- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Carlos Vargas-Salgado; Dácil Díaz-Bello; David Alfonso-Solar; Fabian Lara-Vargas;Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2024.103896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2024.103896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Carlos Vargas-Salgado; Dácil Díaz-Bello; David Alfonso-Solar; Fabian Lara-Vargas;Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2024.103896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2024.103896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 SpainPublisher:MDPI AG Authors: Dácil Díaz-Bello; Carlos Vargas-Salgado; Jesus Águila-León; Fabián Lara-Vargas;doi: 10.3390/su15032797
handle: 10251/193214
Renewable power capacity sets records annually, driven by solar photovoltaic power, which accounts for more than half of all renewable power expansion in 2021. In this sense, photovoltaic system design must be correctly defined before system installation to generate the maximum quantity of energy at the lowest possible cost. The proposed study analyses the oversizing of the solar array vs. the capacity of the solar inverter, seeking low clipping losses in the inverter. A real 4.2 kWp residential PV installation was modelled and validated using the software SAM and input data from different sources, such as a weather station for weather conditions, ESIOS for electricity rates, and FusionSolar to obtain energy data from the PV installation. Once data were validated through SAM, the DC to AC ratio was varied between 0.9 and 2.1. The azimuth and slope sensitivity analyses were performed regarding clipping inverter losses. Results have been evaluated through the energy generated and the discounted payback period, showing that, depending on the weather conditions, slope, and azimuth, among others, it is advisable to increase the DC to AC ratio to values between 1.63 and 1.87, implying low discounted payback periods of about 8 to 9 years. In addition, it was observed that inverter clipping losses significantly vary depending on the defined azimuth and slope.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/3/2797/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15032797&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 66visibility views 66 download downloads 105 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/3/2797/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15032797&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 SpainPublisher:MDPI AG Authors: Dácil Díaz-Bello; Carlos Vargas-Salgado; Jesus Águila-León; Fabián Lara-Vargas;doi: 10.3390/su15032797
handle: 10251/193214
Renewable power capacity sets records annually, driven by solar photovoltaic power, which accounts for more than half of all renewable power expansion in 2021. In this sense, photovoltaic system design must be correctly defined before system installation to generate the maximum quantity of energy at the lowest possible cost. The proposed study analyses the oversizing of the solar array vs. the capacity of the solar inverter, seeking low clipping losses in the inverter. A real 4.2 kWp residential PV installation was modelled and validated using the software SAM and input data from different sources, such as a weather station for weather conditions, ESIOS for electricity rates, and FusionSolar to obtain energy data from the PV installation. Once data were validated through SAM, the DC to AC ratio was varied between 0.9 and 2.1. The azimuth and slope sensitivity analyses were performed regarding clipping inverter losses. Results have been evaluated through the energy generated and the discounted payback period, showing that, depending on the weather conditions, slope, and azimuth, among others, it is advisable to increase the DC to AC ratio to values between 1.63 and 1.87, implying low discounted payback periods of about 8 to 9 years. In addition, it was observed that inverter clipping losses significantly vary depending on the defined azimuth and slope.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/3/2797/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15032797&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 66visibility views 66 download downloads 105 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/3/2797/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15032797&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Authors: Fabian Alonso Lara-Vargas; Carlos Vargas-Salgado; Jesus Águila-León; Dácil Díaz-Bello;doi: 10.3390/en18082019
Accurate temperature prediction in bifacial photovoltaic (PV) modules is critical for optimizing solar energy systems. Conventional models face challenges to balance accuracy, interpretability, and computational efficiency. This study addresses these limitations by introducing a symbolic regression (SR) framework based on genetic algorithms to model nonlinear relationships between environmental variables and module temperature without predefined structures. High-resolution data, including solar radiation, ambient temperature, wind speed, and PV module temperature, were collected at 5 min intervals over a year from a 19.9 MW bifacial PV plant with trackers in San Marcos, Colombia. The SR model performance was compared with multiple linear regression, normal operating cell temperature (NOCT), and empirical regression models. The SR model outperformed others by achieving a root mean squared error (RMSE) of 4.05 °C, coefficient of determination (R2) of 0.91, Spearman’s rank correlation coefficient of 0.95, and mean absolute error (MAE) of 2.25 °C. Its hybrid structure combines linear ambient temperature dependencies with nonlinear trigonometric terms capturing solar radiation dynamics. The SR model effectively balances accuracy and interpretability, providing information for modeling bifacial PV systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18082019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18082019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Authors: Fabian Alonso Lara-Vargas; Carlos Vargas-Salgado; Jesus Águila-León; Dácil Díaz-Bello;doi: 10.3390/en18082019
Accurate temperature prediction in bifacial photovoltaic (PV) modules is critical for optimizing solar energy systems. Conventional models face challenges to balance accuracy, interpretability, and computational efficiency. This study addresses these limitations by introducing a symbolic regression (SR) framework based on genetic algorithms to model nonlinear relationships between environmental variables and module temperature without predefined structures. High-resolution data, including solar radiation, ambient temperature, wind speed, and PV module temperature, were collected at 5 min intervals over a year from a 19.9 MW bifacial PV plant with trackers in San Marcos, Colombia. The SR model performance was compared with multiple linear regression, normal operating cell temperature (NOCT), and empirical regression models. The SR model outperformed others by achieving a root mean squared error (RMSE) of 4.05 °C, coefficient of determination (R2) of 0.91, Spearman’s rank correlation coefficient of 0.95, and mean absolute error (MAE) of 2.25 °C. Its hybrid structure combines linear ambient temperature dependencies with nonlinear trigonometric terms capturing solar radiation dynamics. The SR model effectively balances accuracy and interpretability, providing information for modeling bifacial PV systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18082019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18082019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Universidad de Pamplona Authors: Fabian Alonso Lara Vargas; Miguel Ángel Ortiz Padilla; Carlos Afranio Vargas Salgado;El presente trabajo desarrolló el análisis experimental comparativo de los datos reales de producción de energía de una planta solar fotovoltaica de 72KWn, con simulaciones hechas en PVsyst, PVGIS y SAM. El periodo de medición fue dividido entre marzo de 2021 a febrero de 2022 y de marzo de 2022 a febrero de 2023. Se encontró que la simulación desarrollada en SAM presentó el error cuadrático medio más bajo para todo el periodo de medición en comparación con PVsyst y PVGIS, presentando valores respectivos de para SAM, para PVGIS y para PVsyst. Además, se concluyó que un aumento en la temperatura ambiente puede influir en la producción de un sistema fotovoltaico, asi también el uso de bases de datos ambientales actualizadas, puede resultar en cálculos más precisos de la producción proyectada.
REVISTA COLOMBIANA D... arrow_drop_down REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA)Article . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24054/rcta.v1i43.2807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert REVISTA COLOMBIANA D... arrow_drop_down REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA)Article . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24054/rcta.v1i43.2807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Universidad de Pamplona Authors: Fabian Alonso Lara Vargas; Miguel Ángel Ortiz Padilla; Carlos Afranio Vargas Salgado;El presente trabajo desarrolló el análisis experimental comparativo de los datos reales de producción de energía de una planta solar fotovoltaica de 72KWn, con simulaciones hechas en PVsyst, PVGIS y SAM. El periodo de medición fue dividido entre marzo de 2021 a febrero de 2022 y de marzo de 2022 a febrero de 2023. Se encontró que la simulación desarrollada en SAM presentó el error cuadrático medio más bajo para todo el periodo de medición en comparación con PVsyst y PVGIS, presentando valores respectivos de para SAM, para PVGIS y para PVsyst. Además, se concluyó que un aumento en la temperatura ambiente puede influir en la producción de un sistema fotovoltaico, asi también el uso de bases de datos ambientales actualizadas, puede resultar en cálculos más precisos de la producción proyectada.
REVISTA COLOMBIANA D... arrow_drop_down REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA)Article . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24054/rcta.v1i43.2807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert REVISTA COLOMBIANA D... arrow_drop_down REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA)Article . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24054/rcta.v1i43.2807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Carlos Vargas-Salgado; Dácil Díaz-Bello; David Alfonso-Solar; Fabian Lara-Vargas;Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2024.103896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2024.103896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Carlos Vargas-Salgado; Dácil Díaz-Bello; David Alfonso-Solar; Fabian Lara-Vargas;Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2024.103896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2024.103896&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 SpainPublisher:MDPI AG Authors: Dácil Díaz-Bello; Carlos Vargas-Salgado; Jesus Águila-León; Fabián Lara-Vargas;doi: 10.3390/su15032797
handle: 10251/193214
Renewable power capacity sets records annually, driven by solar photovoltaic power, which accounts for more than half of all renewable power expansion in 2021. In this sense, photovoltaic system design must be correctly defined before system installation to generate the maximum quantity of energy at the lowest possible cost. The proposed study analyses the oversizing of the solar array vs. the capacity of the solar inverter, seeking low clipping losses in the inverter. A real 4.2 kWp residential PV installation was modelled and validated using the software SAM and input data from different sources, such as a weather station for weather conditions, ESIOS for electricity rates, and FusionSolar to obtain energy data from the PV installation. Once data were validated through SAM, the DC to AC ratio was varied between 0.9 and 2.1. The azimuth and slope sensitivity analyses were performed regarding clipping inverter losses. Results have been evaluated through the energy generated and the discounted payback period, showing that, depending on the weather conditions, slope, and azimuth, among others, it is advisable to increase the DC to AC ratio to values between 1.63 and 1.87, implying low discounted payback periods of about 8 to 9 years. In addition, it was observed that inverter clipping losses significantly vary depending on the defined azimuth and slope.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/3/2797/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15032797&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 66visibility views 66 download downloads 105 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/3/2797/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15032797&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 SpainPublisher:MDPI AG Authors: Dácil Díaz-Bello; Carlos Vargas-Salgado; Jesus Águila-León; Fabián Lara-Vargas;doi: 10.3390/su15032797
handle: 10251/193214
Renewable power capacity sets records annually, driven by solar photovoltaic power, which accounts for more than half of all renewable power expansion in 2021. In this sense, photovoltaic system design must be correctly defined before system installation to generate the maximum quantity of energy at the lowest possible cost. The proposed study analyses the oversizing of the solar array vs. the capacity of the solar inverter, seeking low clipping losses in the inverter. A real 4.2 kWp residential PV installation was modelled and validated using the software SAM and input data from different sources, such as a weather station for weather conditions, ESIOS for electricity rates, and FusionSolar to obtain energy data from the PV installation. Once data were validated through SAM, the DC to AC ratio was varied between 0.9 and 2.1. The azimuth and slope sensitivity analyses were performed regarding clipping inverter losses. Results have been evaluated through the energy generated and the discounted payback period, showing that, depending on the weather conditions, slope, and azimuth, among others, it is advisable to increase the DC to AC ratio to values between 1.63 and 1.87, implying low discounted payback periods of about 8 to 9 years. In addition, it was observed that inverter clipping losses significantly vary depending on the defined azimuth and slope.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/3/2797/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15032797&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 66visibility views 66 download downloads 105 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/3/2797/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15032797&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Authors: Fabian Alonso Lara-Vargas; Carlos Vargas-Salgado; Jesus Águila-León; Dácil Díaz-Bello;doi: 10.3390/en18082019
Accurate temperature prediction in bifacial photovoltaic (PV) modules is critical for optimizing solar energy systems. Conventional models face challenges to balance accuracy, interpretability, and computational efficiency. This study addresses these limitations by introducing a symbolic regression (SR) framework based on genetic algorithms to model nonlinear relationships between environmental variables and module temperature without predefined structures. High-resolution data, including solar radiation, ambient temperature, wind speed, and PV module temperature, were collected at 5 min intervals over a year from a 19.9 MW bifacial PV plant with trackers in San Marcos, Colombia. The SR model performance was compared with multiple linear regression, normal operating cell temperature (NOCT), and empirical regression models. The SR model outperformed others by achieving a root mean squared error (RMSE) of 4.05 °C, coefficient of determination (R2) of 0.91, Spearman’s rank correlation coefficient of 0.95, and mean absolute error (MAE) of 2.25 °C. Its hybrid structure combines linear ambient temperature dependencies with nonlinear trigonometric terms capturing solar radiation dynamics. The SR model effectively balances accuracy and interpretability, providing information for modeling bifacial PV systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18082019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18082019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Authors: Fabian Alonso Lara-Vargas; Carlos Vargas-Salgado; Jesus Águila-León; Dácil Díaz-Bello;doi: 10.3390/en18082019
Accurate temperature prediction in bifacial photovoltaic (PV) modules is critical for optimizing solar energy systems. Conventional models face challenges to balance accuracy, interpretability, and computational efficiency. This study addresses these limitations by introducing a symbolic regression (SR) framework based on genetic algorithms to model nonlinear relationships between environmental variables and module temperature without predefined structures. High-resolution data, including solar radiation, ambient temperature, wind speed, and PV module temperature, were collected at 5 min intervals over a year from a 19.9 MW bifacial PV plant with trackers in San Marcos, Colombia. The SR model performance was compared with multiple linear regression, normal operating cell temperature (NOCT), and empirical regression models. The SR model outperformed others by achieving a root mean squared error (RMSE) of 4.05 °C, coefficient of determination (R2) of 0.91, Spearman’s rank correlation coefficient of 0.95, and mean absolute error (MAE) of 2.25 °C. Its hybrid structure combines linear ambient temperature dependencies with nonlinear trigonometric terms capturing solar radiation dynamics. The SR model effectively balances accuracy and interpretability, providing information for modeling bifacial PV systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18082019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18082019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Universidad de Pamplona Authors: Fabian Alonso Lara Vargas; Miguel Ángel Ortiz Padilla; Carlos Afranio Vargas Salgado;El presente trabajo desarrolló el análisis experimental comparativo de los datos reales de producción de energía de una planta solar fotovoltaica de 72KWn, con simulaciones hechas en PVsyst, PVGIS y SAM. El periodo de medición fue dividido entre marzo de 2021 a febrero de 2022 y de marzo de 2022 a febrero de 2023. Se encontró que la simulación desarrollada en SAM presentó el error cuadrático medio más bajo para todo el periodo de medición en comparación con PVsyst y PVGIS, presentando valores respectivos de para SAM, para PVGIS y para PVsyst. Además, se concluyó que un aumento en la temperatura ambiente puede influir en la producción de un sistema fotovoltaico, asi también el uso de bases de datos ambientales actualizadas, puede resultar en cálculos más precisos de la producción proyectada.
REVISTA COLOMBIANA D... arrow_drop_down REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA)Article . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24054/rcta.v1i43.2807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert REVISTA COLOMBIANA D... arrow_drop_down REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA)Article . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24054/rcta.v1i43.2807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Universidad de Pamplona Authors: Fabian Alonso Lara Vargas; Miguel Ángel Ortiz Padilla; Carlos Afranio Vargas Salgado;El presente trabajo desarrolló el análisis experimental comparativo de los datos reales de producción de energía de una planta solar fotovoltaica de 72KWn, con simulaciones hechas en PVsyst, PVGIS y SAM. El periodo de medición fue dividido entre marzo de 2021 a febrero de 2022 y de marzo de 2022 a febrero de 2023. Se encontró que la simulación desarrollada en SAM presentó el error cuadrático medio más bajo para todo el periodo de medición en comparación con PVsyst y PVGIS, presentando valores respectivos de para SAM, para PVGIS y para PVsyst. Además, se concluyó que un aumento en la temperatura ambiente puede influir en la producción de un sistema fotovoltaico, asi también el uso de bases de datos ambientales actualizadas, puede resultar en cálculos más precisos de la producción proyectada.
REVISTA COLOMBIANA D... arrow_drop_down REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA)Article . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24054/rcta.v1i43.2807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert REVISTA COLOMBIANA D... arrow_drop_down REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA)Article . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24054/rcta.v1i43.2807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu