- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023 GermanyPublisher:Springer Science and Business Media LLC Sen Wang; Jiyu Zhang; Weibo Hua; Longfei Wen; Guochuan Tang; Xin Wang; Cunshuang Ma; Weihua Chen;AbstractLayered transition-metal oxide materials are ideal cathode candidates for sodium-ion batteries due to high specific energy, yet suffer severe interfacial instability and capacity fading owing to strongly nucleophilic surface. In this work, the interfacial stability of layered NaNi1/3Fe1/3Mn1/3O2 cathode was effectively enhanced by electrolyte optimization. And the interfacial chemistry between the cathode and four widely used electrolytes (EC/DMC, EC/EMC, EC/DEC and EC/PC) was elucidated through experiments and theoretical calculations. The Na+ solvation structures at cathode-electrolyte interface in all four electrolytes exhibited enhanced coordination due to high electron density and strong nucleophilicity of oxide surface, which promoted the electrolytes’ decomposition with decreased oxidation stability. Among them, the EC/DMC electrolyte showed the tightest solvation structure due to smaller molecular chains and stable electrochemistry, which derived an even and robust cathode electrolyte interphase. It effectively protected the cathode and facilitated the reversible Na+ transport during long cycles, enabling the batteries with a high capacity retention of 83.3% after 300 cycles. This work provides new insights into the role of electrode surface characteristics in interface chemistry that can guide the design of advanced electrode and electrolyte materials for rechargeable batteries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43979-023-00060-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43979-023-00060-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 GermanyPublisher:Springer Science and Business Media LLC Sen Wang; Jiyu Zhang; Weibo Hua; Longfei Wen; Guochuan Tang; Xin Wang; Cunshuang Ma; Weihua Chen;AbstractLayered transition-metal oxide materials are ideal cathode candidates for sodium-ion batteries due to high specific energy, yet suffer severe interfacial instability and capacity fading owing to strongly nucleophilic surface. In this work, the interfacial stability of layered NaNi1/3Fe1/3Mn1/3O2 cathode was effectively enhanced by electrolyte optimization. And the interfacial chemistry between the cathode and four widely used electrolytes (EC/DMC, EC/EMC, EC/DEC and EC/PC) was elucidated through experiments and theoretical calculations. The Na+ solvation structures at cathode-electrolyte interface in all four electrolytes exhibited enhanced coordination due to high electron density and strong nucleophilicity of oxide surface, which promoted the electrolytes’ decomposition with decreased oxidation stability. Among them, the EC/DMC electrolyte showed the tightest solvation structure due to smaller molecular chains and stable electrochemistry, which derived an even and robust cathode electrolyte interphase. It effectively protected the cathode and facilitated the reversible Na+ transport during long cycles, enabling the batteries with a high capacity retention of 83.3% after 300 cycles. This work provides new insights into the role of electrode surface characteristics in interface chemistry that can guide the design of advanced electrode and electrolyte materials for rechargeable batteries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43979-023-00060-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43979-023-00060-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 GermanyPublisher:Springer Science and Business Media LLC Jiyu Zhang; Yongliang Yan; Xin Wang; Yanyan Cui; Zhengfeng Zhang; Sen Wang; Zhengkun Xie; Pengfei Yan; Weihua Chen;AbstractNon-aqueous sodium-ion batteries (SiBs) are a viable electrochemical energy storage system for grid storage. However, the practical development of SiBs is hindered mainly by the sluggish kinetics and interfacial instability of positive-electrode active materials, such as polyanion-type iron-based sulfates, at high voltage. Here, to circumvent these issues, we proposed the multiscale interface engineering of Na2.26Fe1.87(SO4)3, where bulk heterostructure and exposed crystal plane were tuned to improve the Na-ion storage performance. Physicochemical characterizations and theoretical calculations suggested that the heterostructure of Na6Fe(SO4)4 phase facilitated ionic kinetics by densifying Na-ion migration channels and lowering energy barriers. The (11-2) plane of Na2.26Fe1.87(SO4)3 promoted the adsorption of the electrolyte solution ClO4− anions and fluoroethylene carbonate molecules, which formed an inorganic-rich Na-ion conductive interphase at the positive electrode. When tested in combination with a presodiated FeS/carbon-based negative electrode in laboratory- scale single-layer pouch cell configuration, the Na2.26Fe1.87(SO4)3-based positive electrode enables an initial discharge capacity of about 83.9 mAh g−1, an average cell discharge voltage of 2.35 V and a specific capacity retention of around 97% after 40 cycles at 24 mA g−1 and 25 °C.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-39384-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 114 citations 114 popularity Top 10% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-39384-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 GermanyPublisher:Springer Science and Business Media LLC Jiyu Zhang; Yongliang Yan; Xin Wang; Yanyan Cui; Zhengfeng Zhang; Sen Wang; Zhengkun Xie; Pengfei Yan; Weihua Chen;AbstractNon-aqueous sodium-ion batteries (SiBs) are a viable electrochemical energy storage system for grid storage. However, the practical development of SiBs is hindered mainly by the sluggish kinetics and interfacial instability of positive-electrode active materials, such as polyanion-type iron-based sulfates, at high voltage. Here, to circumvent these issues, we proposed the multiscale interface engineering of Na2.26Fe1.87(SO4)3, where bulk heterostructure and exposed crystal plane were tuned to improve the Na-ion storage performance. Physicochemical characterizations and theoretical calculations suggested that the heterostructure of Na6Fe(SO4)4 phase facilitated ionic kinetics by densifying Na-ion migration channels and lowering energy barriers. The (11-2) plane of Na2.26Fe1.87(SO4)3 promoted the adsorption of the electrolyte solution ClO4− anions and fluoroethylene carbonate molecules, which formed an inorganic-rich Na-ion conductive interphase at the positive electrode. When tested in combination with a presodiated FeS/carbon-based negative electrode in laboratory- scale single-layer pouch cell configuration, the Na2.26Fe1.87(SO4)3-based positive electrode enables an initial discharge capacity of about 83.9 mAh g−1, an average cell discharge voltage of 2.35 V and a specific capacity retention of around 97% after 40 cycles at 24 mA g−1 and 25 °C.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-39384-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 114 citations 114 popularity Top 10% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-39384-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 GermanyPublisher:Springer Science and Business Media LLC Sen Wang; Jiyu Zhang; Weibo Hua; Longfei Wen; Guochuan Tang; Xin Wang; Cunshuang Ma; Weihua Chen;AbstractLayered transition-metal oxide materials are ideal cathode candidates for sodium-ion batteries due to high specific energy, yet suffer severe interfacial instability and capacity fading owing to strongly nucleophilic surface. In this work, the interfacial stability of layered NaNi1/3Fe1/3Mn1/3O2 cathode was effectively enhanced by electrolyte optimization. And the interfacial chemistry between the cathode and four widely used electrolytes (EC/DMC, EC/EMC, EC/DEC and EC/PC) was elucidated through experiments and theoretical calculations. The Na+ solvation structures at cathode-electrolyte interface in all four electrolytes exhibited enhanced coordination due to high electron density and strong nucleophilicity of oxide surface, which promoted the electrolytes’ decomposition with decreased oxidation stability. Among them, the EC/DMC electrolyte showed the tightest solvation structure due to smaller molecular chains and stable electrochemistry, which derived an even and robust cathode electrolyte interphase. It effectively protected the cathode and facilitated the reversible Na+ transport during long cycles, enabling the batteries with a high capacity retention of 83.3% after 300 cycles. This work provides new insights into the role of electrode surface characteristics in interface chemistry that can guide the design of advanced electrode and electrolyte materials for rechargeable batteries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43979-023-00060-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43979-023-00060-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 GermanyPublisher:Springer Science and Business Media LLC Sen Wang; Jiyu Zhang; Weibo Hua; Longfei Wen; Guochuan Tang; Xin Wang; Cunshuang Ma; Weihua Chen;AbstractLayered transition-metal oxide materials are ideal cathode candidates for sodium-ion batteries due to high specific energy, yet suffer severe interfacial instability and capacity fading owing to strongly nucleophilic surface. In this work, the interfacial stability of layered NaNi1/3Fe1/3Mn1/3O2 cathode was effectively enhanced by electrolyte optimization. And the interfacial chemistry between the cathode and four widely used electrolytes (EC/DMC, EC/EMC, EC/DEC and EC/PC) was elucidated through experiments and theoretical calculations. The Na+ solvation structures at cathode-electrolyte interface in all four electrolytes exhibited enhanced coordination due to high electron density and strong nucleophilicity of oxide surface, which promoted the electrolytes’ decomposition with decreased oxidation stability. Among them, the EC/DMC electrolyte showed the tightest solvation structure due to smaller molecular chains and stable electrochemistry, which derived an even and robust cathode electrolyte interphase. It effectively protected the cathode and facilitated the reversible Na+ transport during long cycles, enabling the batteries with a high capacity retention of 83.3% after 300 cycles. This work provides new insights into the role of electrode surface characteristics in interface chemistry that can guide the design of advanced electrode and electrolyte materials for rechargeable batteries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43979-023-00060-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43979-023-00060-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 GermanyPublisher:Springer Science and Business Media LLC Jiyu Zhang; Yongliang Yan; Xin Wang; Yanyan Cui; Zhengfeng Zhang; Sen Wang; Zhengkun Xie; Pengfei Yan; Weihua Chen;AbstractNon-aqueous sodium-ion batteries (SiBs) are a viable electrochemical energy storage system for grid storage. However, the practical development of SiBs is hindered mainly by the sluggish kinetics and interfacial instability of positive-electrode active materials, such as polyanion-type iron-based sulfates, at high voltage. Here, to circumvent these issues, we proposed the multiscale interface engineering of Na2.26Fe1.87(SO4)3, where bulk heterostructure and exposed crystal plane were tuned to improve the Na-ion storage performance. Physicochemical characterizations and theoretical calculations suggested that the heterostructure of Na6Fe(SO4)4 phase facilitated ionic kinetics by densifying Na-ion migration channels and lowering energy barriers. The (11-2) plane of Na2.26Fe1.87(SO4)3 promoted the adsorption of the electrolyte solution ClO4− anions and fluoroethylene carbonate molecules, which formed an inorganic-rich Na-ion conductive interphase at the positive electrode. When tested in combination with a presodiated FeS/carbon-based negative electrode in laboratory- scale single-layer pouch cell configuration, the Na2.26Fe1.87(SO4)3-based positive electrode enables an initial discharge capacity of about 83.9 mAh g−1, an average cell discharge voltage of 2.35 V and a specific capacity retention of around 97% after 40 cycles at 24 mA g−1 and 25 °C.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-39384-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 114 citations 114 popularity Top 10% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-39384-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 GermanyPublisher:Springer Science and Business Media LLC Jiyu Zhang; Yongliang Yan; Xin Wang; Yanyan Cui; Zhengfeng Zhang; Sen Wang; Zhengkun Xie; Pengfei Yan; Weihua Chen;AbstractNon-aqueous sodium-ion batteries (SiBs) are a viable electrochemical energy storage system for grid storage. However, the practical development of SiBs is hindered mainly by the sluggish kinetics and interfacial instability of positive-electrode active materials, such as polyanion-type iron-based sulfates, at high voltage. Here, to circumvent these issues, we proposed the multiscale interface engineering of Na2.26Fe1.87(SO4)3, where bulk heterostructure and exposed crystal plane were tuned to improve the Na-ion storage performance. Physicochemical characterizations and theoretical calculations suggested that the heterostructure of Na6Fe(SO4)4 phase facilitated ionic kinetics by densifying Na-ion migration channels and lowering energy barriers. The (11-2) plane of Na2.26Fe1.87(SO4)3 promoted the adsorption of the electrolyte solution ClO4− anions and fluoroethylene carbonate molecules, which formed an inorganic-rich Na-ion conductive interphase at the positive electrode. When tested in combination with a presodiated FeS/carbon-based negative electrode in laboratory- scale single-layer pouch cell configuration, the Na2.26Fe1.87(SO4)3-based positive electrode enables an initial discharge capacity of about 83.9 mAh g−1, an average cell discharge voltage of 2.35 V and a specific capacity retention of around 97% after 40 cycles at 24 mA g−1 and 25 °C.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-39384-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 114 citations 114 popularity Top 10% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-39384-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu