices; devices that use such techniques are next-generation wireless devices that can operate without relying on external power sources. This methodology improves the sustainability of the wireless device and ensures its prolonged operation. This article gives an in-depth analysis of the recent techniques that are implemented to design an efficient energy-harvesting wireless device. It also summarizes the most preferred energy sources and generator systems in the present trends. This review and its summary explore the common scope of researchers in narrowing their focus in designing new self-energy-harvesting wireless devices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16135174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16135174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Authors: G. R. Kanagachidambaresan; R. Maheswar;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11276-020-02269-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11276-020-02269-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Authors: G. R. Kanagachidambaresan; R. Maheswar;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11276-020-02269-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11276-020-02269-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV R. Ganesh; Umashankar Subramaniyan; K. Padmanathan; Rajesh Ravi; G. Maheswaran; V. Manikandan; Srinivasan Alavandar; K. Shanmugasundaram; R. Maheswar;Abstract Life, on earth, is active only because of water devouring. Nature has provided a number of water resources such as surface water for instance rivers, lakes, springs, ground water and so on. By artificial means, man has created water storage systems such as excavated dams, check dams, reservoirs, tanks etc., to meet the basic water requirements throughout the year. But ever-growing population and poor water management skills of individuals have driven the globe towards serious water crisis. Solar distillation fills the gap between water scarcity and water productivity and remains one of the simplest methods of producing pure drinking water. Though many models in solar stills are being used across the globe, tilted wick type still excels with outstanding performance in the production of pure water. In this review, an attempt has been made in particular to study the factors that are involved in increasing the performance of tilted wick type solar distillation stills. This review covered the initiatives taken from the year 1985 being the first initiative in tilted wick type model to final tilted wick model on 2020 based on published articles.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.04.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.04.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV R. Ganesh; Umashankar Subramaniyan; K. Padmanathan; Rajesh Ravi; G. Maheswaran; V. Manikandan; Srinivasan Alavandar; K. Shanmugasundaram; R. Maheswar;Abstract Life, on earth, is active only because of water devouring. Nature has provided a number of water resources such as surface water for instance rivers, lakes, springs, ground water and so on. By artificial means, man has created water storage systems such as excavated dams, check dams, reservoirs, tanks etc., to meet the basic water requirements throughout the year. But ever-growing population and poor water management skills of individuals have driven the globe towards serious water crisis. Solar distillation fills the gap between water scarcity and water productivity and remains one of the simplest methods of producing pure drinking water. Though many models in solar stills are being used across the globe, tilted wick type still excels with outstanding performance in the production of pure water. In this review, an attempt has been made in particular to study the factors that are involved in increasing the performance of tilted wick type solar distillation stills. This review covered the initiatives taken from the year 1985 being the first initiative in tilted wick type model to final tilted wick model on 2020 based on published articles.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.04.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.04.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: James Deva Koresh Hezekiah; Karnam Chandrakumar Ramya; Mercy Paul Selvan; Vishnu Murthy Kumarasamy; +4 AuthorsJames Deva Koresh Hezekiah; Karnam Chandrakumar Ramya; Mercy Paul Selvan; Vishnu Murthy Kumarasamy; Dipak Kumar Sah; Malathi Devendran; Sivakumar Sabapathy Arumugam; Rajagopal Maheswar;doi: 10.3390/en16207021
Wireless Sensor Networks (WSN) play a major role in various applications, yet maintaining energy efficiency remains a critical challenge due to their limited energy availability. Network lifetime is one of the primary parameters for analyzing the performance of a WSN. This proposed work aims to improve the network lifetime of a WSN by enhancing its energy utilization through the Enhanced Monkey Search Algorithm (E-MSA). The E-MSA provides an optimum solution for this issue by finding a better routing decision by analyzing the available energy on the nodes and the distance between the source and destination. Additionally, a Class Topper Optimization (CTO) algorithm is also included in the work for determining an efficient node to be the cluster head and lead cluster head. In this technique, the data packets are collected by the lead cluster head from the other cluster heads for sending the information in a sequential manner to the base station for reducing data loss. A simulation model is implemented in the NS2 platform with 700 nodes in a 300 × 300 square meter area with 0.5 J of energy to each node for finding the efficiency of the proposed E-MSA with CTO algorithm over the traditional On-Demand Distance Vector (ODV) and Destination-Sequenced Distance Vector (DSDV) approaches. The experimental outcome indicates that the proposed work can reach a maximum lifetime of 1579 s which is comparatively better than the ODV and DSDV approaches by 212 and 358 s, respectively. Similarly, a packet delivery ratio of 79% is achieved with a throughput of 0.85 Mbps along with a delay of 0.48 s for the operation of all 700 nodes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16207021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16207021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: James Deva Koresh Hezekiah; Karnam Chandrakumar Ramya; Mercy Paul Selvan; Vishnu Murthy Kumarasamy; +4 AuthorsJames Deva Koresh Hezekiah; Karnam Chandrakumar Ramya; Mercy Paul Selvan; Vishnu Murthy Kumarasamy; Dipak Kumar Sah; Malathi Devendran; Sivakumar Sabapathy Arumugam; Rajagopal Maheswar;doi: 10.3390/en16207021
Wireless Sensor Networks (WSN) play a major role in various applications, yet maintaining energy efficiency remains a critical challenge due to their limited energy availability. Network lifetime is one of the primary parameters for analyzing the performance of a WSN. This proposed work aims to improve the network lifetime of a WSN by enhancing its energy utilization through the Enhanced Monkey Search Algorithm (E-MSA). The E-MSA provides an optimum solution for this issue by finding a better routing decision by analyzing the available energy on the nodes and the distance between the source and destination. Additionally, a Class Topper Optimization (CTO) algorithm is also included in the work for determining an efficient node to be the cluster head and lead cluster head. In this technique, the data packets are collected by the lead cluster head from the other cluster heads for sending the information in a sequential manner to the base station for reducing data loss. A simulation model is implemented in the NS2 platform with 700 nodes in a 300 × 300 square meter area with 0.5 J of energy to each node for finding the efficiency of the proposed E-MSA with CTO algorithm over the traditional On-Demand Distance Vector (ODV) and Destination-Sequenced Distance Vector (DSDV) approaches. The experimental outcome indicates that the proposed work can reach a maximum lifetime of 1579 s which is comparatively better than the ODV and DSDV approaches by 212 and 358 s, respectively. Similarly, a packet delivery ratio of 79% is achieved with a throughput of 0.85 Mbps along with a delay of 0.48 s for the operation of all 700 nodes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16207021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16207021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Rajagopal Maheswar; Murugan Kathirvelu; Kuppusamy Mohanasundaram;doi: 10.3390/en17020417
The pervasive integration of wireless devices across diverse sectors has experienced an unprecedented surge in recent years [...]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17020417&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17020417&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Rajagopal Maheswar; Murugan Kathirvelu; Kuppusamy Mohanasundaram;doi: 10.3390/en17020417
The pervasive integration of wireless devices across diverse sectors has experienced an unprecedented surge in recent years [...]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17020417&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17020417&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: James Deva Koresh Hezekiah; Karnam Chandrakumar Ramya; Sathya Bama Krishna Radhakrishnan; Vishnu Murthy Kumarasamy; +3 AuthorsJames Deva Koresh Hezekiah; Karnam Chandrakumar Ramya; Sathya Bama Krishna Radhakrishnan; Vishnu Murthy Kumarasamy; Malathi Devendran; Avudaiammal Ramalingam; Rajagopal Maheswar;doi: 10.3390/en16135174
Wireless methodologies are the focal point of electronic devices, including telephones, computers, sensors, mobile phones, laptops, and wearables. However, wireless technology is not yet utilized extensively in underwater and deep-space communications applications, and it is also not applied in certain critical medical, military, and industrial applications due to its limited battery life. Self-energy-harvesting techniques overcome this issue by converting ambient energy from the surroundings into usable power for electronic devices; devices that use such techniques are next-generation wireless devices that can operate without relying on external power sources. This methodology improves the sustainability of the wireless device and ensures its prolonged operation. This article gives an in-depth analysis of the recent techniques that are implemented to design an efficient energy-harvesting wireless device. It also summarizes the most preferred energy sources and generator systems in the present trends. This review and its summary explore the common scope of researchers in narrowing their focus in designing new self-energy-harvesting wireless devices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16135174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16135174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: James Deva Koresh Hezekiah; Karnam Chandrakumar Ramya; Sathya Bama Krishna Radhakrishnan; Vishnu Murthy Kumarasamy; +3 AuthorsJames Deva Koresh Hezekiah; Karnam Chandrakumar Ramya; Sathya Bama Krishna Radhakrishnan; Vishnu Murthy Kumarasamy; Malathi Devendran; Avudaiammal Ramalingam; Rajagopal Maheswar;doi: 10.3390/en16135174
Wireless methodologies are the focal point of electronic devices, including telephones, computers, sensors, mobile phones, laptops, and wearables. However, wireless technology is not yet utilized extensively in underwater and deep-space communications applications, and it is also not applied in certain critical medical, military, and industrial applications due to its limited battery life. Self-energy-harvesting techniques overcome this issue by converting ambient energy from the surroundings into usable power for electronic devices; devices that use such techniques are next-generation wireless devices that can operate without relying on external power sources. This methodology improves the sustainability of the wireless device and ensures its prolonged operation. This article gives an in-depth analysis of the recent techniques that are implemented to design an efficient energy-harvesting wireless device. It also summarizes the most preferred energy sources and generator systems in the present trends. This review and its summary explore the common scope of researchers in narrowing their focus in designing new self-energy-harvesting wireless devices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16135174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16135174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu