- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Institute of Electrical and Electronics Engineers (IEEE) Asher Einhorn; Leonardo Micheli; David C. Miller; Lin J. Simpson; Helio R. Moutinho; Bobby To; Clare L. Lanaghan; Matthew T. Muller; Sarah Toth; Jim J. John; Sonali Warade; Anil Kottantharayil; Chaiwat Engtrakul;handle: 11573/1625642
The natural soiling of photovoltaic cover glass has recently been shown to include both an inorganic and organic particulate matter. Under favorable growth conditions, the latter can lead to the growth of dense colonies of filamentous fungi, which potentially leads to measurable performance losses over time. Herein, we report on a field study where glass coupon samples were deployed in soiling-prone locations, which focused on Dubai (United Arab Emirates) and Mumbai (India). For each site location, clear differences in the soiling were observed. The samples from Mumbai were contaminated with an abundance of filamentous fungi, whereas the samples from Dubai had primarily inorganic contamination. The effectiveness of soiling mitigation strategies, which include cleaning techniques and glass coatings, are discussed in detail.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallIEEE Journal of PhotovoltaicsArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2018.2878286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 42 citations 42 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallIEEE Journal of PhotovoltaicsArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2018.2878286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Wiley Authors: Micheli L.; Muller M.;doi: 10.1002/pip.2860
handle: 11573/1625654
AbstractOne hundred and two environmental and meteorological parameters have been investigated and compared with the performance of 20 soiling stations installed in the USA, in order to determine their ability to predict the soiling losses occurring on PV systems. The results of this investigation showed that the annual average of the daily mean particulate matter values recorded by monitoring stations deployed near the PV systems are the best soiling predictors, with coefficients of determination (R2) as high as 0.82. The precipitation pattern was also found to be relevant: among the different meteorological parameters, the average length of dry periods had the best correlation with the soiling ratio. A preliminary investigation of two‐variable regressions was attempted and resulted in an adjusted R2 of 0.90 when a combination of PM2.5 and a binary classification for the average length of the dry period was introduced. Copyright © 2017 John Wiley & Sons, Ltd.
Archivio della ricer... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallProgress in Photovoltaics Research and ApplicationsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2860&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 123 citations 123 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallProgress in Photovoltaics Research and ApplicationsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2860&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Germany, Australia, United Kingdom, ItalyPublisher:Elsevier BV Funded by:EC | COMPASsCO2EC| COMPASsCO2Smestad, Greg P.; Anderson, Cody; Cholette, Michael E.; Fuke, Pavan; Hachicha, Ahmed Amine; Kottantharayil, Anil; Ilse, Klemens; Karim, Mounia; Khan, Muhammad Zahid; Merkle, Herbert; Miller, David C.; Newkirk, Jimmy M.; Picotti, Giovanni; Wiesinger, Florian; Willers, Guido; Micheli, Leonardo;handle: 11573/1684544
The accumulation of soiling on photovoltaic modules and on the mirrors of concentrating solar power systems causes non-negligible energy losses with economic consequences. These challenges can be mitigated, or even prevented, through appropriate actions if the magnitude of soiling is known. Particle counting analysis is a common procedure to characterize soiling, as it can be easily performed on micrographs of glass coupons or solar devices that have been exposed to the environment. Particle counting does not, however, yield invariant results across institutions. The particle size distribution analysis is affected by the operator of the image analysis software and the methodology utilized. The results of a round-robin study are presented in this work to explore and elucidate the uncertainty related to particle counting and its effect on the characterization of the soiling of glass surfaces used in solar energy conversion systems. An international group of soiling experts analysed the same 8 micrographs using the same open-source ImageJ software package. The variation in the particle analyses results were investigated to identify specimen characteristics with the lowest coefficient of variation (CV) and the least uncertainty among the various operators. The mean particle diameter showed the lowest CV among the investigated characteristics, whereas the number of particles exhibited the largest CV. Additional parameters, such as the fractional area coverage by particles and parameters related to the distribution's shape yielded intermediate CV values. These results can provide insights on the magnitude inter-lab variability and uncertainty for optical and microscope-based soiling monitoring and characterization.
Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2023License: CC BY NC NDFull-Text: https://iris.uniroma1.it/bitstream/11573/1684544/1/Smestad_Variability%20and%20associated_2023.pdfData sources: Archivio della ricerca- Università di Roma La SapienzaCranfield University: Collection of E-Research - CERESArticle . 2023License: CC BY NC NDFull-Text: https://doi.org/10.1016/j.solmat.2023.112437Data sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSolar Energy Materials and Solar CellsArticle . 2023 . Peer-reviewedData sources: European Union Open Data PortalQueensland University of Technology: QUT ePrintsArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Research at Derby (University of Derby)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2023.112437&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2023License: CC BY NC NDFull-Text: https://iris.uniroma1.it/bitstream/11573/1684544/1/Smestad_Variability%20and%20associated_2023.pdfData sources: Archivio della ricerca- Università di Roma La SapienzaCranfield University: Collection of E-Research - CERESArticle . 2023License: CC BY NC NDFull-Text: https://doi.org/10.1016/j.solmat.2023.112437Data sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSolar Energy Materials and Solar CellsArticle . 2023 . Peer-reviewedData sources: European Union Open Data PortalQueensland University of Technology: QUT ePrintsArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Research at Derby (University of Derby)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2023.112437&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2021 ItalyPublisher:IEEE Authors: Micheli L.; Fernandez E. F.; Almonacid F.;handle: 11573/1625603
Soiling losses can be mitigated by cleaning the PV modules. However, the profitability of PV cleaning varies with time, influenced by the electricity price, the module efficiency and the cleaning costs. The present work analyzes the trends in soiling losses and soiling mitigation profitability for the continental U.S. The initial results show that, because of the lowering electricity price, the portion of PV capacity economically worth cleaning is decreasing. This means that, even if the economic impact of soiling is lowering, the fraction of energy yield lost due to soiling is actually increasing, because of the reducing mitigation activities.
Archivio della ricer... arrow_drop_down https://doi.org/10.1109/pvsc43...Conference object . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pvsc43889.2021.9518866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down https://doi.org/10.1109/pvsc43...Conference object . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pvsc43889.2021.9518866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:EC | NoSoilPV, GSRI, EC | SOLAR-ERA.NET CofundEC| NoSoilPV ,GSRI ,EC| SOLAR-ERA.NET CofundLeonardo Micheli; Marios Theristis; Andreas Livera; Joshua S. Stein; George E. Georghiou; Matthew Muller; Florencia Almonacid; Eduardo F. Fernandez;<b>Accepted Manuscript (Postprint): </b>L. Micheli et al., “Improved PV Soiling Extraction through the Detection of Cleanings and Change Points,” IEEE Journal of Photovoltaics, Volume: 11, Issue: 2, March 2021.
Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La Sapienzahttps://doi.org/10.36227/techr...Article . 2021 . Peer-reviewedLicense: CC BY NC SAData sources: Crossrefhttps://doi.org/10.36227/techr...Article . 2021 . Peer-reviewedLicense: CC BY NC SAData sources: CrossrefIEEE Journal of PhotovoltaicsArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2020.3043104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La Sapienzahttps://doi.org/10.36227/techr...Article . 2021 . Peer-reviewedLicense: CC BY NC SAData sources: Crossrefhttps://doi.org/10.36227/techr...Article . 2021 . Peer-reviewedLicense: CC BY NC SAData sources: CrossrefIEEE Journal of PhotovoltaicsArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2020.3043104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Funded by:EC | NoSoilPVEC| NoSoilPVAuthors: Micheli, Leonardo; Fernández, Eduardo F.; Aguilera, Jorge T.; Almonacid, Florencia;handle: 11573/1625660
Abstract The present study analyzes the soiling losses of a 1 MW photovoltaic system installed in the South of Spain. Both the Levelized Cost of Energy and the Net Present Value are used to compare the convenience of different mitigation strategies. It is found that also photovoltaic installations located in moderate regions, where the yearly soiling losses are limited to 3%, can suffer of a severe seasonal soiling, with power drops higher than 20%. In these conditions, an optimized cleaning schedule can be considerably beneficial from an economic perspective. For the given site, an optimal cleaning schedule generates a raise in profits up to 3.6% if one yearly cleaning is performed within a ±31-day window in summer. The convenience of one and multiple cleaning strategies is investigated by considering variable electricity prices and cleaning costs. In addition, the impact of the module efficiency on the cleaning strategy is analyzed. It is found that an optimized cleaning schedule can enhance the benefits of installing high efficiency modules, as it increases the amount of energy recovered through each cleaning and, therefore, the profits.
Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 73 citations 73 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Wiley Funded by:EC | NoSoilPVEC| NoSoilPVAuthors: Leonardo Micheli; Eduardo F. Fernández; Álvaro Fernández‐Solas; João Gabriel Bessa; +1 AuthorsLeonardo Micheli; Eduardo F. Fernández; Álvaro Fernández‐Solas; João Gabriel Bessa; Florencia Almonacid;doi: 10.1002/pip.3477
handle: 11573/1625676
AbstractThe present paper evaluates the soiling losses of a 3.25‐MW photovoltaic (PV) system installed in central Chile, 200 km north of Santiago, and analyzes the nonuniform soiling deposition between the various strings for a period of 3 years. A robust methodology is developed to extract, in the most systematic way, 142 reliable soiling profiles from the 256 PV power time series recorded on site. It is found that, if unmitigated, soiling would reduce the annual DC energy generation by 8%, with a factor of 2× between the losses of the most and least affected strings. Most of the losses are registered on the edges of the plant, closer to traffic and unpaved roads. The most soiling intense months are in summer, result of the infrequent rainfalls and of the high concentrations of suspended particles that characterize this season. The revenues and the costs of different manual cleaning frequencies are evaluated and compared to identify the optimal soiling mitigation strategy for this site. Three cleanings per year are found to return the highest profits for the economic conditions considered in this study. However, a sensitivity analysis shows how different cleaning costs and electricity prices would affect the soiling mitigation strategy. In addition, in light of the nonuniform soiling deposition distribution, the possibility of cleaning only selected strings rather than the full PV plant is discussed.
Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2022License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaProgress in Photovoltaics Research and ApplicationsArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3477&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2022License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaProgress in Photovoltaics Research and ApplicationsArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3477&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 ItalyPublisher:Elsevier BV Funded by:UKRI | Joint UK-India Clean Ener...UKRI| Joint UK-India Clean Energy Centre (JUICE)Chanchangi Y. N.; Ghosh A.; Micheli L.; Fernandez E. F.; Sundaram S.; Mallick T. K.;handle: 11573/1652459
Soiling consists of the accumulation of dust on the solar panel's surface and has a deleterious effect on solar photovoltaic devices' performance, which varies with location. However, soiling losses and rates are significantly under-reported or underestimated since regional differences and seasonal variations are overlooked. Accurate prediction of PV soiling losses for a particular location can save revenue losses associated with a solar PV system. This research investigated the effect of soiling on PV performance through optical losses by employing a low-cost soiling station. Low iron glass coupons (5 mm × 5 mm) were exposed on three angles (vertical, tilt-45°, and horizontal) in seven sites across Nigeria to collect annual, seasonal and monthly soiling data. Each coupon was then subjected to optical characterisation using a spectrometer and imaging analysis using the SEM/EDX. The finding shows significant optical losses across the country, with all the highest rates recorded on coupons exposed on the horizontal plane, where the maximum loss of 88% was recorded on the Abuja, North Central (ABV) coupon. SEM/EDX finding illustrated minerals with the potential to affect light transmittance, and the pollutant data confirmed the particles. The optical results were further employed to map the soiling distribution across the country. A wide deviation was observed from the data on the Global Solar Atlas, as it disproportionately underestimated the soiling losses across the world.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3980068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3980068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, ItalyPublisher:Elsevier BV Authors: Micheli L.; Reddy K. S.; Mallick T. K.;handle: 11573/1625688 , 10871/18038
AbstractThe interest in micro-technologies has increased in the last decades, because of the low volumes and high performance granted by their application. Micro-fins can find application in several fields, such as power electronics, concentrating photovoltaics and LED. Although micro-technologies have been widely applied in cooling, there is still a lack of knowledge on the thermal behavior of micro-finned heat sinks under natural convective conditions. In the present study, the correspondences between fin geometries and heat transfer coefficients, as well as the effects of the orientation, are experimentally investigated using silicon micro-finned heat sinks with different geometries. The heat sinks are made of 5cm×5cm squared silicon wafer and the fin height ranges between 0.6mm and 0.8mm, the spacing between 0.2mm and 0.8mm and the thickness between 0.2 and 0.8mm. Power loads higher than those considered in previous works are studied. The experimental setup is validated using a software simulation and the Nusselt number correlation available in literature. The influence of the fin thickness on this parameter is analyzed and a modified correlation is proposed. Also, the effect of the radiative heat exchange on the overall heat transfer is considered and commented. An analysis of the uncertainty is conducted and reported too.
Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2015License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaInternational Journal of Heat and Mass TransferArticle . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Heat and Mass TransferArticle . 2015License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2015.08.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2015License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaInternational Journal of Heat and Mass TransferArticle . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Heat and Mass TransferArticle . 2015License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2015.08.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Leonardo Micheli; Michael G. Deceglie; Matthew Muller;handle: 11573/1625159
In this paper, we present a new soiling map developed at the National Renewable Energy Laboratory, showing data from 83 sites in the United States. Soiling has been measured through soiling stations or extracted by photovoltaic system performance data using referenced techniques. The data on the map have been used to conduct the first regional analysis of soiling distribution in the United States. We found that most of the soiling occurs in the southwestern United States, with Southern California counties experiencing the greatest losses because of the high particulate matter concentrations and the long dry periods. Moreover, we employed five spatial-interpolation techniques to investigate the possibility of estimating soiling at a site using data from nearby sites. We found that coefficients of determination of up to 78% between estimated and measured soiling ratios, meaning that, by using selective sampling, soiling losses can be predicted using the data on the map with a root-mean-square error of as low as 1.1%.
Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2019License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaIEEE Journal of PhotovoltaicsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallIEEE Journal of PhotovoltaicsArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2018.2872548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2019License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaIEEE Journal of PhotovoltaicsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallIEEE Journal of PhotovoltaicsArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2018.2872548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Institute of Electrical and Electronics Engineers (IEEE) Asher Einhorn; Leonardo Micheli; David C. Miller; Lin J. Simpson; Helio R. Moutinho; Bobby To; Clare L. Lanaghan; Matthew T. Muller; Sarah Toth; Jim J. John; Sonali Warade; Anil Kottantharayil; Chaiwat Engtrakul;handle: 11573/1625642
The natural soiling of photovoltaic cover glass has recently been shown to include both an inorganic and organic particulate matter. Under favorable growth conditions, the latter can lead to the growth of dense colonies of filamentous fungi, which potentially leads to measurable performance losses over time. Herein, we report on a field study where glass coupon samples were deployed in soiling-prone locations, which focused on Dubai (United Arab Emirates) and Mumbai (India). For each site location, clear differences in the soiling were observed. The samples from Mumbai were contaminated with an abundance of filamentous fungi, whereas the samples from Dubai had primarily inorganic contamination. The effectiveness of soiling mitigation strategies, which include cleaning techniques and glass coatings, are discussed in detail.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallIEEE Journal of PhotovoltaicsArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2018.2878286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 42 citations 42 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallIEEE Journal of PhotovoltaicsArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2018.2878286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Wiley Authors: Micheli L.; Muller M.;doi: 10.1002/pip.2860
handle: 11573/1625654
AbstractOne hundred and two environmental and meteorological parameters have been investigated and compared with the performance of 20 soiling stations installed in the USA, in order to determine their ability to predict the soiling losses occurring on PV systems. The results of this investigation showed that the annual average of the daily mean particulate matter values recorded by monitoring stations deployed near the PV systems are the best soiling predictors, with coefficients of determination (R2) as high as 0.82. The precipitation pattern was also found to be relevant: among the different meteorological parameters, the average length of dry periods had the best correlation with the soiling ratio. A preliminary investigation of two‐variable regressions was attempted and resulted in an adjusted R2 of 0.90 when a combination of PM2.5 and a binary classification for the average length of the dry period was introduced. Copyright © 2017 John Wiley & Sons, Ltd.
Archivio della ricer... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallProgress in Photovoltaics Research and ApplicationsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2860&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 123 citations 123 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallProgress in Photovoltaics Research and ApplicationsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2860&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Germany, Australia, United Kingdom, ItalyPublisher:Elsevier BV Funded by:EC | COMPASsCO2EC| COMPASsCO2Smestad, Greg P.; Anderson, Cody; Cholette, Michael E.; Fuke, Pavan; Hachicha, Ahmed Amine; Kottantharayil, Anil; Ilse, Klemens; Karim, Mounia; Khan, Muhammad Zahid; Merkle, Herbert; Miller, David C.; Newkirk, Jimmy M.; Picotti, Giovanni; Wiesinger, Florian; Willers, Guido; Micheli, Leonardo;handle: 11573/1684544
The accumulation of soiling on photovoltaic modules and on the mirrors of concentrating solar power systems causes non-negligible energy losses with economic consequences. These challenges can be mitigated, or even prevented, through appropriate actions if the magnitude of soiling is known. Particle counting analysis is a common procedure to characterize soiling, as it can be easily performed on micrographs of glass coupons or solar devices that have been exposed to the environment. Particle counting does not, however, yield invariant results across institutions. The particle size distribution analysis is affected by the operator of the image analysis software and the methodology utilized. The results of a round-robin study are presented in this work to explore and elucidate the uncertainty related to particle counting and its effect on the characterization of the soiling of glass surfaces used in solar energy conversion systems. An international group of soiling experts analysed the same 8 micrographs using the same open-source ImageJ software package. The variation in the particle analyses results were investigated to identify specimen characteristics with the lowest coefficient of variation (CV) and the least uncertainty among the various operators. The mean particle diameter showed the lowest CV among the investigated characteristics, whereas the number of particles exhibited the largest CV. Additional parameters, such as the fractional area coverage by particles and parameters related to the distribution's shape yielded intermediate CV values. These results can provide insights on the magnitude inter-lab variability and uncertainty for optical and microscope-based soiling monitoring and characterization.
Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2023License: CC BY NC NDFull-Text: https://iris.uniroma1.it/bitstream/11573/1684544/1/Smestad_Variability%20and%20associated_2023.pdfData sources: Archivio della ricerca- Università di Roma La SapienzaCranfield University: Collection of E-Research - CERESArticle . 2023License: CC BY NC NDFull-Text: https://doi.org/10.1016/j.solmat.2023.112437Data sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSolar Energy Materials and Solar CellsArticle . 2023 . Peer-reviewedData sources: European Union Open Data PortalQueensland University of Technology: QUT ePrintsArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Research at Derby (University of Derby)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2023.112437&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2023License: CC BY NC NDFull-Text: https://iris.uniroma1.it/bitstream/11573/1684544/1/Smestad_Variability%20and%20associated_2023.pdfData sources: Archivio della ricerca- Università di Roma La SapienzaCranfield University: Collection of E-Research - CERESArticle . 2023License: CC BY NC NDFull-Text: https://doi.org/10.1016/j.solmat.2023.112437Data sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSolar Energy Materials and Solar CellsArticle . 2023 . Peer-reviewedData sources: European Union Open Data PortalQueensland University of Technology: QUT ePrintsArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Research at Derby (University of Derby)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2023.112437&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2021 ItalyPublisher:IEEE Authors: Micheli L.; Fernandez E. F.; Almonacid F.;handle: 11573/1625603
Soiling losses can be mitigated by cleaning the PV modules. However, the profitability of PV cleaning varies with time, influenced by the electricity price, the module efficiency and the cleaning costs. The present work analyzes the trends in soiling losses and soiling mitigation profitability for the continental U.S. The initial results show that, because of the lowering electricity price, the portion of PV capacity economically worth cleaning is decreasing. This means that, even if the economic impact of soiling is lowering, the fraction of energy yield lost due to soiling is actually increasing, because of the reducing mitigation activities.
Archivio della ricer... arrow_drop_down https://doi.org/10.1109/pvsc43...Conference object . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pvsc43889.2021.9518866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down https://doi.org/10.1109/pvsc43...Conference object . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pvsc43889.2021.9518866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:EC | NoSoilPV, GSRI, EC | SOLAR-ERA.NET CofundEC| NoSoilPV ,GSRI ,EC| SOLAR-ERA.NET CofundLeonardo Micheli; Marios Theristis; Andreas Livera; Joshua S. Stein; George E. Georghiou; Matthew Muller; Florencia Almonacid; Eduardo F. Fernandez;<b>Accepted Manuscript (Postprint): </b>L. Micheli et al., “Improved PV Soiling Extraction through the Detection of Cleanings and Change Points,” IEEE Journal of Photovoltaics, Volume: 11, Issue: 2, March 2021.
Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La Sapienzahttps://doi.org/10.36227/techr...Article . 2021 . Peer-reviewedLicense: CC BY NC SAData sources: Crossrefhttps://doi.org/10.36227/techr...Article . 2021 . Peer-reviewedLicense: CC BY NC SAData sources: CrossrefIEEE Journal of PhotovoltaicsArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2020.3043104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La Sapienzahttps://doi.org/10.36227/techr...Article . 2021 . Peer-reviewedLicense: CC BY NC SAData sources: Crossrefhttps://doi.org/10.36227/techr...Article . 2021 . Peer-reviewedLicense: CC BY NC SAData sources: CrossrefIEEE Journal of PhotovoltaicsArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2020.3043104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Funded by:EC | NoSoilPVEC| NoSoilPVAuthors: Micheli, Leonardo; Fernández, Eduardo F.; Aguilera, Jorge T.; Almonacid, Florencia;handle: 11573/1625660
Abstract The present study analyzes the soiling losses of a 1 MW photovoltaic system installed in the South of Spain. Both the Levelized Cost of Energy and the Net Present Value are used to compare the convenience of different mitigation strategies. It is found that also photovoltaic installations located in moderate regions, where the yearly soiling losses are limited to 3%, can suffer of a severe seasonal soiling, with power drops higher than 20%. In these conditions, an optimized cleaning schedule can be considerably beneficial from an economic perspective. For the given site, an optimal cleaning schedule generates a raise in profits up to 3.6% if one yearly cleaning is performed within a ±31-day window in summer. The convenience of one and multiple cleaning strategies is investigated by considering variable electricity prices and cleaning costs. In addition, the impact of the module efficiency on the cleaning strategy is analyzed. It is found that an optimized cleaning schedule can enhance the benefits of installing high efficiency modules, as it increases the amount of energy recovered through each cleaning and, therefore, the profits.
Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 73 citations 73 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Wiley Funded by:EC | NoSoilPVEC| NoSoilPVAuthors: Leonardo Micheli; Eduardo F. Fernández; Álvaro Fernández‐Solas; João Gabriel Bessa; +1 AuthorsLeonardo Micheli; Eduardo F. Fernández; Álvaro Fernández‐Solas; João Gabriel Bessa; Florencia Almonacid;doi: 10.1002/pip.3477
handle: 11573/1625676
AbstractThe present paper evaluates the soiling losses of a 3.25‐MW photovoltaic (PV) system installed in central Chile, 200 km north of Santiago, and analyzes the nonuniform soiling deposition between the various strings for a period of 3 years. A robust methodology is developed to extract, in the most systematic way, 142 reliable soiling profiles from the 256 PV power time series recorded on site. It is found that, if unmitigated, soiling would reduce the annual DC energy generation by 8%, with a factor of 2× between the losses of the most and least affected strings. Most of the losses are registered on the edges of the plant, closer to traffic and unpaved roads. The most soiling intense months are in summer, result of the infrequent rainfalls and of the high concentrations of suspended particles that characterize this season. The revenues and the costs of different manual cleaning frequencies are evaluated and compared to identify the optimal soiling mitigation strategy for this site. Three cleanings per year are found to return the highest profits for the economic conditions considered in this study. However, a sensitivity analysis shows how different cleaning costs and electricity prices would affect the soiling mitigation strategy. In addition, in light of the nonuniform soiling deposition distribution, the possibility of cleaning only selected strings rather than the full PV plant is discussed.
Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2022License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaProgress in Photovoltaics Research and ApplicationsArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3477&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2022License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaProgress in Photovoltaics Research and ApplicationsArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3477&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 ItalyPublisher:Elsevier BV Funded by:UKRI | Joint UK-India Clean Ener...UKRI| Joint UK-India Clean Energy Centre (JUICE)Chanchangi Y. N.; Ghosh A.; Micheli L.; Fernandez E. F.; Sundaram S.; Mallick T. K.;handle: 11573/1652459
Soiling consists of the accumulation of dust on the solar panel's surface and has a deleterious effect on solar photovoltaic devices' performance, which varies with location. However, soiling losses and rates are significantly under-reported or underestimated since regional differences and seasonal variations are overlooked. Accurate prediction of PV soiling losses for a particular location can save revenue losses associated with a solar PV system. This research investigated the effect of soiling on PV performance through optical losses by employing a low-cost soiling station. Low iron glass coupons (5 mm × 5 mm) were exposed on three angles (vertical, tilt-45°, and horizontal) in seven sites across Nigeria to collect annual, seasonal and monthly soiling data. Each coupon was then subjected to optical characterisation using a spectrometer and imaging analysis using the SEM/EDX. The finding shows significant optical losses across the country, with all the highest rates recorded on coupons exposed on the horizontal plane, where the maximum loss of 88% was recorded on the Abuja, North Central (ABV) coupon. SEM/EDX finding illustrated minerals with the potential to affect light transmittance, and the pollutant data confirmed the particles. The optical results were further employed to map the soiling distribution across the country. A wide deviation was observed from the data on the Global Solar Atlas, as it disproportionately underestimated the soiling losses across the world.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3980068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3980068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, ItalyPublisher:Elsevier BV Authors: Micheli L.; Reddy K. S.; Mallick T. K.;handle: 11573/1625688 , 10871/18038
AbstractThe interest in micro-technologies has increased in the last decades, because of the low volumes and high performance granted by their application. Micro-fins can find application in several fields, such as power electronics, concentrating photovoltaics and LED. Although micro-technologies have been widely applied in cooling, there is still a lack of knowledge on the thermal behavior of micro-finned heat sinks under natural convective conditions. In the present study, the correspondences between fin geometries and heat transfer coefficients, as well as the effects of the orientation, are experimentally investigated using silicon micro-finned heat sinks with different geometries. The heat sinks are made of 5cm×5cm squared silicon wafer and the fin height ranges between 0.6mm and 0.8mm, the spacing between 0.2mm and 0.8mm and the thickness between 0.2 and 0.8mm. Power loads higher than those considered in previous works are studied. The experimental setup is validated using a software simulation and the Nusselt number correlation available in literature. The influence of the fin thickness on this parameter is analyzed and a modified correlation is proposed. Also, the effect of the radiative heat exchange on the overall heat transfer is considered and commented. An analysis of the uncertainty is conducted and reported too.
Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2015License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaInternational Journal of Heat and Mass TransferArticle . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Heat and Mass TransferArticle . 2015License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2015.08.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2015License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaInternational Journal of Heat and Mass TransferArticle . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Heat and Mass TransferArticle . 2015License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2015.08.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Leonardo Micheli; Michael G. Deceglie; Matthew Muller;handle: 11573/1625159
In this paper, we present a new soiling map developed at the National Renewable Energy Laboratory, showing data from 83 sites in the United States. Soiling has been measured through soiling stations or extracted by photovoltaic system performance data using referenced techniques. The data on the map have been used to conduct the first regional analysis of soiling distribution in the United States. We found that most of the soiling occurs in the southwestern United States, with Southern California counties experiencing the greatest losses because of the high particulate matter concentrations and the long dry periods. Moreover, we employed five spatial-interpolation techniques to investigate the possibility of estimating soiling at a site using data from nearby sites. We found that coefficients of determination of up to 78% between estimated and measured soiling ratios, meaning that, by using selective sampling, soiling losses can be predicted using the data on the map with a root-mean-square error of as low as 1.1%.
Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2019License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaIEEE Journal of PhotovoltaicsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallIEEE Journal of PhotovoltaicsArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2018.2872548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2019License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaIEEE Journal of PhotovoltaicsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallIEEE Journal of PhotovoltaicsArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2018.2872548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu