- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024 United Kingdom, FrancePublisher:Proceedings of the National Academy of Sciences Funded by:FCT | LA 1, ARC | Australian Laureate Fello..., NSF | CNH-L: Interactive Dynami... +1 projectsFCT| LA 1 ,ARC| Australian Laureate Fellowships - Grant ID: FL230100201 ,NSF| CNH-L: Interactive Dynamics of Reef Fisheries and Human Health ,FCT| LA 22Iain R. Caldwell; Tim R. McClanahan; Remy M. Oddenyo; Nicholas A.J. Graham; Maria Beger; Laurent Vigliola; Stuart A. Sandin; Alan M. Friedlander; Bemahafaly Randriamanantsoa; Laurent Wantiez; Alison L. Green; Austin T. Humphries; Marah J. Hardt; Jennifer E. Caselle; David A. Feary; Rucha Karkarey; Catherine Jadot; Andrew S. Hoey; Jacob G. Eurich; Shaun K. Wilson; Nicole Crane; Mark Tupper; Sebastian C.A. Ferse; Eva Maire; David Mouillot; Joshua E. Cinner;The amount of ocean protected from fishing and other human impacts has often been used as a metric of conservation progress. However, protection efforts have highly variable outcomes that depend on local conditions, which makes it difficult to quantify what coral reef protection efforts to date have actually achieved at a global scale. Here, we develop a predictive model of how local conditions influence conservation outcomes on ~2,600 coral reef sites across 44 ecoregions, which we used to quantify how much more fish biomass there is on coral reefs compared to a modeled scenario with no protection. Under the assumptions of our model, our study reveals that without existing protection efforts there would be ~10% less fish biomass on coral reefs. Thus, we estimate that coral reef protection efforts have led to approximately 1 in every 10 kg of existing fish biomass.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2024Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2308605121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2024Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2308605121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Australia, France, Australia, United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | ENVISION: Developing next...UKRI| ENVISION: Developing next generation leaders in environmental scienceJeneen Hadj-Hammou; Joshua E. Cinner; Diego R. Barneche; Iain R. Caldwell; David Mouillot; James P. W. Robinson; Nina M. D. Schiettekatte; Alexandre C. Siqueira; Brett M. Taylor; Nicholas A. J. Graham;AbstractFish fecundity scales hyperallometrically with body mass, meaning larger females produce disproportionately more eggs than smaller ones. We explore this relationship beyond the species-level to estimate the “reproductive potential” of 1633 coral reef sites distributed globally. We find that, at the site-level, reproductive potential scales hyperallometrically with assemblage biomass, but with a smaller median exponent than at the species-level. Across all families, modelled reproductive potential is greater in fully protected sites versus fished sites. This difference is most pronounced for the important fisheries family, Serranidae. When comparing a scenario where 30% of sites are randomly fully protected to a current protection scenario, we estimate an increase in the reproductive potential of all families, and particularly for Serranidae. Such results point to the possible ecological benefits of the 30 × 30 global conservation target and showcase management options to promote the sustainability of population replenishment.
Nature Communication... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2024Data sources: ArchiMer - Institutional Archive of IfremerEdith Cowan University (ECU, Australia): Research OnlineArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-50367-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nature Communication... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2024Data sources: ArchiMer - Institutional Archive of IfremerEdith Cowan University (ECU, Australia): Research OnlineArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-50367-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Report 2022Embargo end date: 18 Jul 2022 Australia, Australia, Germany, France, France, Canada, Australia, Australia, Australia, United States, United States, France, Austria, Spain, FrancePublisher:Springer Science and Business Media LLC Funded by:ARC | Discovery Early Career Re..., ARC | Discovery Projects - Gran..., NSERC +3 projectsARC| Discovery Early Career Researcher Award - Grant ID: DE210101918 ,ARC| Discovery Projects - Grant ID: DP110101540 ,NSERC ,ARC| How can communities sustainably manage coral reefs? ,ARC| Future Fellowships - Grant ID: FT160100047 ,ARC| ARC Centres of Excellences - Grant ID: CE140100020Joshua E. Cinner; Iain R. Caldwell; Lauric Thiault; John Ben; Julia L. Blanchard; Marta Coll; Amy Diedrich; Tyler D. Eddy; Jason D. Everett; Christian Folberth; Didier Gascuel; Jérôme Guiet; Georgina G. Gurney; Ryan Heneghan; Jonas Jägermeyr; Narriman Jiddawi; Rachael Lahari; John Kuange; Wenfeng Liu; Olivier Maury; Christoph Müller; Camilla Novaglio; Juliano Palacios‐Abrantes; Colleen M. Petrik; Ando Rabearisoa; Derek Tittensor; Andrew Wamukota; Richard Β. Pollnac;doi: 10.1038/s41467-022-30991-4 , 10.21203/rs.3.rs-1620392/v1 , 10.60692/kn667-x6j26 , 10.60692/eaj3q-g7706 , 10.34657/8801
pmid: 35790744
pmc: PMC9256605
handle: 10261/279290 , 10072/429163
doi: 10.1038/s41467-022-30991-4 , 10.21203/rs.3.rs-1620392/v1 , 10.60692/kn667-x6j26 , 10.60692/eaj3q-g7706 , 10.34657/8801
pmid: 35790744
pmc: PMC9256605
handle: 10261/279290 , 10072/429163
AbstractClimate change is expected to profoundly affect key food production sectors, including fisheries and agriculture. However, the potential impacts of climate change on these sectors are rarely considered jointly, especially below national scales, which can mask substantial variability in how communities will be affected. Here, we combine socioeconomic surveys of 3,008 households and intersectoral multi-model simulation outputs to conduct a sub-national analysis of the potential impacts of climate change on fisheries and agriculture in 72 coastal communities across five Indo-Pacific countries (Indonesia, Madagascar, Papua New Guinea, Philippines, and Tanzania). Our study reveals three key findings: First, overall potential losses to fisheries are higher than potential losses to agriculture. Second, while most locations (> 2/3) will experience potential losses to both fisheries and agriculture simultaneously, climate change mitigation could reduce the proportion of places facing that double burden. Third, potential impacts are more likely in communities with lower socioeconomic status.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10072/429163Data sources: Bielefeld Academic Search Engine (BASE)Memorial University of Newfoundland: Research RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/2z5121cbData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/6kb2x45jData sources: Bielefeld Academic Search Engine (BASE)University of Rhode Island: DigitalCommons@URIArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2022Full-Text: https://doi.org/10.1038/s41467-022-30991-4Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAReport . 2022License: CC BY NC SAData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaQueensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-30991-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 52visibility views 52 download downloads 181 Powered bymore_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10072/429163Data sources: Bielefeld Academic Search Engine (BASE)Memorial University of Newfoundland: Research RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/2z5121cbData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/6kb2x45jData sources: Bielefeld Academic Search Engine (BASE)University of Rhode Island: DigitalCommons@URIArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2022Full-Text: https://doi.org/10.1038/s41467-022-30991-4Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAReport . 2022License: CC BY NC SAData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaQueensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-30991-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 AustraliaPublisher:Public Library of Science (PLoS) Mora, Camilo; Caldwell, Iain R.; Caldwell, Jamie M.; Fisher, Micah R.; Genco, Brandon M.; Running, Steven W.;Ongoing climate change can alter conditions for plant growth, in turn affecting ecological and social systems. While there have been considerable advances in understanding the physical aspects of climate change, comprehensive analyses integrating climate, biological, and social sciences are less common. Here we use climate projections under alternative mitigation scenarios to show how changes in environmental variables that limit plant growth could impact ecosystems and people. We show that although the global mean number of days above freezing will increase by up to 7% by 2100 under "business as usual" (representative concentration pathway [RCP] 8.5), suitable growing days will actually decrease globally by up to 11% when other climatic variables that limit plant growth are considered (i.e., temperature, water availability, and solar radiation). Areas in Russia, China, and Canada are projected to gain suitable plant growing days, but the rest of the world will experience losses. Notably, tropical areas could lose up to 200 suitable plant growing days per year. These changes will impact most of the world's terrestrial ecosystems, potentially triggering climate feedbacks. Human populations will also be affected, with up to ~2,100 million of the poorest people in the world (~30% of the world's population) highly vulnerable to changes in the supply of plant-related goods and services. These impacts will be spatially variable, indicating regions where adaptations will be necessary. Changes in suitable plant growing days are projected to be less severe under strong and moderate mitigation scenarios (i.e., RCP 2.6 and RCP 4.5), underscoring the importance of reducing emissions to avoid such disproportionate impacts on ecosystems and people.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.1002167&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 101 citations 101 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.1002167&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024 United Kingdom, FrancePublisher:Proceedings of the National Academy of Sciences Funded by:FCT | LA 1, ARC | Australian Laureate Fello..., NSF | CNH-L: Interactive Dynami... +1 projectsFCT| LA 1 ,ARC| Australian Laureate Fellowships - Grant ID: FL230100201 ,NSF| CNH-L: Interactive Dynamics of Reef Fisheries and Human Health ,FCT| LA 22Iain R. Caldwell; Tim R. McClanahan; Remy M. Oddenyo; Nicholas A.J. Graham; Maria Beger; Laurent Vigliola; Stuart A. Sandin; Alan M. Friedlander; Bemahafaly Randriamanantsoa; Laurent Wantiez; Alison L. Green; Austin T. Humphries; Marah J. Hardt; Jennifer E. Caselle; David A. Feary; Rucha Karkarey; Catherine Jadot; Andrew S. Hoey; Jacob G. Eurich; Shaun K. Wilson; Nicole Crane; Mark Tupper; Sebastian C.A. Ferse; Eva Maire; David Mouillot; Joshua E. Cinner;The amount of ocean protected from fishing and other human impacts has often been used as a metric of conservation progress. However, protection efforts have highly variable outcomes that depend on local conditions, which makes it difficult to quantify what coral reef protection efforts to date have actually achieved at a global scale. Here, we develop a predictive model of how local conditions influence conservation outcomes on ~2,600 coral reef sites across 44 ecoregions, which we used to quantify how much more fish biomass there is on coral reefs compared to a modeled scenario with no protection. Under the assumptions of our model, our study reveals that without existing protection efforts there would be ~10% less fish biomass on coral reefs. Thus, we estimate that coral reef protection efforts have led to approximately 1 in every 10 kg of existing fish biomass.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2024Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2308605121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2024Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2308605121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Australia, France, Australia, United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | ENVISION: Developing next...UKRI| ENVISION: Developing next generation leaders in environmental scienceJeneen Hadj-Hammou; Joshua E. Cinner; Diego R. Barneche; Iain R. Caldwell; David Mouillot; James P. W. Robinson; Nina M. D. Schiettekatte; Alexandre C. Siqueira; Brett M. Taylor; Nicholas A. J. Graham;AbstractFish fecundity scales hyperallometrically with body mass, meaning larger females produce disproportionately more eggs than smaller ones. We explore this relationship beyond the species-level to estimate the “reproductive potential” of 1633 coral reef sites distributed globally. We find that, at the site-level, reproductive potential scales hyperallometrically with assemblage biomass, but with a smaller median exponent than at the species-level. Across all families, modelled reproductive potential is greater in fully protected sites versus fished sites. This difference is most pronounced for the important fisheries family, Serranidae. When comparing a scenario where 30% of sites are randomly fully protected to a current protection scenario, we estimate an increase in the reproductive potential of all families, and particularly for Serranidae. Such results point to the possible ecological benefits of the 30 × 30 global conservation target and showcase management options to promote the sustainability of population replenishment.
Nature Communication... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2024Data sources: ArchiMer - Institutional Archive of IfremerEdith Cowan University (ECU, Australia): Research OnlineArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-50367-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nature Communication... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2024Data sources: ArchiMer - Institutional Archive of IfremerEdith Cowan University (ECU, Australia): Research OnlineArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-024-50367-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Report 2022Embargo end date: 18 Jul 2022 Australia, Australia, Germany, France, France, Canada, Australia, Australia, Australia, United States, United States, France, Austria, Spain, FrancePublisher:Springer Science and Business Media LLC Funded by:ARC | Discovery Early Career Re..., ARC | Discovery Projects - Gran..., NSERC +3 projectsARC| Discovery Early Career Researcher Award - Grant ID: DE210101918 ,ARC| Discovery Projects - Grant ID: DP110101540 ,NSERC ,ARC| How can communities sustainably manage coral reefs? ,ARC| Future Fellowships - Grant ID: FT160100047 ,ARC| ARC Centres of Excellences - Grant ID: CE140100020Joshua E. Cinner; Iain R. Caldwell; Lauric Thiault; John Ben; Julia L. Blanchard; Marta Coll; Amy Diedrich; Tyler D. Eddy; Jason D. Everett; Christian Folberth; Didier Gascuel; Jérôme Guiet; Georgina G. Gurney; Ryan Heneghan; Jonas Jägermeyr; Narriman Jiddawi; Rachael Lahari; John Kuange; Wenfeng Liu; Olivier Maury; Christoph Müller; Camilla Novaglio; Juliano Palacios‐Abrantes; Colleen M. Petrik; Ando Rabearisoa; Derek Tittensor; Andrew Wamukota; Richard Β. Pollnac;doi: 10.1038/s41467-022-30991-4 , 10.21203/rs.3.rs-1620392/v1 , 10.60692/kn667-x6j26 , 10.60692/eaj3q-g7706 , 10.34657/8801
pmid: 35790744
pmc: PMC9256605
handle: 10261/279290 , 10072/429163
doi: 10.1038/s41467-022-30991-4 , 10.21203/rs.3.rs-1620392/v1 , 10.60692/kn667-x6j26 , 10.60692/eaj3q-g7706 , 10.34657/8801
pmid: 35790744
pmc: PMC9256605
handle: 10261/279290 , 10072/429163
AbstractClimate change is expected to profoundly affect key food production sectors, including fisheries and agriculture. However, the potential impacts of climate change on these sectors are rarely considered jointly, especially below national scales, which can mask substantial variability in how communities will be affected. Here, we combine socioeconomic surveys of 3,008 households and intersectoral multi-model simulation outputs to conduct a sub-national analysis of the potential impacts of climate change on fisheries and agriculture in 72 coastal communities across five Indo-Pacific countries (Indonesia, Madagascar, Papua New Guinea, Philippines, and Tanzania). Our study reveals three key findings: First, overall potential losses to fisheries are higher than potential losses to agriculture. Second, while most locations (> 2/3) will experience potential losses to both fisheries and agriculture simultaneously, climate change mitigation could reduce the proportion of places facing that double burden. Third, potential impacts are more likely in communities with lower socioeconomic status.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10072/429163Data sources: Bielefeld Academic Search Engine (BASE)Memorial University of Newfoundland: Research RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/2z5121cbData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/6kb2x45jData sources: Bielefeld Academic Search Engine (BASE)University of Rhode Island: DigitalCommons@URIArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2022Full-Text: https://doi.org/10.1038/s41467-022-30991-4Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAReport . 2022License: CC BY NC SAData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaQueensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-30991-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 52visibility views 52 download downloads 181 Powered bymore_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10072/429163Data sources: Bielefeld Academic Search Engine (BASE)Memorial University of Newfoundland: Research RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/2z5121cbData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/6kb2x45jData sources: Bielefeld Academic Search Engine (BASE)University of Rhode Island: DigitalCommons@URIArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2022Full-Text: https://doi.org/10.1038/s41467-022-30991-4Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAReport . 2022License: CC BY NC SAData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaQueensland University of Technology: QUT ePrintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-30991-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 AustraliaPublisher:Public Library of Science (PLoS) Mora, Camilo; Caldwell, Iain R.; Caldwell, Jamie M.; Fisher, Micah R.; Genco, Brandon M.; Running, Steven W.;Ongoing climate change can alter conditions for plant growth, in turn affecting ecological and social systems. While there have been considerable advances in understanding the physical aspects of climate change, comprehensive analyses integrating climate, biological, and social sciences are less common. Here we use climate projections under alternative mitigation scenarios to show how changes in environmental variables that limit plant growth could impact ecosystems and people. We show that although the global mean number of days above freezing will increase by up to 7% by 2100 under "business as usual" (representative concentration pathway [RCP] 8.5), suitable growing days will actually decrease globally by up to 11% when other climatic variables that limit plant growth are considered (i.e., temperature, water availability, and solar radiation). Areas in Russia, China, and Canada are projected to gain suitable plant growing days, but the rest of the world will experience losses. Notably, tropical areas could lose up to 200 suitable plant growing days per year. These changes will impact most of the world's terrestrial ecosystems, potentially triggering climate feedbacks. Human populations will also be affected, with up to ~2,100 million of the poorest people in the world (~30% of the world's population) highly vulnerable to changes in the supply of plant-related goods and services. These impacts will be spatially variable, indicating regions where adaptations will be necessary. Changes in suitable plant growing days are projected to be less severe under strong and moderate mitigation scenarios (i.e., RCP 2.6 and RCP 4.5), underscoring the importance of reducing emissions to avoid such disproportionate impacts on ecosystems and people.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.1002167&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 101 citations 101 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.1002167&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu