Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
21 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Matera FV; Sapienza C; orcid Andaloro L;
    Andaloro L
    ORCID
    Harvested from ORCID Public Data File

    Andaloro L in OpenAIRE
    orcid Dispenza G;
    Dispenza G
    ORCID
    Harvested from ORCID Public Data File

    Dispenza G in OpenAIRE
    +2 Authors

    CNR-ITAE is developing several hydrogen and fuel cell demonstration and research projects, each intended to be part of a larger strategy for hydrogen communities settling in small Sicilian islands. These projects involve vehicle design, hydrogen production from renewable energy sources and methane, as well as implementation strategies to develop a hydrogen and renewable energy economy. These zero emission lightweight vehicles feature regenerative braking and advanced power electronics to increase efficiency. Moreover, to achieve a very easy-to-use technology, a very simple interface between driver and the system is under development, including fault-recovery strategies and GPS positioning for car-rental fleets. Also marine applications have been included, with tests on PEFC applied on passenger ships and luxury yacht as power system for on-board loads. In marine application, it is under study also an electrolysis hydrogen generator system using seawater as hydrogen carrier. For stationary and automotive applications, the project includes a hydrogen refuelling station powered by renewable energy (wind or/and solar) and test on fuel processors fed with methane, in order to make the power generation self-sufficient, as well as to test the technology and increase public awareness toward clean energy sources. © 2008 International Association for Hydrogen Energy.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Hydrogen Energy
    Article . 2009 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2009
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IRIS Cnr
    Article . 2009
    Data sources: IRIS Cnr
    addClaim
    18
    citations18
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Hydrogen Energy
      Article . 2009 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2009
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IRIS Cnr
      Article . 2009
      Data sources: IRIS Cnr
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid De Lorenzo G;
    De Lorenzo G
    ORCID
    Harvested from ORCID Public Data File

    De Lorenzo G in OpenAIRE
    orcid Andaloro L;
    Andaloro L
    ORCID
    Harvested from ORCID Public Data File

    Andaloro L in OpenAIRE
    orcid bw Sergi F;
    Sergi F
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Sergi F in OpenAIRE
    orcid Napoli G;
    Napoli G
    ORCID
    Harvested from ORCID Public Data File

    Napoli G in OpenAIRE
    +2 Authors

    [object Object]

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Hydrogen Energy
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IRIS Cnr
    Article . 2014
    Data sources: IRIS Cnr
    CNR ExploRA
    Article . 2014
    Data sources: CNR ExploRA
    addClaim
    41
    citations41
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Hydrogen Energy
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IRIS Cnr
      Article . 2014
      Data sources: IRIS Cnr
      CNR ExploRA
      Article . 2014
      Data sources: CNR ExploRA
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: A Moschetto; F V Matera; orcid M Ferraro;
    M Ferraro
    ORCID
    Harvested from ORCID Public Data File

    M Ferraro in OpenAIRE
    orcid bw L Andaloro;
    L Andaloro
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    L Andaloro in OpenAIRE
    +2 Authors

    La stazione di prova (FCTS5PEM) è stata progettata per testare stack e sistemi PEFC alimentati ad idrogeno diretto con potenze comprese nel range 1-7 kW. L’impianto è totalmente automatizzato ed è possibile monitorare e controllare tutti i principali parametri funzionali di uno stack polimerico (flussi gas, pressioni, temperature, voltaggi dispositivi e singole celle, eccetera) grazie ad un software proprietario sviluppato in ambiente Labview. La stazione è stata destinata alla caratterizzazione di sistemi e stack PEFC Nuvera sia nell’ambito di attività progettuali finanziate (vedi FISR “Celle a combustibile”) che autofinanziate (realizzazione di un quadriciclo alimentato a FC).

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IRIS Cnr
    Other ORP type . 2006
    Data sources: IRIS Cnr
    CNR ExploRA
    Other ORP type . 2006
    Data sources: CNR ExploRA
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IRIS Cnr
      Other ORP type . 2006
      Data sources: IRIS Cnr
      CNR ExploRA
      Other ORP type . 2006
      Data sources: CNR ExploRA
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw G NAPOLI;
    G NAPOLI
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    G NAPOLI in OpenAIRE
    orcid bw L ANDALORO;
    L ANDALORO
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    L ANDALORO in OpenAIRE
    orcid bw F SERGI;
    F SERGI
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    F SERGI in OpenAIRE
    orcid bw N RANDAZZO;
    N RANDAZZO
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    N RANDAZZO in OpenAIRE
    +2 Authors

    With the requirements for reducing emissions and improving fuel economy, new markets have become attractive for automotive companies that are developing electric, hybrid, and plug-in vehicles using new technologies candidates to be implemented in the next generations of vehicles. Hybrid vehicles (HVs) offer improved fuel economy and take the advantage of existing fuel infrastructure but still depend entirely on petroleum to charge the battery pack. On the other hand, vehicles totally based on fuel cell (FC) have been proposed, but still face significant improvement above all for high cost that limit market penetration. A small FC used as on board batteries charge in a range extender approach allows reducing costs, weight and recharging time of batteries and, at the same time, to increase the range with respect to the equivalent electric vehicle. The vehicle selected for the prototype realization is an electric bus having a capacity of 44 passengers driven by an AC Induction Motor of 85 kW and supplied from an IGBT Mono Inverter via a Zebra battery bank (Na-NiCl2 technology). In the proposed configuration, a FC system of 5 kW works as batteries recharge and provides, following an identified strategy, the necessary power to the driving cycle to increase the autonomy of the vehicle. An advanced network of infrastructures, based on the use of RES, hydrogen and electricity storage (Na-NiCl2 technology has been selected also in this case) needed to support the bus have been provided. In order to make the balance between the electricity produced from renewable energy and the energy needed to the electrolyzer, the compressor and electric charging stations, equal to zero and to achieve a zero environmental impact, an energy management system integrated in the ICT platform has been envisaged.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2013
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IRIS Cnr
    Conference object . 2013
    Data sources: IRIS Cnr
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IRIS Cnr
    Conference object . 2013
    Data sources: IRIS Cnr
    CNR ExploRA
    Conference object . 2013
    Data sources: CNR ExploRA
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2013
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IRIS Cnr
      Conference object . 2013
      Data sources: IRIS Cnr
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IRIS Cnr
      Conference object . 2013
      Data sources: IRIS Cnr
      CNR ExploRA
      Conference object . 2013
      Data sources: CNR ExploRA
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Ferraro M;
    Ferraro M
    ORCID
    Harvested from ORCID Public Data File

    Ferraro M in OpenAIRE
    orcid Brunaccini G;
    Brunaccini G
    ORCID
    Harvested from ORCID Public Data File

    Brunaccini G in OpenAIRE
    orcid bw Sergi F;
    Sergi F
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Sergi F in OpenAIRE
    orcid Aloisio D;
    Aloisio D
    ORCID
    Harvested from ORCID Public Data File

    Aloisio D in OpenAIRE
    +2 Authors

    Nowadays, resilient grids meet growing interest for their capability of supplying critical load even in case of power fault coming from grid disturbance and natural disasters. To do this, such grids involve redundant apparatus and predictive control schemes. For high value services, unexpected system unavailability is source of economic losses to the providers. Hence, beside the internal energy storage devices, such plants had better to have redundancy of energy sources (e.g. electrical grid and natural gas network) and tailored power flows control strategies still valid even in the case of energy shortage. On the other hand, distributed storage resources is attracting growing interest to support the power networks in terms of both resiliency and flexibility facing the impact of generation from the Renewable Energy Sources. In this work, a power supply system controller based on Artificial Intelligence was developed and simulated to wisely operate the storage resources to serve the ICT equipment as Uninterruptible Power Supply (above all in case of emergency) as fundamental mission. Secondly, the investigation assessed the capability, to offer ancillary services to the power network increasing its resiliency measured system response in terms of survival time during grid faults and restoration transient time to recover initial service level.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Energy St...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Energy Storage
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IRIS Cnr
    Article . 2020
    Data sources: IRIS Cnr
    CNR ExploRA
    Article . 2020
    Data sources: CNR ExploRA
    addClaim
    29
    citations29
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Energy St...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Energy Storage
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IRIS Cnr
      Article . 2020
      Data sources: IRIS Cnr
      CNR ExploRA
      Article . 2020
      Data sources: CNR ExploRA
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Cusenza MA; orcid Guarino F;
    Guarino F
    ORCID
    Harvested from ORCID Public Data File

    Guarino F in OpenAIRE
    Longo S; orcid Ferraro M;
    Ferraro M
    ORCID
    Harvested from ORCID Public Data File

    Ferraro M in OpenAIRE
    +1 Authors

    According to recent literature and technical analyses, used batteries from electric vehicles can still be used, before the final treatment at the end-of-life, in stationary applications that are usually less stressing than the automotive ones. In this framework, a circular economy inspired pathway is emerging between the building and the transportation sector, generally called "second life" of batteries. Used batteries from electric vehicles can be re-used in residential buildings together with renewable electricity generation technologies to improve the matching between the highly variable electricity generation from renewables and the electricity demand in buildings. This study aims to contribute to the assessment of the environmental sustainability of using battery storage systems for stationary applications made of used batteries in substitution of new batteries in a life cycle perspective. The analysis is performed considering an expanded circular system that includes both the functions provided in buildings (provide the electricity required in a residential building for a specific time frame) and in the transportation sector (provide electricity needed for driving until the battery capacity reached about 80% of the rated capacity). The study shows that reusing used batteries as stationary storage systems in residential buildings can enhance the overall environmental sustainability of the two systems considered. In particular, the environmental impacts decrease of a percentage ranging from around -4% (in cumulative energy demand) to -17% (in abiotic depletion potential). The examined strategy can contribute to initiate the transition towards a circular and low-carbon economy.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Energy St...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Energy Storage
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IRIS Cnr
    Article . 2019
    Data sources: IRIS Cnr
    CNR ExploRA
    Article . 2019
    Data sources: CNR ExploRA
    addClaim
    109
    citations109
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Energy St...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Energy Storage
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IRIS Cnr
      Article . 2019
      Data sources: IRIS Cnr
      CNR ExploRA
      Article . 2019
      Data sources: CNR ExploRA
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw Sergi F;
    Sergi F
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Sergi F in OpenAIRE
    orcid bw Arista A;
    Arista A
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Arista A in OpenAIRE
    orcid bw Agnello G;
    Agnello G
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Agnello G in OpenAIRE
    orcid Ferraro M;
    Ferraro M
    ORCID
    Harvested from ORCID Public Data File

    Ferraro M in OpenAIRE
    +2 Authors

    Electrochemical storage systems are increasingly employed in stationary and automotive applications. The lithium-ion technology nowadays shows the best features and future development prospects. Nevertheless, lithium-ion chemistries are a lot and there is the need to know in deep their behaviour in relation to the final applications. Among the most used Lithium technologies, the CNR-ITAE has selected two different Lithium technologies: Lithium-Iron-Phosphate (LiFePO4) and Lithium-Polymers to be tested and compared. Indeed, several electrical vehicles developers and electrical network operators are choosing these specific chemistries for their safety, relatively low cost and flexibility in creating customized battery pack. This paper reports the results of several tests carried out in order to investigate the features of each battery technology for stationary and automotive applications. In particular, the capacity reduction (Peukert effect) and the cell efficiency were analysed. Furthermore, tests showed the different relax time effect and the dynamic behaviour of cells subjected to different load profiles compliant with IEC (International Electrotechnical Commission) tests procedures. A final analysis was carried out comparing the main performance indicators (Capacity, Amperometric and Energetic Efficiency, working temperatures, etc.)

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Energy St...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Energy Storage
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IRIS Cnr
    Article . 2016
    Data sources: IRIS Cnr
    CNR ExploRA
    Article . 2016
    Data sources: CNR ExploRA
    addClaim
    16
    citations16
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Energy St...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Energy Storage
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IRIS Cnr
      Article . 2016
      Data sources: IRIS Cnr
      CNR ExploRA
      Article . 2016
      Data sources: CNR ExploRA
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw G Squadrito;
    G Squadrito
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    G Squadrito in OpenAIRE
    orcid M Ferraro;
    M Ferraro
    ORCID
    Harvested from ORCID Public Data File

    M Ferraro in OpenAIRE
    orcid bw L Andaloro;
    L Andaloro
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    L Andaloro in OpenAIRE
    V Antonucci;

    Just few year ago the debate was about 20-30% of maximum contribution of Renewable Energy on electric grid. Today many EU countries reached the 20% RES contribution to electric power, and some countries reached also 30-40%. Today many countries in the world, not only in Europe, have as target to reach at the least 50% of renewable energy before 2030 or 2050, and the 100% electricity from RES is considered feasible. To reach these targets, availability of large energy storage systems is fundamental for matching production and consumption. Electrochemical storage allow to reach good efficiency and grant a fast response to grid loads. In the last few years large efforts have been dedicated to development/implementation of large batteries storage systems. Hydrogen production by electrolysis has been progressively less considered as storage system, and addressed mainly for car refuelling, because hydrogen continue to have a great appeal as future fuel for zero emission vehicles. In this scenario, hydrogen could play a role in future electrochemical storage of RES power? What could be the advantage and drawback of RES power storage by electrolysis for hydrogen production? In our studies for smart grids and smart cities, we consider the electrochemical energy storage of renewable electricity a basic part of the smart power systems. Hydrogen is a part of this storage that cannot be neglected, because it could allow to link three very important nets in Europe: the electric grid, the car refuelling network and the natural gas distribution network.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IRIS Cnr
    Other ORP type . 2015
    Data sources: IRIS Cnr
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IRIS Cnr
      Other ORP type . 2015
      Data sources: IRIS Cnr
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw G Squadrito;
    G Squadrito
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    G Squadrito in OpenAIRE
    orcid M Ferraro;
    M Ferraro
    ORCID
    Harvested from ORCID Public Data File

    M Ferraro in OpenAIRE
    orcid bw L Andaloro;
    L Andaloro
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    L Andaloro in OpenAIRE
    orcid bw F Sergi;
    F Sergi
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    F Sergi in OpenAIRE
    +2 Authors

    Whole Mediterranean area has a great potential of renewable energy production both for home and export use. This energy has to be transported and distributed to users, sometime on very long distances. Electric energy generated by PV, wind and concentrated solar is simple to be managed where the electric grid already exist and this could appears as the natural choice for Renewable Energy Sources (RES) deployment. But this approach has some limitation especially for transportation application and for energy supply in location far from the existing grid. Hydrogen storage linked with fuel cells application will allow to overcome these limitation, so that fuel cells and hydrogen could be seen as an additional wheel to the development of RES technologies application. For the future we foresee the large utilisation of the hydrogen coupled with electric grid not in competition but in symbiosis, also if residual competition could exist in some market areas. Our research activities and scientific collaboration are addressed by this vision since more than twenty years. In our presentation we expose recent activities in hydrogen and fuel cell systems development and the main project we run according to our vision, including ETRERA project carried out in collaboration with Tunisian CRTEn research centre.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IRIS Cnr
    Other ORP type . 2012
    Data sources: IRIS Cnr
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IRIS Cnr
      Other ORP type . 2012
      Data sources: IRIS Cnr
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid G Dispenza;
    G Dispenza
    ORCID
    Harvested from ORCID Public Data File

    G Dispenza in OpenAIRE
    orcid L Andaloro;
    L Andaloro
    ORCID
    Harvested from ORCID Public Data File

    L Andaloro in OpenAIRE
    orcid bw F Sergi;
    F Sergi
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    F Sergi in OpenAIRE
    orcid G Napoli;
    G Napoli
    ORCID
    Harvested from ORCID Public Data File

    G Napoli in OpenAIRE
    +2 Authors

    The H-BUS is a joint project of National Research Council of Italy and two supplier companies to develop a range extender Fuel Cell/Battery Hybrid Electric city bus. Within the project, CNR ITAE Institute is involved in determining the optimal level of hybridization assessing all boundary conditions (mission, performances, hydrogen consuption, range, etc...). The paper reports the characterization results of the hybrid system which allowed the identification of the power and energy consumption. These data were the starting points to define the size of Batteries and Fuel Cell (FC) system and to optimize the batteries State of Charge (SoC). PEM (Polymer Electrolyte Membrane) and ZEBRA® (Zero Emission Battery Research Activities) technologies have been selected for the fuel cell system and batteries, respectively.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ECS Transactionsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ECS Transactions
    Article . 2012 . Peer-reviewed
    License: IOP Copyright Policies
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IRIS Cnr
    Article . 2012
    Data sources: IRIS Cnr
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IRIS Cnr
    Conference object . 2011
    Data sources: IRIS Cnr
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IRIS Cnr
    Conference object . 2011
    Data sources: IRIS Cnr
    CNR ExploRA
    Conference object . 2011
    Data sources: CNR ExploRA
    CNR ExploRA
    Article . 2012
    Data sources: CNR ExploRA
    CNR ExploRA
    Conference object . 2011
    Data sources: CNR ExploRA
    addClaim
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ECS Transactionsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ECS Transactions
      Article . 2012 . Peer-reviewed
      License: IOP Copyright Policies
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IRIS Cnr
      Article . 2012
      Data sources: IRIS Cnr
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IRIS Cnr
      Conference object . 2011
      Data sources: IRIS Cnr
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IRIS Cnr
      Conference object . 2011
      Data sources: IRIS Cnr
      CNR ExploRA
      Conference object . 2011
      Data sources: CNR ExploRA
      CNR ExploRA
      Article . 2012
      Data sources: CNR ExploRA
      CNR ExploRA
      Conference object . 2011
      Data sources: CNR ExploRA
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right
Powered by OpenAIRE graph