- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Wiley Maria-Barbara Winter; Beat Wermelinger; Michal Zmihorski; Richard L. Hutto; Ewa Durska; Kaysandra Waldron; Sebastian Seibold; Sebastian Seibold; Torsten Hothorn; Daniel C. Donato; Rebecca E. Cahall; Chang-Yong Choi; Martin K. Obrist; Claus Bässler; Sylvie Gauthier; Alexandro B. Leverkus; Rupert Seidl; Christian Hébert; John Campbell; Roland Brandl; Joseph B. Fontaine; Jörg Müller; Jörg Müller; David B. Lindenmayer; Jorge Castro; Tyler P. Cobb; Eun-Jae Lee; Dominik Thom; Philip J. Burton; Josep Rost; Josep Rost; Simon Thorn;Abstract Logging to “salvage” economic returns from forests affected by natural disturbances has become increasingly prevalent globally. Despite potential negative effects on biodiversity, salvage logging is often conducted, even in areas otherwise excluded from logging and reserved for nature conservation, inter alia because strategic priorities for post‐disturbance management are widely lacking. A review of the existing literature revealed that most studies investigating the effects of salvage logging on biodiversity have been conducted less than 5 years following natural disturbances, and focused on non‐saproxylic organisms. A meta‐analysis across 24 species groups revealed that salvage logging significantly decreases numbers of species of eight taxonomic groups. Richness of dead wood dependent taxa (i.e. saproxylic organisms) decreased more strongly than richness of non‐saproxylic taxa. In contrast, taxonomic groups typically associated with open habitats increased in the number of species after salvage logging. By analysing 134 original species abundance matrices, we demonstrate that salvage logging significantly alters community composition in 7 of 17 species groups, particularly affecting saproxylic assemblages. Synthesis and applications. Our results suggest that salvage logging is not consistent with the management objectives of protected areas. Substantial changes, such as the retention of dead wood in naturally disturbed forests, are needed to support biodiversity. Future research should investigate the amount and spatio‐temporal distribution of retained dead wood needed to maintain all components of biodiversity.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/238616Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAJournal of Applied EcologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2664.12945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 291 citations 291 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/238616Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAJournal of Applied EcologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2664.12945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United StatesPublisher:MDPI AG Kimberly J. Coleman; Elizabeth E. Perry; Dominik Thom; Tatiana M. Gladkikh; William S. Keeton; Peter W. Clark; Ralph E. Tursini; Kimberly F. Wallin;doi: 10.3390/su12020531
Throughout the United States, many institutions of higher education own forested tracts, often called school forests, which they use for teaching, research, and demonstration purposes. These school forests provide a range of benefits to the communities in which they are located. However, because administration is often decoupled from research and teaching, those benefits might not always be evident to the individuals who make decisions about the management and use of school forests, which may undervalue their services and put these areas at risk for sale, development, or over-harvesting to generate revenue. To understand what messages are being conveyed about the value and relevance of school forests, we conducted a systematic literature review and qualitatively coded the resulting literature content using an ecosystem services framework. While school forests provide many important benefits to academic and local communities, we found that most of the existing literature omits discussions about cultural ecosystem services that people may receive from school forests. We discuss the implications of this omission and make recommendations for addressing it.
The University of Ve... arrow_drop_down The University of Vermont: ScholarWorks @ UVMArticle . 2020License: CC BYFull-Text: https://scholarworks.uvm.edu/rsfac/126Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12020531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert The University of Ve... arrow_drop_down The University of Vermont: ScholarWorks @ UVMArticle . 2020License: CC BYFull-Text: https://scholarworks.uvm.edu/rsfac/126Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12020531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 AustriaPublisher:Wiley Funded by:FWF | Climate sensitivity of di..., FWF | Forest disturbance in a c...FWF| Climate sensitivity of disturbance regimes and implications for forest management ,FWF| Forest disturbance in a changing worldAuthors: Katharina Albrich; Werner Rammer; Rupert Seidl; Dominik Thom;AbstractThe ability of forests to continuously provide ecosystem services (ES) is threatened by rapid changes in climate and disturbance regimes. Consequently, these changes present a considerable challenge for forest managers. Management of forests often focuses on maximizing the level of ES provisioning over extended time frames (i.e., rotation periods of more than 100 yr). However, temporal stability is also crucial for many ES, for example, in the context of a steady provisioning of resources to the industry, or the protection of human infrastructure against natural hazards. How temporal stability and the level of ES provisioning are related is of increasing interest, particularly since changing climate and disturbance regimes amplify temporal variability in forest ecosystems. In this simulation study, we investigated whether forest management can simultaneously achieve high levels and temporal stability of ES provisioning. Specifically, we quantified (1) trade‐offs between ES stability and level of ES provisioning, and (2) the effect of tree species diversity on ES stability. Simulating a wide range of future climate scenarios and management strategies, we found a negative relationship between temporal stability and level of ES provisioning for timber production, carbon cycling, and site protection in a landscape in the Austrian Alps. Tree species diversity had a predominantly positive effect on ES stability. We conclude that attempts to maximize the level of ES provisioning may increase its temporal variability, and thus threaten the continuity of ES supply. Consequently, considerations of stability need to be more explicitly included in forest management planning under increasingly variable future conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.1785&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.1785&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Rupert Seidl; Katharina Albrich; Dominik Thom; Werner Rammer;In order to prevent irreversible impacts of climate change on the biosphere it is imperative to phase out the use of fossil fuels. Consequently, the provisioning of renewable resources such as timber and biomass from forests is an ecosystem service of increasing importance. However, risk factors such as changing disturbance regimes are challenging the continuous provisioning of ecosystem services, and are thus a key concern in forest management. We here used simulation modeling to study different risk management strategies in the context of timber production under changing climate and disturbance regimes, focusing on a 8127 ha forest landscape in the Northern Front Range of the Alps in Austria. We show that under a continuation of historical management, disturbances from wind and bark beetles increase by +39.5% on average over 200 years in response to future climate change. Promoting mixed forests and climate-adapted tree species as well as increasing management intensity effectively reduced future disturbance risk. Analyzing the spatial patterns of disturbance on the landscape, we found a highly uneven distribution of risk among stands (Gini coefficients up to 0.466), but also a spatially variable effectiveness of silvicultural risk reduction measures. This spatial variability in the contribution to and control of risk can be used to inform disturbance management: Stands which have a high leverage on overall risk and for which risks can effectively be reduced (24.4% of the stands in our simulations) should be a priority for risk mitigation measures. In contrast, management should embrace natural disturbances for their beneficial effects on biodiversity in areas which neither contribute strongly to landscape-scale risk nor respond positively to risk mitigation measures (16.9% of stands). We here illustrate how spatial heterogeneity in forest landscapes can be harnessed to address both positive and negative effects of changing natural disturbance regimes in ecosystem management.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2017.12.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 54 citations 54 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2017.12.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Bulgaria, France, Slovenia, Netherlands, Netherlands, Germany, Serbia, France, Slovenia, Slovenia, BulgariaPublisher:Wiley Funded by:EC | RESONATE, EC | FORWARD, EC | ForestValueEC| RESONATE ,EC| FORWARD ,EC| ForestValueAuthors: Patacca, Marco; Lindner, Marcus; Lucas‐Borja, Manuel Esteban; Cordonnier, Thomas; +20 AuthorsPatacca, Marco; Lindner, Marcus; Lucas‐Borja, Manuel Esteban; Cordonnier, Thomas; Fidej, Gal; Gardiner, Barry; Hauf, Ylva; Jasinevičius, Gediminas; Labonne, Sophie; Linkevičius, Edgaras; Mahnken, Mats; Milanovic, Slobodan; Nabuurs, Gert‐Jan; Nagel, Thomas A.; Nikinmaa, Laura; Panyatov, Momchil; Bercak, Roman; Seidl, Rupert; Ostrogović Sever, Masa Zorana; Socha, Jaroslaw; Thom, Dominik; Vuletic, Dijana; Zudin, Sergey; Schelhaas, Mart‐Jan;AbstractOver the last decades, the natural disturbance is increasingly putting pressure on European forests. Shifts in disturbance regimes may compromise forest functioning and the continuous provisioning of ecosystem services to society, including their climate change mitigation potential. Although forests are central to many European policies, we lack the long‐term empirical data needed for thoroughly understanding disturbance dynamics, modeling them, and developing adaptive management strategies. Here, we present a unique database of >170,000 records of ground‐based natural disturbance observations in European forests from 1950 to 2019. Reported data confirm a significant increase in forest disturbance in 34 European countries, causing on an average of 43.8 million m3 of disturbed timber volume per year over the 70‐year study period. This value is likely a conservative estimate due to under‐reporting, especially of small‐scale disturbances. We used machine learning techniques for assessing the magnitude of unreported disturbances, which are estimated to be between 8.6 and 18.3 million m3/year. In the last 20 years, disturbances on average accounted for 16% of the mean annual harvest in Europe. Wind was the most important disturbance agent over the study period (46% of total damage), followed by fire (24%) and bark beetles (17%). Bark beetle disturbance doubled its share of the total damage in the last 20 years. Forest disturbances can profoundly impact ecosystem services (e.g., climate change mitigation), affect regional forest resource provisioning and consequently disrupt long‐term management planning objectives and timber markets. We conclude that adaptation to changing disturbance regimes must be placed at the core of the European forest management and policy debate. Furthermore, a coherent and homogeneous monitoring system of natural disturbances is urgently needed in Europe, to better observe and respond to the ongoing changes in forest disturbance regimes.
Global Change Biolog... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2023License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2023Full-Text: https://freidok.uni-freiburg.de/data/245027Data sources: Bielefeld Academic Search Engine (BASE)dCOBISS.SI Digital RepositoryArticle . 2022License: CC BY NC NDData sources: dCOBISS.SI Digital RepositoryRepository of the University of LjubljanaArticle . 2022Data sources: Repository of the University of LjubljanaWageningen Staff PublicationsArticle . 2023License: CC BY NC NDData sources: Wageningen Staff PublicationsOmorika - Repository of the Faculty of Forestry, BelgradeArticle . 2023Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 216 citations 216 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2023License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2023Full-Text: https://freidok.uni-freiburg.de/data/245027Data sources: Bielefeld Academic Search Engine (BASE)dCOBISS.SI Digital RepositoryArticle . 2022License: CC BY NC NDData sources: dCOBISS.SI Digital RepositoryRepository of the University of LjubljanaArticle . 2022Data sources: Repository of the University of LjubljanaWageningen Staff PublicationsArticle . 2023License: CC BY NC NDData sources: Wageningen Staff PublicationsOmorika - Repository of the Faculty of Forestry, BelgradeArticle . 2023Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Wiley Authors: Werner Rammer; Dominik Thom; Rupert Seidl;AbstractThe rates of anthropogenic climate change substantially exceed those at which forest ecosystems – dominated by immobile, long‐lived organisms – are able to adapt. The resulting maladaptation of forests has potentially detrimental effects on ecosystem functioning. Furthermore, as many forest‐dwelling species are highly dependent on the prevailing tree species, a delayed response of the latter to a changing climate can contribute to an extinction debt and mask climate‐induced biodiversity loss. However, climate change will likely also intensify forest disturbances. Here, we tested the hypothesis that disturbances foster the reorganization of ecosystems and catalyze the adaptation of forest composition to climate change. Our specific objectives were (i) to quantify the rate of autonomous forest adaptation to climate change, (ii) examine the role of disturbance in the adaptation process, and (iii) investigate spatial differences in climate‐induced species turnover in an unmanaged mountain forest landscape (Kalkalpen National Park, Austria). Simulations with a process‐based forest landscape model were performed for 36 unique combinations of climate and disturbance scenarios over 1000 years. We found that climate change strongly favored European beech and oak species (currently prevailing in mid‐ to low‐elevation areas), with novel species associations emerging on the landscape. Yet, it took between 357 and 706 years before the landscape attained a dynamic equilibrium with the climate system. Disturbances generally catalyzed adaptation and decreased the time needed to attain equilibrium by up to 211 years. However, while increasing disturbance frequency and severity accelerated adaptation, increasing disturbance size had the opposite effect. Spatial analyses suggest that particularly the lowest and highest elevation areas will be hotspots of future species change. We conclude that the growing maladaptation of forests to climate and the long lead times of autonomous adaptation need to be considered more explicitly in the ongoing efforts to safeguard biodiversity and ecosystem services provisioning.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 132 citations 132 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 AustriaPublisher:Elsevier BV Uta Schirpke; Erich Tasser; Stefan Borsky; Martin Braun; Josef Eitzinger; Veronika Gaube; Michael Getzner; Stephan Glatzel; Thomas Gschwantner; Mathias Kirchner; Georg Leitinger; Bano Mehdi-Schulz; Hermine Mitter; Helfried Scheifinger; Sabina Thaler; Dominik Thom; Thomas Thaler;pmid: 37536130
Environmental and socio-economic developments induce land-use changes with potentially negative impacts on human well-being. To counteract undesired developments, a profound understanding of the complex relationships between drivers, land use, and ecosystem services is needed. Yet, national studies examining extended time periods are still rare. Based on the Special Report on land use, land management and climate change by the Austrian Panel on Climate Change (APCC), we use the Driver-Pressure-State-Impact-Response (DPSIR) framework to (1) identify the main drivers of land-use change, (2) describe past and future land-use changes in Austria between 1950 and 2100, (3) report related impacts on ecosystem services, and (4) discuss management responses. Our findings indicate that socio-economic drivers (e.g., economic growth, political systems, and technological developments) have influenced past land-use changes the most. The intensification of agricultural land use and urban sprawl have primarily led to declining ecosystem services in the lowlands. In mountain regions, the abandonment of mountain grassland has prompted a shift from provisioning to regulating services. However, simulations indicate that accelerating climate change will surpass socio-economic drivers in significance towards the end of this century, particularly in intensively used agricultural areas. Although climate change-induced impacts on ecosystem services remain uncertain, it can be expected that the range of land-use management options will be restricted in the future. Consequently, policymaking should prioritize the development of integrated land-use planning to safeguard ecosystem services, accounting for future environmental and socio-economic uncertainties.
IIASA DARE arrow_drop_down Journal of Environmental ManagementArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2023.118728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 49 citations 49 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IIASA DARE arrow_drop_down Journal of Environmental ManagementArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2023.118728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United States, Australia, United StatesPublisher:Wiley Dominik Thom; Marina Golivets; Laura Edling; Garrett W. Meigs; Jesse D. Gourevitch; Laura J. Sonter; Gillian L. Galford; William S. Keeton;doi: 10.1111/gcb.14656
pmid: 30985960
AbstractClimate change threatens the provisioning of forest ecosystem services and biodiversity (ESB). The climate sensitivity of ESB may vary with forest development from young to old‐growth conditions as structure and composition shift over time and space. This study addresses knowledge gaps hindering implementation of adaptive forest management strategies to sustain ESB. We focused on a number of ESB indicators to (a) analyze associations among carbon storage, timber growth rate, and species richness along a forest development gradient; (b) test the sensitivity of these associations to climatic changes; and (c) identify hotspots of climate sensitivity across the boreal–temperate forests of eastern North America. From pre‐existing databases and literature, we compiled a unique dataset of 18,507 forest plots. We used a full Bayesian framework to quantify responses of nine ESB indicators. The Bayesian models were used to assess the sensitivity of these indicators and their associations to projected increases in temperature and precipitation. We found the strongest association among the investigated ESB indicators in old forests (>170 years). These forests simultaneously support high levels of carbon storage, timber growth, and species richness. Older forests also exhibit low climate sensitivity of associations among ESB indicators as compared to younger forests. While regions with a currently low combined ESB performance benefitted from climate change, regions with a high ESB performance were particularly vulnerable to climate change. In particular, climate sensitivity was highest east and southeast of the Great Lakes, signaling potential priority areas for adaptive management. Our findings suggest that strategies aimed at enhancing the representation of older forest conditions at landscape scales will help sustain ESB in a changing world.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Vermont: ScholarWorks @ UVMArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14656&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 57 citations 57 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Vermont: ScholarWorks @ UVMArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14656&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 GermanyPublisher:Wiley Funded by:EC | FORWARDEC| FORWARDBraziunas, Kristin H.; Geres, Lisa; Richter, Tobias; Glasmann, Felix; Senf, Cornelius; Thom, Dominik; Seibold, Sebastian; Seidl, Rupert;doi: 10.1111/gcb.17121
pmid: 38273493
AbstractMountain forests are plant diversity hotspots, but changing climate and increasing forest disturbances will likely lead to far‐reaching plant community change. Projecting future change, however, is challenging for forest understory plants, which respond to forest structure and composition as well as climate. Here, we jointly assessed the effects of both climate and forest change, including wind and bark beetle disturbances, using the process‐based simulation model iLand in a protected landscape in the northern Alps (Berchtesgaden National Park, Germany), asking: (1) How do understory plant communities respond to 21st‐century change in a topographically complex mountain landscape, representing a hotspot of plant species richness? (2) How important are climatic changes (i.e., direct climate effects) versus forest structure and composition changes (i.e., indirect climate effects and recovery from past land use) in driving understory responses at landscape scales? Stacked individual species distribution models fit with climate, forest, and soil predictors (248 species currently present in the landscape, derived from 150 field plots stratified by elevation and forest development, overall area under the receiving operator characteristic curve = 0.86) were driven with projected climate (RCP4.5 and RCP8.5) and modeled forest variables to predict plant community change. Nearly all species persisted in the landscape in 2050, but on average 8% of the species pool was lost by the end of the century. By 2100, landscape mean species richness and understory cover declined (−13% and −8%, respectively), warm‐adapted species increasingly dominated plant communities (i.e., thermophilization, +12%), and plot‐level turnover was high (62%). Subalpine forests experienced the greatest richness declines (−16%), most thermophilization (+17%), and highest turnover (67%), resulting in plant community homogenization across elevation zones. Climate rather than forest change was the dominant driver of understory responses. The magnitude of unabated 21st‐century change is likely to erode plant diversity in a species richness hotspot, calling for stronger conservation and climate mitigation efforts.
Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Germany, GermanyPublisher:Wiley Funded by:EC | FORWARDEC| FORWARDDominik Thom; Werner Rammer; Patrick Laux; Gerhard Smiatek; Harald Kunstmann; Sebastian Seibold; Rupert Seidl;pmid: 35170829
AbstractObservational evidence suggests that forests in the Northern Alps are changing at an increasing rate as a consequence of climate change. Yet, it remains unclear whether the acceleration of forest change will continue in the future, or whether downregulating feedbacks will eventually decouple forest dynamics from climate change. Here we studied future forest dynamics at Berchtesgaden National Park, Germany by means of a process‐based forest landscape model, simulating an ensemble of 22 climate projections until the end of the 21st century. Our objectives were (i) to assess whether the observed acceleration of forest dynamics will continue in the future, (ii) to analyze how uncertainty in future climate translates to variation in future forest disturbance, structure, and composition, and (iii) to determine the main drivers of future forest dynamics. We found that forest dynamics continue to accelerate in the coming decades, with a trend towards denser, structurally more complex and more species rich forests. However, changes in forest structure leveled off in the second half of the 21st century regardless of climate scenario. In contrast, climate scenarios caused trajectories of tree species change to diverge in the second half of the 21st century, with stabilization under RCP 2.6 and RCP 4.5 scenarios and accelerated loss of conifers under RCP 8.5. Disturbance projections were 3 to 20 times more variable than future climate, whereas projected future forest structure and composition varied considerably less than climate. Indirect effects of climate change via alterations of the disturbance regime had a stronger impact on future forest dynamics than direct effects. Our findings suggest that dampening feedbacks within forest dynamics will decelerate forest change in the second half of the 21st century. However, warming beyond the levels projected under RCP 4.5 might profoundly alter future forest disturbance and composition, challenging conservation efforts and ecosystem service supply.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Wiley Maria-Barbara Winter; Beat Wermelinger; Michal Zmihorski; Richard L. Hutto; Ewa Durska; Kaysandra Waldron; Sebastian Seibold; Sebastian Seibold; Torsten Hothorn; Daniel C. Donato; Rebecca E. Cahall; Chang-Yong Choi; Martin K. Obrist; Claus Bässler; Sylvie Gauthier; Alexandro B. Leverkus; Rupert Seidl; Christian Hébert; John Campbell; Roland Brandl; Joseph B. Fontaine; Jörg Müller; Jörg Müller; David B. Lindenmayer; Jorge Castro; Tyler P. Cobb; Eun-Jae Lee; Dominik Thom; Philip J. Burton; Josep Rost; Josep Rost; Simon Thorn;Abstract Logging to “salvage” economic returns from forests affected by natural disturbances has become increasingly prevalent globally. Despite potential negative effects on biodiversity, salvage logging is often conducted, even in areas otherwise excluded from logging and reserved for nature conservation, inter alia because strategic priorities for post‐disturbance management are widely lacking. A review of the existing literature revealed that most studies investigating the effects of salvage logging on biodiversity have been conducted less than 5 years following natural disturbances, and focused on non‐saproxylic organisms. A meta‐analysis across 24 species groups revealed that salvage logging significantly decreases numbers of species of eight taxonomic groups. Richness of dead wood dependent taxa (i.e. saproxylic organisms) decreased more strongly than richness of non‐saproxylic taxa. In contrast, taxonomic groups typically associated with open habitats increased in the number of species after salvage logging. By analysing 134 original species abundance matrices, we demonstrate that salvage logging significantly alters community composition in 7 of 17 species groups, particularly affecting saproxylic assemblages. Synthesis and applications. Our results suggest that salvage logging is not consistent with the management objectives of protected areas. Substantial changes, such as the retention of dead wood in naturally disturbed forests, are needed to support biodiversity. Future research should investigate the amount and spatio‐temporal distribution of retained dead wood needed to maintain all components of biodiversity.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/238616Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAJournal of Applied EcologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2664.12945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 291 citations 291 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/238616Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAJournal of Applied EcologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2664.12945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United StatesPublisher:MDPI AG Kimberly J. Coleman; Elizabeth E. Perry; Dominik Thom; Tatiana M. Gladkikh; William S. Keeton; Peter W. Clark; Ralph E. Tursini; Kimberly F. Wallin;doi: 10.3390/su12020531
Throughout the United States, many institutions of higher education own forested tracts, often called school forests, which they use for teaching, research, and demonstration purposes. These school forests provide a range of benefits to the communities in which they are located. However, because administration is often decoupled from research and teaching, those benefits might not always be evident to the individuals who make decisions about the management and use of school forests, which may undervalue their services and put these areas at risk for sale, development, or over-harvesting to generate revenue. To understand what messages are being conveyed about the value and relevance of school forests, we conducted a systematic literature review and qualitatively coded the resulting literature content using an ecosystem services framework. While school forests provide many important benefits to academic and local communities, we found that most of the existing literature omits discussions about cultural ecosystem services that people may receive from school forests. We discuss the implications of this omission and make recommendations for addressing it.
The University of Ve... arrow_drop_down The University of Vermont: ScholarWorks @ UVMArticle . 2020License: CC BYFull-Text: https://scholarworks.uvm.edu/rsfac/126Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12020531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert The University of Ve... arrow_drop_down The University of Vermont: ScholarWorks @ UVMArticle . 2020License: CC BYFull-Text: https://scholarworks.uvm.edu/rsfac/126Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12020531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 AustriaPublisher:Wiley Funded by:FWF | Climate sensitivity of di..., FWF | Forest disturbance in a c...FWF| Climate sensitivity of disturbance regimes and implications for forest management ,FWF| Forest disturbance in a changing worldAuthors: Katharina Albrich; Werner Rammer; Rupert Seidl; Dominik Thom;AbstractThe ability of forests to continuously provide ecosystem services (ES) is threatened by rapid changes in climate and disturbance regimes. Consequently, these changes present a considerable challenge for forest managers. Management of forests often focuses on maximizing the level of ES provisioning over extended time frames (i.e., rotation periods of more than 100 yr). However, temporal stability is also crucial for many ES, for example, in the context of a steady provisioning of resources to the industry, or the protection of human infrastructure against natural hazards. How temporal stability and the level of ES provisioning are related is of increasing interest, particularly since changing climate and disturbance regimes amplify temporal variability in forest ecosystems. In this simulation study, we investigated whether forest management can simultaneously achieve high levels and temporal stability of ES provisioning. Specifically, we quantified (1) trade‐offs between ES stability and level of ES provisioning, and (2) the effect of tree species diversity on ES stability. Simulating a wide range of future climate scenarios and management strategies, we found a negative relationship between temporal stability and level of ES provisioning for timber production, carbon cycling, and site protection in a landscape in the Austrian Alps. Tree species diversity had a predominantly positive effect on ES stability. We conclude that attempts to maximize the level of ES provisioning may increase its temporal variability, and thus threaten the continuity of ES supply. Consequently, considerations of stability need to be more explicitly included in forest management planning under increasingly variable future conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.1785&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.1785&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Rupert Seidl; Katharina Albrich; Dominik Thom; Werner Rammer;In order to prevent irreversible impacts of climate change on the biosphere it is imperative to phase out the use of fossil fuels. Consequently, the provisioning of renewable resources such as timber and biomass from forests is an ecosystem service of increasing importance. However, risk factors such as changing disturbance regimes are challenging the continuous provisioning of ecosystem services, and are thus a key concern in forest management. We here used simulation modeling to study different risk management strategies in the context of timber production under changing climate and disturbance regimes, focusing on a 8127 ha forest landscape in the Northern Front Range of the Alps in Austria. We show that under a continuation of historical management, disturbances from wind and bark beetles increase by +39.5% on average over 200 years in response to future climate change. Promoting mixed forests and climate-adapted tree species as well as increasing management intensity effectively reduced future disturbance risk. Analyzing the spatial patterns of disturbance on the landscape, we found a highly uneven distribution of risk among stands (Gini coefficients up to 0.466), but also a spatially variable effectiveness of silvicultural risk reduction measures. This spatial variability in the contribution to and control of risk can be used to inform disturbance management: Stands which have a high leverage on overall risk and for which risks can effectively be reduced (24.4% of the stands in our simulations) should be a priority for risk mitigation measures. In contrast, management should embrace natural disturbances for their beneficial effects on biodiversity in areas which neither contribute strongly to landscape-scale risk nor respond positively to risk mitigation measures (16.9% of stands). We here illustrate how spatial heterogeneity in forest landscapes can be harnessed to address both positive and negative effects of changing natural disturbance regimes in ecosystem management.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2017.12.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 54 citations 54 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2017.12.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Bulgaria, France, Slovenia, Netherlands, Netherlands, Germany, Serbia, France, Slovenia, Slovenia, BulgariaPublisher:Wiley Funded by:EC | RESONATE, EC | FORWARD, EC | ForestValueEC| RESONATE ,EC| FORWARD ,EC| ForestValueAuthors: Patacca, Marco; Lindner, Marcus; Lucas‐Borja, Manuel Esteban; Cordonnier, Thomas; +20 AuthorsPatacca, Marco; Lindner, Marcus; Lucas‐Borja, Manuel Esteban; Cordonnier, Thomas; Fidej, Gal; Gardiner, Barry; Hauf, Ylva; Jasinevičius, Gediminas; Labonne, Sophie; Linkevičius, Edgaras; Mahnken, Mats; Milanovic, Slobodan; Nabuurs, Gert‐Jan; Nagel, Thomas A.; Nikinmaa, Laura; Panyatov, Momchil; Bercak, Roman; Seidl, Rupert; Ostrogović Sever, Masa Zorana; Socha, Jaroslaw; Thom, Dominik; Vuletic, Dijana; Zudin, Sergey; Schelhaas, Mart‐Jan;AbstractOver the last decades, the natural disturbance is increasingly putting pressure on European forests. Shifts in disturbance regimes may compromise forest functioning and the continuous provisioning of ecosystem services to society, including their climate change mitigation potential. Although forests are central to many European policies, we lack the long‐term empirical data needed for thoroughly understanding disturbance dynamics, modeling them, and developing adaptive management strategies. Here, we present a unique database of >170,000 records of ground‐based natural disturbance observations in European forests from 1950 to 2019. Reported data confirm a significant increase in forest disturbance in 34 European countries, causing on an average of 43.8 million m3 of disturbed timber volume per year over the 70‐year study period. This value is likely a conservative estimate due to under‐reporting, especially of small‐scale disturbances. We used machine learning techniques for assessing the magnitude of unreported disturbances, which are estimated to be between 8.6 and 18.3 million m3/year. In the last 20 years, disturbances on average accounted for 16% of the mean annual harvest in Europe. Wind was the most important disturbance agent over the study period (46% of total damage), followed by fire (24%) and bark beetles (17%). Bark beetle disturbance doubled its share of the total damage in the last 20 years. Forest disturbances can profoundly impact ecosystem services (e.g., climate change mitigation), affect regional forest resource provisioning and consequently disrupt long‐term management planning objectives and timber markets. We conclude that adaptation to changing disturbance regimes must be placed at the core of the European forest management and policy debate. Furthermore, a coherent and homogeneous monitoring system of natural disturbances is urgently needed in Europe, to better observe and respond to the ongoing changes in forest disturbance regimes.
Global Change Biolog... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2023License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2023Full-Text: https://freidok.uni-freiburg.de/data/245027Data sources: Bielefeld Academic Search Engine (BASE)dCOBISS.SI Digital RepositoryArticle . 2022License: CC BY NC NDData sources: dCOBISS.SI Digital RepositoryRepository of the University of LjubljanaArticle . 2022Data sources: Repository of the University of LjubljanaWageningen Staff PublicationsArticle . 2023License: CC BY NC NDData sources: Wageningen Staff PublicationsOmorika - Repository of the Faculty of Forestry, BelgradeArticle . 2023Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 216 citations 216 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2023License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2023Full-Text: https://freidok.uni-freiburg.de/data/245027Data sources: Bielefeld Academic Search Engine (BASE)dCOBISS.SI Digital RepositoryArticle . 2022License: CC BY NC NDData sources: dCOBISS.SI Digital RepositoryRepository of the University of LjubljanaArticle . 2022Data sources: Repository of the University of LjubljanaWageningen Staff PublicationsArticle . 2023License: CC BY NC NDData sources: Wageningen Staff PublicationsOmorika - Repository of the Faculty of Forestry, BelgradeArticle . 2023Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Wiley Authors: Werner Rammer; Dominik Thom; Rupert Seidl;AbstractThe rates of anthropogenic climate change substantially exceed those at which forest ecosystems – dominated by immobile, long‐lived organisms – are able to adapt. The resulting maladaptation of forests has potentially detrimental effects on ecosystem functioning. Furthermore, as many forest‐dwelling species are highly dependent on the prevailing tree species, a delayed response of the latter to a changing climate can contribute to an extinction debt and mask climate‐induced biodiversity loss. However, climate change will likely also intensify forest disturbances. Here, we tested the hypothesis that disturbances foster the reorganization of ecosystems and catalyze the adaptation of forest composition to climate change. Our specific objectives were (i) to quantify the rate of autonomous forest adaptation to climate change, (ii) examine the role of disturbance in the adaptation process, and (iii) investigate spatial differences in climate‐induced species turnover in an unmanaged mountain forest landscape (Kalkalpen National Park, Austria). Simulations with a process‐based forest landscape model were performed for 36 unique combinations of climate and disturbance scenarios over 1000 years. We found that climate change strongly favored European beech and oak species (currently prevailing in mid‐ to low‐elevation areas), with novel species associations emerging on the landscape. Yet, it took between 357 and 706 years before the landscape attained a dynamic equilibrium with the climate system. Disturbances generally catalyzed adaptation and decreased the time needed to attain equilibrium by up to 211 years. However, while increasing disturbance frequency and severity accelerated adaptation, increasing disturbance size had the opposite effect. Spatial analyses suggest that particularly the lowest and highest elevation areas will be hotspots of future species change. We conclude that the growing maladaptation of forests to climate and the long lead times of autonomous adaptation need to be considered more explicitly in the ongoing efforts to safeguard biodiversity and ecosystem services provisioning.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 132 citations 132 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 AustriaPublisher:Elsevier BV Uta Schirpke; Erich Tasser; Stefan Borsky; Martin Braun; Josef Eitzinger; Veronika Gaube; Michael Getzner; Stephan Glatzel; Thomas Gschwantner; Mathias Kirchner; Georg Leitinger; Bano Mehdi-Schulz; Hermine Mitter; Helfried Scheifinger; Sabina Thaler; Dominik Thom; Thomas Thaler;pmid: 37536130
Environmental and socio-economic developments induce land-use changes with potentially negative impacts on human well-being. To counteract undesired developments, a profound understanding of the complex relationships between drivers, land use, and ecosystem services is needed. Yet, national studies examining extended time periods are still rare. Based on the Special Report on land use, land management and climate change by the Austrian Panel on Climate Change (APCC), we use the Driver-Pressure-State-Impact-Response (DPSIR) framework to (1) identify the main drivers of land-use change, (2) describe past and future land-use changes in Austria between 1950 and 2100, (3) report related impacts on ecosystem services, and (4) discuss management responses. Our findings indicate that socio-economic drivers (e.g., economic growth, political systems, and technological developments) have influenced past land-use changes the most. The intensification of agricultural land use and urban sprawl have primarily led to declining ecosystem services in the lowlands. In mountain regions, the abandonment of mountain grassland has prompted a shift from provisioning to regulating services. However, simulations indicate that accelerating climate change will surpass socio-economic drivers in significance towards the end of this century, particularly in intensively used agricultural areas. Although climate change-induced impacts on ecosystem services remain uncertain, it can be expected that the range of land-use management options will be restricted in the future. Consequently, policymaking should prioritize the development of integrated land-use planning to safeguard ecosystem services, accounting for future environmental and socio-economic uncertainties.
IIASA DARE arrow_drop_down Journal of Environmental ManagementArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2023.118728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 49 citations 49 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IIASA DARE arrow_drop_down Journal of Environmental ManagementArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2023.118728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United States, Australia, United StatesPublisher:Wiley Dominik Thom; Marina Golivets; Laura Edling; Garrett W. Meigs; Jesse D. Gourevitch; Laura J. Sonter; Gillian L. Galford; William S. Keeton;doi: 10.1111/gcb.14656
pmid: 30985960
AbstractClimate change threatens the provisioning of forest ecosystem services and biodiversity (ESB). The climate sensitivity of ESB may vary with forest development from young to old‐growth conditions as structure and composition shift over time and space. This study addresses knowledge gaps hindering implementation of adaptive forest management strategies to sustain ESB. We focused on a number of ESB indicators to (a) analyze associations among carbon storage, timber growth rate, and species richness along a forest development gradient; (b) test the sensitivity of these associations to climatic changes; and (c) identify hotspots of climate sensitivity across the boreal–temperate forests of eastern North America. From pre‐existing databases and literature, we compiled a unique dataset of 18,507 forest plots. We used a full Bayesian framework to quantify responses of nine ESB indicators. The Bayesian models were used to assess the sensitivity of these indicators and their associations to projected increases in temperature and precipitation. We found the strongest association among the investigated ESB indicators in old forests (>170 years). These forests simultaneously support high levels of carbon storage, timber growth, and species richness. Older forests also exhibit low climate sensitivity of associations among ESB indicators as compared to younger forests. While regions with a currently low combined ESB performance benefitted from climate change, regions with a high ESB performance were particularly vulnerable to climate change. In particular, climate sensitivity was highest east and southeast of the Great Lakes, signaling potential priority areas for adaptive management. Our findings suggest that strategies aimed at enhancing the representation of older forest conditions at landscape scales will help sustain ESB in a changing world.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Vermont: ScholarWorks @ UVMArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14656&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 57 citations 57 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Vermont: ScholarWorks @ UVMArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14656&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 GermanyPublisher:Wiley Funded by:EC | FORWARDEC| FORWARDBraziunas, Kristin H.; Geres, Lisa; Richter, Tobias; Glasmann, Felix; Senf, Cornelius; Thom, Dominik; Seibold, Sebastian; Seidl, Rupert;doi: 10.1111/gcb.17121
pmid: 38273493
AbstractMountain forests are plant diversity hotspots, but changing climate and increasing forest disturbances will likely lead to far‐reaching plant community change. Projecting future change, however, is challenging for forest understory plants, which respond to forest structure and composition as well as climate. Here, we jointly assessed the effects of both climate and forest change, including wind and bark beetle disturbances, using the process‐based simulation model iLand in a protected landscape in the northern Alps (Berchtesgaden National Park, Germany), asking: (1) How do understory plant communities respond to 21st‐century change in a topographically complex mountain landscape, representing a hotspot of plant species richness? (2) How important are climatic changes (i.e., direct climate effects) versus forest structure and composition changes (i.e., indirect climate effects and recovery from past land use) in driving understory responses at landscape scales? Stacked individual species distribution models fit with climate, forest, and soil predictors (248 species currently present in the landscape, derived from 150 field plots stratified by elevation and forest development, overall area under the receiving operator characteristic curve = 0.86) were driven with projected climate (RCP4.5 and RCP8.5) and modeled forest variables to predict plant community change. Nearly all species persisted in the landscape in 2050, but on average 8% of the species pool was lost by the end of the century. By 2100, landscape mean species richness and understory cover declined (−13% and −8%, respectively), warm‐adapted species increasingly dominated plant communities (i.e., thermophilization, +12%), and plot‐level turnover was high (62%). Subalpine forests experienced the greatest richness declines (−16%), most thermophilization (+17%), and highest turnover (67%), resulting in plant community homogenization across elevation zones. Climate rather than forest change was the dominant driver of understory responses. The magnitude of unabated 21st‐century change is likely to erode plant diversity in a species richness hotspot, calling for stronger conservation and climate mitigation efforts.
Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Germany, GermanyPublisher:Wiley Funded by:EC | FORWARDEC| FORWARDDominik Thom; Werner Rammer; Patrick Laux; Gerhard Smiatek; Harald Kunstmann; Sebastian Seibold; Rupert Seidl;pmid: 35170829
AbstractObservational evidence suggests that forests in the Northern Alps are changing at an increasing rate as a consequence of climate change. Yet, it remains unclear whether the acceleration of forest change will continue in the future, or whether downregulating feedbacks will eventually decouple forest dynamics from climate change. Here we studied future forest dynamics at Berchtesgaden National Park, Germany by means of a process‐based forest landscape model, simulating an ensemble of 22 climate projections until the end of the 21st century. Our objectives were (i) to assess whether the observed acceleration of forest dynamics will continue in the future, (ii) to analyze how uncertainty in future climate translates to variation in future forest disturbance, structure, and composition, and (iii) to determine the main drivers of future forest dynamics. We found that forest dynamics continue to accelerate in the coming decades, with a trend towards denser, structurally more complex and more species rich forests. However, changes in forest structure leveled off in the second half of the 21st century regardless of climate scenario. In contrast, climate scenarios caused trajectories of tree species change to diverge in the second half of the 21st century, with stabilization under RCP 2.6 and RCP 4.5 scenarios and accelerated loss of conifers under RCP 8.5. Disturbance projections were 3 to 20 times more variable than future climate, whereas projected future forest structure and composition varied considerably less than climate. Indirect effects of climate change via alterations of the disturbance regime had a stronger impact on future forest dynamics than direct effects. Our findings suggest that dampening feedbacks within forest dynamics will decelerate forest change in the second half of the 21st century. However, warming beyond the levels projected under RCP 4.5 might profoundly alter future forest disturbance and composition, challenging conservation efforts and ecosystem service supply.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu