- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV A. Genovesi; C. Aversa; M. Barletta; G. Cappiello; A. Gisario;handle: 11590/401229 , 11573/1623598
Annually, 115.000 tons of plastic tableware are used in Italy. The end of life of these objects is particularly troubled because no efficient way of recycling or reusing exist. Studies performed by the European Union demonstrate that about 80% of sea waste is made of plastic, representing a danger to human health and ecosystem. The aim of this paper is to analyse substitutes to disposable plastic tableware using the Life Cycle Assessment methodology. The alternatives are objects made of bio compostable plastic, both disposable and reusable. This article compares single-use and multi-use tableware made of a Polylactic acid (PLA) - Polybutylene succinate (PBS) blend with traditional disposable tableware made of polypropylene and of polystyrene. In order to perform an effective assessment, the objects are grouped in place settings, each made of a cup, a plate and cutlery. The use of tray mat and napkin is also taken into account. It was assumed that the fossil-based items are sent to landfill whereas the bio-based ones are sent to a compost plant. The functional unit chosen was “the service of 1000 meals”. The impact categories taken into account are Global Warming 100a, Ozone Depletion, Ozone Formation (Vegetation), Acidification, Aquatic Eutrophication, Human Toxicity water and Ecotoxicity water chronic. The results show that the compostable table sets have lower impact than the sets made of fossil-based plastic in all the categories except in Ozone Depletion and in Aquatic Eutrophication. In the categories of Human Toxicity water and Ecotoxicity water chronic, fossil-based materials have higher impact than multi-use one mainly due to the landfill scenario chosen as end of life. Disposable and reusable systems give a different contribution to total impact in different life stages. For disposable systems, the production and the end of life are the critical stages in terms of environmental burden, whereas for reusable systems washing is the most impactful phase. Further improvements can be obtained in the production of bio-based materials by using renewable energy to power the facilities whereas the washing phase can be improved by adopting certified ecopower. The impact of the reusable system strongly depends on the assumptions made on the number of reuses and on the washing modality.
Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2022License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaCleaner Engineering and TechnologyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefArchivio della Ricerca - Università degli Studi Roma TreArticle . 2022Data sources: Archivio della Ricerca - Università degli Studi Roma Treadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.clet.2022.100419&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2022License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaCleaner Engineering and TechnologyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefArchivio della Ricerca - Università degli Studi Roma TreArticle . 2022Data sources: Archivio della Ricerca - Università degli Studi Roma Treadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.clet.2022.100419&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV A. Genovesi; C. Aversa; M. Barletta; G. Cappiello; A. Gisario;handle: 11590/401229 , 11573/1623598
Annually, 115.000 tons of plastic tableware are used in Italy. The end of life of these objects is particularly troubled because no efficient way of recycling or reusing exist. Studies performed by the European Union demonstrate that about 80% of sea waste is made of plastic, representing a danger to human health and ecosystem. The aim of this paper is to analyse substitutes to disposable plastic tableware using the Life Cycle Assessment methodology. The alternatives are objects made of bio compostable plastic, both disposable and reusable. This article compares single-use and multi-use tableware made of a Polylactic acid (PLA) - Polybutylene succinate (PBS) blend with traditional disposable tableware made of polypropylene and of polystyrene. In order to perform an effective assessment, the objects are grouped in place settings, each made of a cup, a plate and cutlery. The use of tray mat and napkin is also taken into account. It was assumed that the fossil-based items are sent to landfill whereas the bio-based ones are sent to a compost plant. The functional unit chosen was “the service of 1000 meals”. The impact categories taken into account are Global Warming 100a, Ozone Depletion, Ozone Formation (Vegetation), Acidification, Aquatic Eutrophication, Human Toxicity water and Ecotoxicity water chronic. The results show that the compostable table sets have lower impact than the sets made of fossil-based plastic in all the categories except in Ozone Depletion and in Aquatic Eutrophication. In the categories of Human Toxicity water and Ecotoxicity water chronic, fossil-based materials have higher impact than multi-use one mainly due to the landfill scenario chosen as end of life. Disposable and reusable systems give a different contribution to total impact in different life stages. For disposable systems, the production and the end of life are the critical stages in terms of environmental burden, whereas for reusable systems washing is the most impactful phase. Further improvements can be obtained in the production of bio-based materials by using renewable energy to power the facilities whereas the washing phase can be improved by adopting certified ecopower. The impact of the reusable system strongly depends on the assumptions made on the number of reuses and on the washing modality.
Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2022License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaCleaner Engineering and TechnologyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefArchivio della Ricerca - Università degli Studi Roma TreArticle . 2022Data sources: Archivio della Ricerca - Università degli Studi Roma Treadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.clet.2022.100419&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2022License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaCleaner Engineering and TechnologyArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefArchivio della Ricerca - Università degli Studi Roma TreArticle . 2022Data sources: Archivio della Ricerca - Università degli Studi Roma Treadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.clet.2022.100419&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu