- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 SpainPublisher:MDPI AG Funded by:EC | SPIDEREC| SPIDERAuthors: Iratxe de Meatza; Imanol Landa-Medrano; Susan Sananes-Israel; Aitor Eguia-Barrio; +7 AuthorsIratxe de Meatza; Imanol Landa-Medrano; Susan Sananes-Israel; Aitor Eguia-Barrio; Oleksandr Bondarchuk; Silvia Lijó-Pando; Iker Boyano; Verónica Palomares; Teófilo Rojo; Hans-Jürgen Grande; Idoia Urdampilleta;Nickel-rich LiNi0.8Mn0.1Co0.1O2 (NMC811) is one of the most promising Li-ion battery cathode materials and has attracted the interest of the automotive industry. Nevertheless, storage conditions can affect its properties and performance. In this work, both NMC811 powder and electrodes were storage-aged for one year under room conditions. The aged powder was used to prepare electrodes, and the performance of these two aged samples was compared with reference fresh NMC811 electrodes in full Li-ion coin cells using graphite as a negative electrode. The cells were subjected to electrochemical as well as ante- and postmortem characterization. The performance of the electrodes from aged NM811 was beyond expectations: the cycling performance was high, and the power capability was the highest among the samples analyzed. Materials characterization revealed modifications in the crystal structure and the surface layer of the NMC811 during the storage and electrode processing steps. Differences between aged and fresh electrodes were explained by the formation of a resistive layer at the surface of the former. However, the ageing of NMC811 powder was significantly mitigated during the electrode processing step. These novel results are of interest to cell manufacturers for the widespread implementation of NMC811 as a state-of-the-art cathode material in Li-ion batteries.
Batteries arrow_drop_down BatteriesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2313-0105/8/8/79/pdfData sources: Multidisciplinary Digital Publishing InstituteBatteriesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2313-0105/8/8/79/pdfData sources: SygmaRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2022Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2022Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries8080079&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2313-0105/8/8/79/pdfData sources: Multidisciplinary Digital Publishing InstituteBatteriesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2313-0105/8/8/79/pdfData sources: SygmaRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2022Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2022Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries8080079&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:Wiley Ana Clara Rolandi; Cristina Pozo-Gonzalo; Iratxe de Meatza; Nerea Casado; David Mecerreyes; Maria Forsyth;The use of water‐soluble binders enables the transition to more sustainable batteries by the replacement of toxic N‐methyl‐2‐pyrrolidone (NMP) by water. Herein, two new fluorine‐free poly(ionic liquid)s are proposed as binders for LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes, based on poly(diallyldimethylammonium) (PDADMA) and two‐phosphate counter anions, which are recognized as effective corrosion inhibitors and electrolyte additives. Due to their high ionic conductivity (10−6 S cm−1 at 25 °C) and ability to prevent degradation of NMC811 particles, the PDADMA phosphate cells are able to achieve a 91% of capacity retention after 90 cycles at 0.5C, similar to the organic fluorinated polyvinylidene fluoride (PVDF) (96%) under the same conditions. However, aqueous sodium carboxymethyl cellulose (Na‐CMC) only provides 81% of capacity retention. Among the PDADMA‐based binders under study, PDADMA‐ diethyl phosphate (PDADMA‐DEP) delivers the highest discharge capacity (101.1 mAh g−1) at high C‐rate (5C). Degradation of Na‐CMC electrodes is observed in postmortem analysis and a notable increase in the charge transfer‐resistance. However, the NMC811 particles preserve their spherical shape when PDADMA‐phosphates are used as binders, also leading to lower polarization resistances and improved lithium diffusion. In conclusion, PDADMA‐phosphates manifest high performance as binders for sustainable NMC811 cathodes, while disposing of fluoropolymers and toxic solvents.
Advanced Energy and ... arrow_drop_down Advanced Energy and Sustainability ResearchArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aesr.202300149&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Advanced Energy and ... arrow_drop_down Advanced Energy and Sustainability ResearchArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aesr.202300149&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Hindawi Limited Iratxe de Meatza; Abdelbast Guerfi; Iker Boyano; J. Alberto Blázquez; Miguel Bengoechea; Andriy Kvasha; Olatz Leonet; Aroa R. Mainar;doi: 10.1002/er.3499
Summary New applications and emerging markets in electromobility and large-scale stationary energy storage require the development of new electrochemical systems with higher energy density than current batteries. Rechargeable metal–air batteries, mainly lithium–air and zinc–air systems, are considered one of the most promising candidates. In contrast to lithium, zinc is abundant, inexpensive and its electrodeposition in aqueous electrolytes is relatively easy. Unfortunately, achieving a rechargeable zinc–air battery is still hindered by various technical problems related to the reversibility and lifetime of the electrodes. The most widely used electrolyte in zinc–air batteries has been the classical aqueous alkaline. In this context and with the main objective of providing a complete overview, we studied a wide number of articles starting from the beginning of the development of secondary zinc–air batteries (1970–1980s) to more recent works, with the aim of compiling all available information. It is essential to revise older papers to find relevant information that may get otherwise forgotten and not taken into account to develop new solutions. This information could also be applied in other storage systems based on zinc as nickel–zinc, zinc hybrid or zinc-ion. Copyright © 2016 John Wiley & Sons, Ltd.
International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 2016 . Peer-reviewedLicense: Wiley TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.3499&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euAccess Routesgold 248 citations 248 popularity Top 0.1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 2016 . Peer-reviewedLicense: Wiley TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.3499&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019 Italy, Germany, GermanyPublisher:MDPI AG Funded by:EC | SPICYEC| SPICYArianna Moretti; Diogo Vieira Carvalho; Niloofar Ehteshami; Elie Paillard; Willy Porcher; David Brun-Buisson; Jean-Baptiste Ducros; Iratxe de Meatza; Aitor Eguia-Barrio; Khiem Trad; Stefano Passerini;handle: 11573/1684161
Herein, the post-mortem study on 16 Ah graphite//LiFePO4 pouch cells is reported. Aiming to understand their failure mechanism, taking place when cycling at low temperature, the analysis of the cell components taken from different portions of the stacks and from different positions in the electrodes, is performed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoemission spectroscopy (XPS). Also, the recovered electrodes are used to reassemble half-cells for further cycle tests. The combination of the several techniques detects an inhomogeneous ageing of the electrodes along the stack and from the center to the edge of the electrode, most probably due to differences in the pressure experienced by the electrodes. Interestingly, XPS reveals that more electrolyte decomposition took place at the edge of the electrodes and at the outer part of the cell stack independently of the ageing conditions. Finally, the use of high cycling currents buffers the low temperature detrimental effects, resulting in longer cycle life and less inhomogeneities.
Batteries arrow_drop_down BatteriesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2313-0105/5/2/45/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca- Università di Roma La SapienzaArticle . 2019Data sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries5020045&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2313-0105/5/2/45/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca- Università di Roma La SapienzaArticle . 2019Data sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries5020045&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 SpainPublisher:MDPI AG Imanol Landa-Medrano; Idoia Urdampilleta; Iker Castrillo; Hans-Jürgen Grande; Iratxe de Meatza; Aitor Eguia-Barrio;doi: 10.3390/en17071616
Transitioning to more ambitious electrode formulations facilitates developing high-energy density cells, potentially fulfilling the demands of electric car manufacturers. In this context, the partial replacement of the prevailing anode active material in lithium-ion cells, graphite, with silicon-based materials enhances its capacity. Nevertheless, this requires adapting the rest of the components and harmonizing the electrode integration in the cell to enhance the performance of the resulting high-capacity anodes. Herein, starting from a replacement in the standard graphite anode recipe with 22% silicon suboxide at laboratory scale, the weight fraction of the electrochemically inactive materials was optimized to 2% carbon black/1% dispersant/3% binder combination before deriving an advantage from including single-wall carbon nanotubes in the formulation. In the second part, the recipe was upscaled to a semi-industrial electrode coating and cell assembly line. Then, 1 Ah lithium-ion pouch cells were filled and tested with different commercial electrolytes, aiming at studying the dependency of the Si-based electrodes on the additives included in the composition. Among all the electrolytes employed, the EL2 excelled in terms of capacity retention, obtaining a 48% increase in the number of cycles compared to the baseline electrolyte formulation above the threshold capacity retention value (80% state of health).
Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2024Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17071616&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2024Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17071616&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Springer Science and Business Media LLC Iker Boyano; Oscar Miguel; I. de Meatza; Hans-Jürgen Grande; Miguel Bengoechea;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1747-1567.2007.00183.x&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1747-1567.2007.00183.x&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Germany, France, SpainPublisher:MDPI AG Funded by:EC | SPIDER, EC | SPICYEC| SPIDER ,EC| SPICYImanol Landa-Medrano; Aitor Eguia-Barrio; Susan Sananes-Israel; Willy Porcher; Khiem Trad; Arianna Moretti; Diogo Vieira Carvalho; Stefano Passerini; Iratxe de Meatza;Silicon has become an integral negative electrode component for lithium-ion batteries in numerous applications including electric vehicles and renewable energy sources. However, its high capacity and low cycling stability represent a significant trade-off that limits its widespread implementation in high fractions in the negative electrode. Herein, we assembled high-capacity (1.8 Ah) cells using a nanoparticulate silicon–graphite (1:7.1) blend as the negative electrode material and a LiFePO4–LiNi0.5Mn0.3Co0.2O2 (1:1) blend as the positive electrode. Two types of cells were constructed: cylindrical 18650 and pouch cells. These cells were subjected both to calendar and cycling aging, the latter exploring different working voltage windows (2.5–3.6 V, 3.6–4.5 V, and 2.5–4.5 V). In addition, one cell was opened and characterised at its end of life by means of X-ray diffraction, scanning electron microscopy, and further electrochemical tests of the aged electrodes. Si degradation was identified as the primary cause of capacity fade of the cells. This work highlights the need to develop novel strategies to mitigate the issues associated with the excessive volumetric changes of Si.
Batteries arrow_drop_down BatteriesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2313-0105/8/8/97/pdfData sources: Multidisciplinary Digital Publishing InstituteBatteriesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2313-0105/8/8/97/pdfData sources: SygmaUniversité Savoie Mont Blanc: HALArticle . 2022Full-Text: https://cea.hal.science/cea-03813367Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2022Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries8080097&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2313-0105/8/8/97/pdfData sources: Multidisciplinary Digital Publishing InstituteBatteriesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2313-0105/8/8/97/pdfData sources: SygmaUniversité Savoie Mont Blanc: HALArticle . 2022Full-Text: https://cea.hal.science/cea-03813367Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2022Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries8080097&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Funded by:EC | MARS-EVEC| MARS-EVLander Lizaso; Idoia Urdampilleta; Miguel Bengoechea; Iker Boyano; Hans-Jürgen Grande; Imanol Landa-Medrano; Aitor Eguia-Barrio; Iratxe de Meatza;doi: 10.3390/en16217327
High-voltage spinel LiNi0.5Mn1.5O4 (LNMO) is a promising candidate as a lithium-ion battery cathode material to fulfill the high-energy density demands of the electric vehicle industry. In this work, the design of the experiment’s methodology has been used to analyze the influence of the ratio of the different components in the electrode preparation feasibility of laboratory-scale coatings and their electrochemical response. Different outputs were defined to evaluate the formulations studied, and Derringer–Suich’s methodology was applied to obtain an equation that is usable to predict the desirability of the electrodes depending on the selected formulation. Afterward, Solver’s method was used to figure out the formulation that provides the highest desirability. This formulation was validated at a laboratory scale and upscaled to a semi-industrial coating line. High-voltage 1 Ah lithium-ion pouch cells were assembled with LNMO cathodes and graphite-based anodes and subjected to rate-capability tests and galvanostatic cycling. 1 C was determined as the highest C-rate usable with these cells, and 321 and 181 cycles above 80% SOH were obtained in galvanostatic cycling tests performed at 0.5 C and 1 C, respectively. Furthermore, it was observed that the LNMO cathode required an activation period to become fully electrochemically active, which was shorter when cycled at a lower C-rate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16217327&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16217327&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Daniel Müller; Imanol Landa-Medrano; Aitor Eguia-Barrio; Iker Boyano; Idoia Urdampilleta; Iratxe de Meatza; Alexander Fill; Peter Birke;Abstract Lithium-ion batteries have been implemented worldwide in portable devices. Furthermore, they are strong candidates to facilitate the upcoming revolution associated with the electrification of vehicles. Nowadays, these cells are based on transition metal oxides in the positive electrode and graphite in the negative electrode. Despite focusing many efforts on developing novel materials for enhancing the performance of lithium-based batteries, there is still room for improvement by working on the electrode characteristics with widely industry-implemented and trustable state-of-the-art materials. In this work, we developed and characterized graphite electrodes with bi-layered structure consisting of two layers with different porosity. These electrodes were tested both in half and full coin cell configuration, the latter using LiNi0.6Mn0.2Co0.2O2 as the positive electrode. Regular single-layer graphite electrodes with the same average porosity and loading were also elaborated and tested for comparison. Galvanostatic cycling, power tests and impedance spectroscopy were combined with post-mortem characterization to understand the influence of the multi-layer structure onto the electrochemical response. Results show that the bi-layered structure provides enhanced capacity retention during the beginning of life of cells. However, this advantage is lost when the repeated lithiation-delithiation cycles of graphite affect the pore size of the lower porosity layer. In any case, it is evidenced that by modulating the coating method and therefore the macroscopic properties of graphite, it is possible to have a significant impact on its electrochemical characteristics. This should be of high interest for battery manufacturers facing the uncertainties associated with the processing and implementation of novel materials.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2021.138966&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2021.138966&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2021Publisher:MDPI AG Funded by:EC | COBRA, EC | MARBELEC| COBRA ,EC| MARBELAnnika Ahlberg Tidblad; Kristina Edström; Guiomar Hernández; Iratxe de Meatza; Imanol Landa-Medrano; Jordi Jacas Biendicho; Lluís Trilla; Maarten Buysse; Marcos Ierides; Beatriz Perez Horno; Yash Kotak; Hans-Georg Schweiger; Daniel Koch; Bhavya Satishbhai Kotak;Nowadays, batteries for electric vehicles are expected to have a high energy density, allow fast charging and maintain long cycle life, while providing affordable traction, and complying with stringent safety and environmental standards. Extensive research on novel materials at cell level is hence needed for the continuous improvement of the batteries coupled towards achieving these requirements. This article firstly delves into future developments in electric vehicles from a technology perspective, and the perspective of changing end-user demands. After these end-user needs are defined, their translation into future battery requirements is described. A detailed review of expected material developments follows, to address these dynamic and changing needs. Developments on anodes, cathodes, electrolyte and cell level will be discussed. Finally, a special section will discuss the safety aspects with these increasing end-user demands and how to overcome these issues.
Energies arrow_drop_down http://dx.doi.org/10.3390/en14...Conference object . 2021Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144223&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 11 Powered by
more_vert Energies arrow_drop_down http://dx.doi.org/10.3390/en14...Conference object . 2021Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144223&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 SpainPublisher:MDPI AG Funded by:EC | SPIDEREC| SPIDERAuthors: Iratxe de Meatza; Imanol Landa-Medrano; Susan Sananes-Israel; Aitor Eguia-Barrio; +7 AuthorsIratxe de Meatza; Imanol Landa-Medrano; Susan Sananes-Israel; Aitor Eguia-Barrio; Oleksandr Bondarchuk; Silvia Lijó-Pando; Iker Boyano; Verónica Palomares; Teófilo Rojo; Hans-Jürgen Grande; Idoia Urdampilleta;Nickel-rich LiNi0.8Mn0.1Co0.1O2 (NMC811) is one of the most promising Li-ion battery cathode materials and has attracted the interest of the automotive industry. Nevertheless, storage conditions can affect its properties and performance. In this work, both NMC811 powder and electrodes were storage-aged for one year under room conditions. The aged powder was used to prepare electrodes, and the performance of these two aged samples was compared with reference fresh NMC811 electrodes in full Li-ion coin cells using graphite as a negative electrode. The cells were subjected to electrochemical as well as ante- and postmortem characterization. The performance of the electrodes from aged NM811 was beyond expectations: the cycling performance was high, and the power capability was the highest among the samples analyzed. Materials characterization revealed modifications in the crystal structure and the surface layer of the NMC811 during the storage and electrode processing steps. Differences between aged and fresh electrodes were explained by the formation of a resistive layer at the surface of the former. However, the ageing of NMC811 powder was significantly mitigated during the electrode processing step. These novel results are of interest to cell manufacturers for the widespread implementation of NMC811 as a state-of-the-art cathode material in Li-ion batteries.
Batteries arrow_drop_down BatteriesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2313-0105/8/8/79/pdfData sources: Multidisciplinary Digital Publishing InstituteBatteriesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2313-0105/8/8/79/pdfData sources: SygmaRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2022Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2022Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries8080079&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2313-0105/8/8/79/pdfData sources: Multidisciplinary Digital Publishing InstituteBatteriesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2313-0105/8/8/79/pdfData sources: SygmaRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2022Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2022Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries8080079&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:Wiley Ana Clara Rolandi; Cristina Pozo-Gonzalo; Iratxe de Meatza; Nerea Casado; David Mecerreyes; Maria Forsyth;The use of water‐soluble binders enables the transition to more sustainable batteries by the replacement of toxic N‐methyl‐2‐pyrrolidone (NMP) by water. Herein, two new fluorine‐free poly(ionic liquid)s are proposed as binders for LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes, based on poly(diallyldimethylammonium) (PDADMA) and two‐phosphate counter anions, which are recognized as effective corrosion inhibitors and electrolyte additives. Due to their high ionic conductivity (10−6 S cm−1 at 25 °C) and ability to prevent degradation of NMC811 particles, the PDADMA phosphate cells are able to achieve a 91% of capacity retention after 90 cycles at 0.5C, similar to the organic fluorinated polyvinylidene fluoride (PVDF) (96%) under the same conditions. However, aqueous sodium carboxymethyl cellulose (Na‐CMC) only provides 81% of capacity retention. Among the PDADMA‐based binders under study, PDADMA‐ diethyl phosphate (PDADMA‐DEP) delivers the highest discharge capacity (101.1 mAh g−1) at high C‐rate (5C). Degradation of Na‐CMC electrodes is observed in postmortem analysis and a notable increase in the charge transfer‐resistance. However, the NMC811 particles preserve their spherical shape when PDADMA‐phosphates are used as binders, also leading to lower polarization resistances and improved lithium diffusion. In conclusion, PDADMA‐phosphates manifest high performance as binders for sustainable NMC811 cathodes, while disposing of fluoropolymers and toxic solvents.
Advanced Energy and ... arrow_drop_down Advanced Energy and Sustainability ResearchArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aesr.202300149&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Advanced Energy and ... arrow_drop_down Advanced Energy and Sustainability ResearchArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aesr.202300149&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Hindawi Limited Iratxe de Meatza; Abdelbast Guerfi; Iker Boyano; J. Alberto Blázquez; Miguel Bengoechea; Andriy Kvasha; Olatz Leonet; Aroa R. Mainar;doi: 10.1002/er.3499
Summary New applications and emerging markets in electromobility and large-scale stationary energy storage require the development of new electrochemical systems with higher energy density than current batteries. Rechargeable metal–air batteries, mainly lithium–air and zinc–air systems, are considered one of the most promising candidates. In contrast to lithium, zinc is abundant, inexpensive and its electrodeposition in aqueous electrolytes is relatively easy. Unfortunately, achieving a rechargeable zinc–air battery is still hindered by various technical problems related to the reversibility and lifetime of the electrodes. The most widely used electrolyte in zinc–air batteries has been the classical aqueous alkaline. In this context and with the main objective of providing a complete overview, we studied a wide number of articles starting from the beginning of the development of secondary zinc–air batteries (1970–1980s) to more recent works, with the aim of compiling all available information. It is essential to revise older papers to find relevant information that may get otherwise forgotten and not taken into account to develop new solutions. This information could also be applied in other storage systems based on zinc as nickel–zinc, zinc hybrid or zinc-ion. Copyright © 2016 John Wiley & Sons, Ltd.
International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 2016 . Peer-reviewedLicense: Wiley TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.3499&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euAccess Routesgold 248 citations 248 popularity Top 0.1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Energy ResearchArticle . 2016 . Peer-reviewedLicense: Wiley TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.3499&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019 Italy, Germany, GermanyPublisher:MDPI AG Funded by:EC | SPICYEC| SPICYArianna Moretti; Diogo Vieira Carvalho; Niloofar Ehteshami; Elie Paillard; Willy Porcher; David Brun-Buisson; Jean-Baptiste Ducros; Iratxe de Meatza; Aitor Eguia-Barrio; Khiem Trad; Stefano Passerini;handle: 11573/1684161
Herein, the post-mortem study on 16 Ah graphite//LiFePO4 pouch cells is reported. Aiming to understand their failure mechanism, taking place when cycling at low temperature, the analysis of the cell components taken from different portions of the stacks and from different positions in the electrodes, is performed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoemission spectroscopy (XPS). Also, the recovered electrodes are used to reassemble half-cells for further cycle tests. The combination of the several techniques detects an inhomogeneous ageing of the electrodes along the stack and from the center to the edge of the electrode, most probably due to differences in the pressure experienced by the electrodes. Interestingly, XPS reveals that more electrolyte decomposition took place at the edge of the electrodes and at the outer part of the cell stack independently of the ageing conditions. Finally, the use of high cycling currents buffers the low temperature detrimental effects, resulting in longer cycle life and less inhomogeneities.
Batteries arrow_drop_down BatteriesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2313-0105/5/2/45/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca- Università di Roma La SapienzaArticle . 2019Data sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries5020045&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2313-0105/5/2/45/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca- Università di Roma La SapienzaArticle . 2019Data sources: Archivio della ricerca- Università di Roma La Sapienzaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries5020045&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 SpainPublisher:MDPI AG Imanol Landa-Medrano; Idoia Urdampilleta; Iker Castrillo; Hans-Jürgen Grande; Iratxe de Meatza; Aitor Eguia-Barrio;doi: 10.3390/en17071616
Transitioning to more ambitious electrode formulations facilitates developing high-energy density cells, potentially fulfilling the demands of electric car manufacturers. In this context, the partial replacement of the prevailing anode active material in lithium-ion cells, graphite, with silicon-based materials enhances its capacity. Nevertheless, this requires adapting the rest of the components and harmonizing the electrode integration in the cell to enhance the performance of the resulting high-capacity anodes. Herein, starting from a replacement in the standard graphite anode recipe with 22% silicon suboxide at laboratory scale, the weight fraction of the electrochemically inactive materials was optimized to 2% carbon black/1% dispersant/3% binder combination before deriving an advantage from including single-wall carbon nanotubes in the formulation. In the second part, the recipe was upscaled to a semi-industrial electrode coating and cell assembly line. Then, 1 Ah lithium-ion pouch cells were filled and tested with different commercial electrolytes, aiming at studying the dependency of the Si-based electrodes on the additives included in the composition. Among all the electrolytes employed, the EL2 excelled in terms of capacity retention, obtaining a 48% increase in the number of cycles compared to the baseline electrolyte formulation above the threshold capacity retention value (80% state of health).
Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2024Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17071616&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2024Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17071616&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Springer Science and Business Media LLC Iker Boyano; Oscar Miguel; I. de Meatza; Hans-Jürgen Grande; Miguel Bengoechea;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1747-1567.2007.00183.x&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1747-1567.2007.00183.x&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Germany, France, SpainPublisher:MDPI AG Funded by:EC | SPIDER, EC | SPICYEC| SPIDER ,EC| SPICYImanol Landa-Medrano; Aitor Eguia-Barrio; Susan Sananes-Israel; Willy Porcher; Khiem Trad; Arianna Moretti; Diogo Vieira Carvalho; Stefano Passerini; Iratxe de Meatza;Silicon has become an integral negative electrode component for lithium-ion batteries in numerous applications including electric vehicles and renewable energy sources. However, its high capacity and low cycling stability represent a significant trade-off that limits its widespread implementation in high fractions in the negative electrode. Herein, we assembled high-capacity (1.8 Ah) cells using a nanoparticulate silicon–graphite (1:7.1) blend as the negative electrode material and a LiFePO4–LiNi0.5Mn0.3Co0.2O2 (1:1) blend as the positive electrode. Two types of cells were constructed: cylindrical 18650 and pouch cells. These cells were subjected both to calendar and cycling aging, the latter exploring different working voltage windows (2.5–3.6 V, 3.6–4.5 V, and 2.5–4.5 V). In addition, one cell was opened and characterised at its end of life by means of X-ray diffraction, scanning electron microscopy, and further electrochemical tests of the aged electrodes. Si degradation was identified as the primary cause of capacity fade of the cells. This work highlights the need to develop novel strategies to mitigate the issues associated with the excessive volumetric changes of Si.
Batteries arrow_drop_down BatteriesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2313-0105/8/8/97/pdfData sources: Multidisciplinary Digital Publishing InstituteBatteriesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2313-0105/8/8/97/pdfData sources: SygmaUniversité Savoie Mont Blanc: HALArticle . 2022Full-Text: https://cea.hal.science/cea-03813367Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2022Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries8080097&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Batteries arrow_drop_down BatteriesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2313-0105/8/8/97/pdfData sources: Multidisciplinary Digital Publishing InstituteBatteriesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2313-0105/8/8/97/pdfData sources: SygmaUniversité Savoie Mont Blanc: HALArticle . 2022Full-Text: https://cea.hal.science/cea-03813367Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2022Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries8080097&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Funded by:EC | MARS-EVEC| MARS-EVLander Lizaso; Idoia Urdampilleta; Miguel Bengoechea; Iker Boyano; Hans-Jürgen Grande; Imanol Landa-Medrano; Aitor Eguia-Barrio; Iratxe de Meatza;doi: 10.3390/en16217327
High-voltage spinel LiNi0.5Mn1.5O4 (LNMO) is a promising candidate as a lithium-ion battery cathode material to fulfill the high-energy density demands of the electric vehicle industry. In this work, the design of the experiment’s methodology has been used to analyze the influence of the ratio of the different components in the electrode preparation feasibility of laboratory-scale coatings and their electrochemical response. Different outputs were defined to evaluate the formulations studied, and Derringer–Suich’s methodology was applied to obtain an equation that is usable to predict the desirability of the electrodes depending on the selected formulation. Afterward, Solver’s method was used to figure out the formulation that provides the highest desirability. This formulation was validated at a laboratory scale and upscaled to a semi-industrial coating line. High-voltage 1 Ah lithium-ion pouch cells were assembled with LNMO cathodes and graphite-based anodes and subjected to rate-capability tests and galvanostatic cycling. 1 C was determined as the highest C-rate usable with these cells, and 321 and 181 cycles above 80% SOH were obtained in galvanostatic cycling tests performed at 0.5 C and 1 C, respectively. Furthermore, it was observed that the LNMO cathode required an activation period to become fully electrochemically active, which was shorter when cycled at a lower C-rate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16217327&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16217327&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Daniel Müller; Imanol Landa-Medrano; Aitor Eguia-Barrio; Iker Boyano; Idoia Urdampilleta; Iratxe de Meatza; Alexander Fill; Peter Birke;Abstract Lithium-ion batteries have been implemented worldwide in portable devices. Furthermore, they are strong candidates to facilitate the upcoming revolution associated with the electrification of vehicles. Nowadays, these cells are based on transition metal oxides in the positive electrode and graphite in the negative electrode. Despite focusing many efforts on developing novel materials for enhancing the performance of lithium-based batteries, there is still room for improvement by working on the electrode characteristics with widely industry-implemented and trustable state-of-the-art materials. In this work, we developed and characterized graphite electrodes with bi-layered structure consisting of two layers with different porosity. These electrodes were tested both in half and full coin cell configuration, the latter using LiNi0.6Mn0.2Co0.2O2 as the positive electrode. Regular single-layer graphite electrodes with the same average porosity and loading were also elaborated and tested for comparison. Galvanostatic cycling, power tests and impedance spectroscopy were combined with post-mortem characterization to understand the influence of the multi-layer structure onto the electrochemical response. Results show that the bi-layered structure provides enhanced capacity retention during the beginning of life of cells. However, this advantage is lost when the repeated lithiation-delithiation cycles of graphite affect the pore size of the lower porosity layer. In any case, it is evidenced that by modulating the coating method and therefore the macroscopic properties of graphite, it is possible to have a significant impact on its electrochemical characteristics. This should be of high interest for battery manufacturers facing the uncertainties associated with the processing and implementation of novel materials.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2021.138966&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2021.138966&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2021Publisher:MDPI AG Funded by:EC | COBRA, EC | MARBELEC| COBRA ,EC| MARBELAnnika Ahlberg Tidblad; Kristina Edström; Guiomar Hernández; Iratxe de Meatza; Imanol Landa-Medrano; Jordi Jacas Biendicho; Lluís Trilla; Maarten Buysse; Marcos Ierides; Beatriz Perez Horno; Yash Kotak; Hans-Georg Schweiger; Daniel Koch; Bhavya Satishbhai Kotak;Nowadays, batteries for electric vehicles are expected to have a high energy density, allow fast charging and maintain long cycle life, while providing affordable traction, and complying with stringent safety and environmental standards. Extensive research on novel materials at cell level is hence needed for the continuous improvement of the batteries coupled towards achieving these requirements. This article firstly delves into future developments in electric vehicles from a technology perspective, and the perspective of changing end-user demands. After these end-user needs are defined, their translation into future battery requirements is described. A detailed review of expected material developments follows, to address these dynamic and changing needs. Developments on anodes, cathodes, electrolyte and cell level will be discussed. Finally, a special section will discuss the safety aspects with these increasing end-user demands and how to overcome these issues.
Energies arrow_drop_down http://dx.doi.org/10.3390/en14...Conference object . 2021Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144223&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 11 Powered by
more_vert Energies arrow_drop_down http://dx.doi.org/10.3390/en14...Conference object . 2021Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144223&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
