- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Finland, FinlandPublisher:American Chemical Society (ACS) Funded by:AKA | Proton powered motors: le..., AKA | Genes or environment: How..., EC | BioExcel-2AKA| Proton powered motors: learning from biology with multi-scale modeling (PROTOMOT) ,AKA| Genes or environment: How the protein surroundings affects their function. ,EC| BioExcel-2Buslaev, Pavel; Jansen, Anton; Bauer, Paul; Groenhof, Gerrit; Hess; Berk; Aho, Noora;Molecular dynamics (MD) computer simulations are used routinely to compute atomistic trajectories of complex systems. Systems are simulated in various ensembles, depending on the experimental conditions one aims to mimic. While constant energy, temperature, volume, and pressure are rather straightforward to model, pH, which is an equally important parameter in experiments, is more difficult to account for in simulations. Although a constant pH algorithm based on the $\lambda$-dynamics approach by Brooks and co-workers was implemented in a fork of the GROMACS molecular dynamics program, uptake has been rather limited, presumably due to the poor scaling of that code with respect to the number of titratable sites. To overcome this limitation, we implemented an alternative scheme for interpolating the Hamiltonians of the protonation states that makes the constant pH molecular dynamics simulations almost as fast as a normal MD simulation with GROMACS. In addition, we implemented a simpler scheme, called multisite representation, for modeling side chains with multiple titratable sites, such as imidazole rings. This scheme, which is based on constraining the sum of the $\lambda$-coordinates, not only reduces the complexity associated with parameterizing the intra-molecular interactions between the sites, but is also easily extendable to other molecules with multiple titratable sites. With the combination of a more efficient interpolation scheme and multisite representation of titratable groups, we anticipate a rapid uptake of constant pH molecular dynamics simulations within the GROMACS user community.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.26434/chemr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Chemical Theory and ComputationArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.26434/chemr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefJyväskylä University Digital ArchiveArticle . 2022 . Peer-reviewedData sources: Jyväskylä University Digital Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26434/chemrxiv-2022-n025t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.26434/chemr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Chemical Theory and ComputationArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.26434/chemr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefJyväskylä University Digital ArchiveArticle . 2022 . Peer-reviewedData sources: Jyväskylä University Digital Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26434/chemrxiv-2022-n025t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Australia, Germany, Finland, Australia, Denmark, FinlandPublisher:Springer Science and Business Media LLC Funded by:NSF | Biology with X-ray Lasers, EC | XLASERSNSF| Biology with X-ray Lasers ,EC| XLASERSErik Malmerberg; Mengning Liang; Kasper S. Kjær; Kasper S. Kjær; Richard Neutze; Sebastian Westenhoff; Sadia Bari; Thomas A. White; Ilme Schlichting; Uwe Weierstall; Jan Davidsson; Matthias Frank; Andrew Aquila; Peter Berntsen; Henry N. Chapman; Raimund Fromme; Linda C. Johansson; Daniel P. DePonte; Martin Nielsen; Richard A. Kirian; Marc Messerschmidt; John C. H. Spence; Michael J. Bogan; Jennie Sjöhamn; Anton Barty; Ingo Grotjohann; Despina Milathianaki; David Arnlund; Andrew V. Martin; Petra Fromme; Mark S. Hunter; Gergely Katona; Cecilia Wickstrand; Irina Kosheleva; Robert L. Shoeman; Nadia A. Zatsepin; Robert Henning; Francesco Stellato; M. Marvin Seibert; Daniel James; Dingjie Wang; Sébastien Boutet; Gerrit Groenhof; R. Bruce Doak; Christopher Kupitz; Tim Brandt van Driel; Garth J. Williams;We describe a method to measure ultrafast protein structural changes using time-resolved wide-angle X-ray scattering at an X-ray free-electron laser. We demonstrated this approach using multiphoton excitation of the Blastochloris viridis photosynthetic reaction center, observing an ultrafast global conformational change that arises within picoseconds and precedes the propagation of heat through the protein. This provides direct structural evidence for a 'protein quake': the hypothesis that proteins rapidly dissipate energy through quake-like structural motions.
Nature Methods arrow_drop_down Jyväskylä University Digital ArchiveArticle . 2014 . Peer-reviewedData sources: Jyväskylä University Digital ArchivePublikationenserver der Georg-August-Universität GöttingenArticle . 2022University of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/nmet...Article . Peer-reviewedData sources: European Union Open Data PortalSwinburne University of Technology: Swinburne Research BankArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nmeth.3067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 184 citations 184 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Methods arrow_drop_down Jyväskylä University Digital ArchiveArticle . 2014 . Peer-reviewedData sources: Jyväskylä University Digital ArchivePublikationenserver der Georg-August-Universität GöttingenArticle . 2022University of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/nmet...Article . Peer-reviewedData sources: European Union Open Data PortalSwinburne University of Technology: Swinburne Research BankArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nmeth.3067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Finland, FinlandPublisher:American Chemical Society (ACS) Funded by:AKA | Proton powered motors: le..., AKA | Genes or environment: How..., EC | BioExcel-2AKA| Proton powered motors: learning from biology with multi-scale modeling (PROTOMOT) ,AKA| Genes or environment: How the protein surroundings affects their function. ,EC| BioExcel-2Buslaev, Pavel; Jansen, Anton; Bauer, Paul; Groenhof, Gerrit; Hess; Berk; Aho, Noora;Molecular dynamics (MD) computer simulations are used routinely to compute atomistic trajectories of complex systems. Systems are simulated in various ensembles, depending on the experimental conditions one aims to mimic. While constant energy, temperature, volume, and pressure are rather straightforward to model, pH, which is an equally important parameter in experiments, is more difficult to account for in simulations. Although a constant pH algorithm based on the $\lambda$-dynamics approach by Brooks and co-workers was implemented in a fork of the GROMACS molecular dynamics program, uptake has been rather limited, presumably due to the poor scaling of that code with respect to the number of titratable sites. To overcome this limitation, we implemented an alternative scheme for interpolating the Hamiltonians of the protonation states that makes the constant pH molecular dynamics simulations almost as fast as a normal MD simulation with GROMACS. In addition, we implemented a simpler scheme, called multisite representation, for modeling side chains with multiple titratable sites, such as imidazole rings. This scheme, which is based on constraining the sum of the $\lambda$-coordinates, not only reduces the complexity associated with parameterizing the intra-molecular interactions between the sites, but is also easily extendable to other molecules with multiple titratable sites. With the combination of a more efficient interpolation scheme and multisite representation of titratable groups, we anticipate a rapid uptake of constant pH molecular dynamics simulations within the GROMACS user community.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.26434/chemr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Chemical Theory and ComputationArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.26434/chemr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefJyväskylä University Digital ArchiveArticle . 2022 . Peer-reviewedData sources: Jyväskylä University Digital Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26434/chemrxiv-2022-n025t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.26434/chemr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Chemical Theory and ComputationArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.26434/chemr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefJyväskylä University Digital ArchiveArticle . 2022 . Peer-reviewedData sources: Jyväskylä University Digital Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26434/chemrxiv-2022-n025t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Australia, Germany, Finland, Australia, Denmark, FinlandPublisher:Springer Science and Business Media LLC Funded by:NSF | Biology with X-ray Lasers, EC | XLASERSNSF| Biology with X-ray Lasers ,EC| XLASERSErik Malmerberg; Mengning Liang; Kasper S. Kjær; Kasper S. Kjær; Richard Neutze; Sebastian Westenhoff; Sadia Bari; Thomas A. White; Ilme Schlichting; Uwe Weierstall; Jan Davidsson; Matthias Frank; Andrew Aquila; Peter Berntsen; Henry N. Chapman; Raimund Fromme; Linda C. Johansson; Daniel P. DePonte; Martin Nielsen; Richard A. Kirian; Marc Messerschmidt; John C. H. Spence; Michael J. Bogan; Jennie Sjöhamn; Anton Barty; Ingo Grotjohann; Despina Milathianaki; David Arnlund; Andrew V. Martin; Petra Fromme; Mark S. Hunter; Gergely Katona; Cecilia Wickstrand; Irina Kosheleva; Robert L. Shoeman; Nadia A. Zatsepin; Robert Henning; Francesco Stellato; M. Marvin Seibert; Daniel James; Dingjie Wang; Sébastien Boutet; Gerrit Groenhof; R. Bruce Doak; Christopher Kupitz; Tim Brandt van Driel; Garth J. Williams;We describe a method to measure ultrafast protein structural changes using time-resolved wide-angle X-ray scattering at an X-ray free-electron laser. We demonstrated this approach using multiphoton excitation of the Blastochloris viridis photosynthetic reaction center, observing an ultrafast global conformational change that arises within picoseconds and precedes the propagation of heat through the protein. This provides direct structural evidence for a 'protein quake': the hypothesis that proteins rapidly dissipate energy through quake-like structural motions.
Nature Methods arrow_drop_down Jyväskylä University Digital ArchiveArticle . 2014 . Peer-reviewedData sources: Jyväskylä University Digital ArchivePublikationenserver der Georg-August-Universität GöttingenArticle . 2022University of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/nmet...Article . Peer-reviewedData sources: European Union Open Data PortalSwinburne University of Technology: Swinburne Research BankArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nmeth.3067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 184 citations 184 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Methods arrow_drop_down Jyväskylä University Digital ArchiveArticle . 2014 . Peer-reviewedData sources: Jyväskylä University Digital ArchivePublikationenserver der Georg-August-Universität GöttingenArticle . 2022University of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1038/nmet...Article . Peer-reviewedData sources: European Union Open Data PortalSwinburne University of Technology: Swinburne Research BankArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nmeth.3067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu