- home
- Advanced Search
- Energy Research
- 13. Climate action
- Energy Research
- 13. Climate action
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Alvaro Endo; Sebastian Parra; Oscar Cartagena; Doris Sáez; Carlos Muñoz; Juan Ignacio Huircan;doi: 10.3390/app13084734
Rural communities usually settle in territories where crop self-consumption is the main source of sustenance. In this context, climate change has made these environments of crop control susceptible to water shortages, impacting crop yields. The implementation of greenhouses has been proposed to address these problems, together with strategies to optimize water and energy consumption. In this study, an energy–water management system based on a model predictive control strategy is proposed. This control strategy consists of a fuzzy optimizer used to determine the optimal consumption from isolated microgrids considering the local resources available. The proposed controller is implemented on two timescales. First, medium-term optimization over one month is used to estimate the necessary water demand required to support crop growth and a high yield. Second, short-term optimization is used to determine the optimal climate conditions inside the greenhouse for managing crop irrigation, refilling the reserve water tank, and providing ventilation. Experiments were conducted to test this approach using a case study of an isolated community. For such a case, energy consumption was reduced, and the irrigation process was optimized. The results indicated that the proposed controller is a viable alternative for implementing intelligent management systems for greenhouses.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3417/13/8/4734/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app13084734&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3417/13/8/4734/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app13084734&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Alvaro Endo; Sebastian Parra; Oscar Cartagena; Doris Sáez; Carlos Muñoz; Juan Ignacio Huircan;doi: 10.3390/app13084734
Rural communities usually settle in territories where crop self-consumption is the main source of sustenance. In this context, climate change has made these environments of crop control susceptible to water shortages, impacting crop yields. The implementation of greenhouses has been proposed to address these problems, together with strategies to optimize water and energy consumption. In this study, an energy–water management system based on a model predictive control strategy is proposed. This control strategy consists of a fuzzy optimizer used to determine the optimal consumption from isolated microgrids considering the local resources available. The proposed controller is implemented on two timescales. First, medium-term optimization over one month is used to estimate the necessary water demand required to support crop growth and a high yield. Second, short-term optimization is used to determine the optimal climate conditions inside the greenhouse for managing crop irrigation, refilling the reserve water tank, and providing ventilation. Experiments were conducted to test this approach using a case study of an isolated community. For such a case, energy consumption was reduced, and the irrigation process was optimized. The results indicated that the proposed controller is a viable alternative for implementing intelligent management systems for greenhouses.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3417/13/8/4734/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app13084734&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3417/13/8/4734/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app13084734&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu