- home
- Advanced Search
Filters
Year range
-chevron_right GOField of Science
SDG [Beta]
Country
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 South AfricaPublisher:Wiley Timo Conradi; Jasper A. Slingsby; Guy F. Midgley; Henning Nottebrock; Andreas H. Schweiger; Steven I. Higgins;SummaryBiomes are constructs for organising knowledge on the structure and functioning of the world’s ecosystems, and serve as useful units for monitoring how the biosphere responds to anthropogenic drivers, including climate change. The current practice of delimiting biomes relies on expert knowledge. Recent studies have questioned the value of such biome maps for comparative ecology and global‐change research, partly due to their subjective origin. Here we propose a flexible method for developing biome maps objectively. The method uses range modelling of several thousands of plant species to reveal spatial attractors for different growth‐form assemblages that define biomes. The workflow is illustrated using distribution data from 23 500 African plant species. In an example application, we create a biome map for Africa and use the fitted species models to project biome shifts. In a second example, we map gradients of growth‐form suitability that can be used to identify sites for comparative ecology. This method provides a flexible framework that (1) allows a range of biome types to be defined according to user needs and (2) enables projections of biome changes that emerge purely from the individualistic responses of plant species to environmental changes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16580&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 36 citations 36 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16580&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 France, NetherlandsPublisher:Wiley Thuiller, W.; Broennimann, O.; Hughes, G.; Alkemade, J. R. M.; Midgley, G. F.; Corsi, F.;AbstractRecent observations show that human‐induced climate change (CC) and land transformation (LT) are threatening wildlife globally. Thus, there is a need to assess the sensitivity of wildlife on large spatial scales and evaluate whether national parks (NPs), a key conservation tools used to protect species, will meet their mandate under future CC and LT conditions. Here, we assess the sensitivity of 277 mammals at African scale to CC at 10′ resolution, using static LT assumptions in a ‘first‐cut’ estimate, in the absence of credible future LT trends. We examine the relationship between species' current distribution and macroclimatic variables using generalized additive models, and include LT indirectly as a filter. Future projections are derived using two CC scenarios (for 2050 and 2080) to estimate the spatial patterns of loss and gain in species richness that might ultimately result. We then apply the IUCN Red List criteria A3(c) of potential range loss to evaluate species sensitivity. We finally estimate the sensitivity of 141 NPs in terms of both species richness and turnover. Assuming no spread of species, 10–15% of the species are projected to fall within the critically endangered or extinct categories by 2050 and between 25% and 40% by 2080. Assuming unlimited species spread, less extreme results show proportions dropping to approximately 10–20% by 2080. Spatial patterns of richness loss and gain show contrasting latitudinal patterns with a westward range shift of species around the species‐rich equatorial zone in central Africa, and an eastward shift in southern Africa, mainly because of latitudinal aridity gradients across these ecological transition zones. Xeric shrubland NPs may face significant richness losses not compensated by species influxes. Other NPs might expect substantial losses and influxes of species. On balance, the NPs might ultimately realize a substantial shift in the mammalian species composition of a magnitude unprecedented in recent geological time. To conclude, the effects of global CC and LT on wildlife communities may be most noticeable not as a loss of species from their current ranges, but instead as a fundamental change in community composition.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverGlobal Change BiologyArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2006.01115.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 254 citations 254 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverGlobal Change BiologyArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2006.01115.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005 FrancePublisher:Wiley Authors: Midgley, G.F.; Thuiller, W.;International audience
New Phytologist arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2005Data sources: INRIA a CCSD electronic archive serverNew PhytologistArticle . 2005 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2005.01522.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2005Data sources: INRIA a CCSD electronic archive serverNew PhytologistArticle . 2005 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2005.01522.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Saudi Arabia, Saudi Arabia, United Kingdom, GermanyPublisher:American Association for the Advancement of Science (AAAS) Pörtner, H-O; Scholes, R J; Arneth, A; Barnes, D K A; Burrows, M T; Diamond, S E; Duarte, C M; Kiessling, W; Leadley, P; Managi, S; McElwee, P; Midgley, G; Ngo, H T; Obura, D; Pascual, U; Sankaran, M; Shin, Y J; Val, A L;Earth’s biodiversity and human societies face pollution, overconsumption of natural resources, urbanization, demographic shifts, social and economic inequalities, and habitat loss, many of which are exacerbated by climate change. Here, we review links among climate, biodiversity, and society and develop a roadmap toward sustainability. These include limiting warming to 1.5°C and effectively conserving and restoring functional ecosystems on 30 to 50% of land, freshwater, and ocean “scapes.” We envision a mosaic of interconnected protected and shared spaces, including intensively used spaces, to strengthen self-sustaining biodiversity, the capacity of people and nature to adapt to and mitigate climate change, and nature’s contributions to people. Fostering interlinked human, ecosystem, and planetary health for a livable future urgently requires bold implementation of transformative policy interventions through interconnected institutions, governance, and social systems from local to global levels.
https://dx.doi.org/1... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abl4881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 133 citations 133 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abl4881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 2021Publisher:Zenodo Pörtner, Hans-Otto; Scholes, Robert J.; Agard, John; Archer, Emma; Bai, Xuemei; Barnes, David; Burrows, Michael; Chan, Lena; Cheung, Wai Lung (William); Diamond, Sarah; Donatti, Camila; Duarte, Carlos; Eisenhauer, Nico; Foden, Wendy; Gasalla, Maria A.; Handa, Collins; Hickler, Thomas; Hoegh-Guldberg, Ove; Ichii, Kazuhito; Jacob, Ute; Insarov, Gregory; Kiessling, Wolfgang; Leadley, Paul; Leemans, Rik; Levin, Lisa; Lim, Michelle; Maharaj, Shobha; Managi, Shunsuke; Marquet, Pablo A.; McElwee, Pamela; Midgley, Guy; Oberdorff, Thierry; Obura, David; Osman Elasha, Balgis; Pandit, Ram; Pascual, Unai; Pires, Aliny P F; Popp, Alexander; Reyes-García, Victoria; Sankaran, Mahesh; Settele, Josef; Shin, Yunne-Jai; Sintayehu, Dejene W.; Smith, Peter; Steiner, Nadja; Strassburg, Bernardo; Sukumar, Raman; Trisos, Christopher; Val, Adalberto Luis; Wu, Jianguo; Aldrian, Edvin; Parmesan, Camille; Pichs-Madruga, Ramon; Roberts, ; Rogers, Alex D.; Díaz, Sandra; Fischer, Markus; Hashimoto, Shizuka; Lavorel, Sandra; Wu, Ning; Ngo, Hien;Suggested citation: Pörtner, H.O., Scholes, R.J., Agard, J., Archer, E., Arneth, A., Bai, X., Barnes, D., Burrows, M., Chan, L., Cheung, W.L., Diamond, S., Donatti, C., Duarte, C., Eisenhauer, N., Foden, W., Gasalla, M. A., Handa, C., Hickler, T., Hoegh-Guldberg, O., Ichii, K., Jacob, U., Insarov, G., Kiessling, W., Leadley, P., Leemans, R., Levin, L., Lim, M., Maharaj, S., Managi, S., Marquet, P. A., McElwee, P., Midgley, G., Oberdorff, T., Obura, D., Osman, E., Pandit, R., Pascual, U., Pires, A. P. F., Popp, A., Reyes-García, V., Sankaran, M., Settele, J., Shin, Y. J., Sintayehu, D. W., Smith, P., Steiner, N., Strassburg, B., Sukumar, R., Trisos, C., Val, A.L., Wu, J., Aldrian, E., Parmesan, C., Pichs-Madruga, R., Roberts, D.C., Rogers, A.D., Díaz, S., Fischer, M., Hashimoto, S., Lavorel, S., Wu, N., Ngo, H.T. 2021. IPBES-IPCC co-sponsored workshop report synopsis on biodiversity and climate change; IPBES and IPCC, DOI:10.5281/zenodo.4782538 The Synopsis presents the main conclusions of the first-ever IPCC-IPBES co-sponsored workshop which took place in December 2020. The workshop explored diverse facets of the interaction between climate and biodiversity, from current trends to the role and implementation of nature-based solutions and the sustainable development of human society. This Synopsis is underpinned by the Scientific Outcome, which includes seven sections, the complete references and the report glossary. You can find the Scientific Outcome here https://doi.org/10.5281/zenodo.4659158
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4920414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4920414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Wiley Authors: Alexandre de Haldat du Lys; Mathieu Millan; Jean‐François Barczi; Yves Caraglio; +2 AuthorsAlexandre de Haldat du Lys; Mathieu Millan; Jean‐François Barczi; Yves Caraglio; Guy F. Midgley; Tristan Charles‐Dominique;Summary If trees minimize self‐shading, new foliage in shaded parts of the crown should remain minimal. However, many species have abundant foliage on short shoots inside their crown. In this paper, we test the hypothesis that short shoots allow trees to densify their foliage in self‐shaded parts of the crown thanks to reduced costs. Using 30 woody species in Mediterranean and tropical biomes, we estimated the contribution of short shoots to total plant foliage, calculated their costs relative to long shoots including wood cost and used 3D plant simulations calibrated with field measurements to quantify their light interception, self‐shading and yield. In species with short shoots, leaves on short shoots account for the majority of leaf area. The reduced cost of short stems enables the production of leaf area with 36% less biomass. Simulations show that although short shoots are more self‐shaded, they benefit the plant because they cost less. Lastly, the morphological properties of short shoots have major implications for whole plant architecture. Taken together, our results question the validity of only assessing leaf costs to understand leaf economics and call for more integrated observations at the crown scale to understand light capture strategies in woody plants.
CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2023Full-Text: https://hal.inrae.fr/hal-03889601Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18636&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2023Full-Text: https://hal.inrae.fr/hal-03889601Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18636&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:The Royal Society Authors: William J. Bond; Guy F. Midgley;Savannahs are a mixture of trees and grasses often occurring as alternate states to closed forests. Savannah fires are frequent where grass productivity is high in the wet season. Fires help maintain grassy vegetation where the climate is suitable for woodlands or forests. Saplings in savannahs are particularly vulnerable to topkill of above-ground biomass. Larger trees are more fire-resistant and suffer little damage when burnt. Recruitment to large mature tree size classes depends on sapling growth rates to fire-resistant sizes and the time between fires. Carbon dioxide (CO2) can influence the growth rate of juvenile plants, thereby affecting tree recruitment and the conversion of open savannahs to woodlands. Trees have increased in many savannahs throughout the world, whereas some humid savannahs are being invaded by forests. CO2has been implicated in this woody increase but attribution to global drivers has been controversial where changes in grazing and fire have also occurred. We report on diverse tests of the magnitude of CO2effects on both ancient and modern ecosystems with a particular focus on African savannahs. Large increases in trees of mesic savannahs in the region cannot easily be explained by land use change but are consistent with experimental and simulation studies of CO2effects. Changes in arid savannahs seem less obviously linked to CO2effects and may be driven more by overgrazing. Large-scale shifts in the tree–grass balance in the past and the future need to be better understood. They not only have major impacts on the ecology of grassy ecosystems but also on Earth–atmosphere linkages and the global carbon cycle in ways that are still being discovered.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2012 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2012Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2011.0182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 348 citations 348 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2012 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2012Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2011.0182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022 Germany, South Africa, United States, United KingdomPublisher:Wiley Funded by:ANR | SOMBEE, EC | FutureMARESANR| SOMBEE ,EC| FutureMARESYunne‐Jai Shin; Guy F. Midgley; Emma R. M. Archer; Almut Arneth; David K. A. Barnes; Lena Chan; Shizuka Hashimoto; Ove Hoegh‐Guldberg; Gregory Insarov; Paul Leadley; Lisa A. Levin; Hien T. Ngo; Ram Pandit; Aliny P. F. Pires; Hans‐Otto Pörtner; Alex D. Rogers; Robert J. Scholes; Josef Settele; Pete Smith;AbstractThe two most urgent and interlinked environmental challenges humanity faces are climate change and biodiversity loss. We are entering a pivotal decade for both the international biodiversity and climate change agendas with the sharpening of ambitious strategies and targets by the Convention on Biological Diversity and the United Nations Framework Convention on Climate Change. Within their respective Conventions, the biodiversity and climate interlinked challenges have largely been addressed separately. There is evidence that conservation actions that halt, slow or reverse biodiversity loss can simultaneously slow anthropogenic mediated climate change significantly. This review highlights conservation actions which have the largest potential for mitigation of climate change. We note that conservation actions have mainly synergistic benefits and few antagonistic trade‐offs with climate change mitigation. Specifically, we identify direct co‐benefits in 14 out of the 21 action targets of the draft post‐2020 global biodiversity framework of the Convention on Biological Diversity, notwithstanding the many indirect links that can also support both biodiversity conservation and climate change mitigation. These relationships are context and scale‐dependent; therefore, we showcase examples of local biodiversity conservation actions that can be incentivized, guided and prioritized by global objectives and targets. The close interlinkages between biodiversity, climate change mitigation, other nature's contributions to people and good quality of life are seldom as integrated as they should be in management and policy. This review aims to re‐emphasize the vital relationships between biodiversity conservation actions and climate change mitigation in a timely manner, in support to major Conferences of Parties that are about to negotiate strategic frameworks and international goals for the decades to come.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022License: CC BY NCFull-Text: https://hdl.handle.net/2164/18914Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2022License: CC BY NCFull-Text: http://hdl.handle.net/2263/90481Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 76 citations 76 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 67visibility views 67 download downloads 67 Powered bymore_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022License: CC BY NCFull-Text: https://hdl.handle.net/2164/18914Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2022License: CC BY NCFull-Text: http://hdl.handle.net/2263/90481Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 FrancePublisher:Wiley Thuiller, W.; Midgley, G. F.; Hughes, G. O.; Bomhard, B.; Drew, G.; Rutherford, M. C.; Woodward, F. I.;AbstractWe present a first assessment of the potential impacts of anthropogenic climate change on the endemic flora of Namibia, and on its vegetation structure and function, for a projected climate in ∼2050 and ∼2080. We used both niche‐based models (NBM) to evaluate the sensitivity of 159 endemic species to climate change (of an original 1020 plant species modeled) and a dynamic global vegetation model (DGVM) to assess the impacts of climate change on vegetation structure and ecosystem functioning.Endemic species modeled by NBM are moderately sensitive to projected climate change. Fewer than 5% are predicted to experience complete range loss by 2080, although more than 47% of the species are expected to be vulnerable (range reduction >30%) by 2080 if they are assumed unable to migrate. Disaggregation of results by life‐form showed distinct patterns. Endemic species of perennial herb, geophyte and tree life‐formsare predicted to be negatively impacted in Namibia, whereas annual herb and succulent endemic species remain relatively stable by 2050 and 2080. Endemic annual herb species are even predicted to extend their range north‐eastward into the tree and shrub savanna with migration, and tolerance of novel substrates. The current protected area network is predicted to meet its mandate by protecting most of the current endemicity in Namibia into the future. Vegetation simulated by DGVM is projected to experience a reduction in cover, net primary productivity and leaf area index throughout much of the country by 2050, with important implications for the faunal component of Namibia's ecosystems, and the agricultural sector. The plant functional type (PFT) composition of the major biomes may be substantially affected by climate change and rising atmospheric CO2– currently widespread deciduous broad leaved trees and C4 PFTs decline, with the C4 PFT particularly negatively affected by rising atmospheric CO2 impacts by ∼2080 and deciduous broad leaved trees more likely directly impacted by drying and warming. The C3 PFT may increase in prominence in the northwestern quadrant of the country by ∼2080 as CO2 concentrations increase. These results suggest that substantial changes in species diversity, vegetation structure and ecosystem functioning can be expected in Namibia with anticipated climate change, although endemic plant richness may persist in the topographically diverse central escarpment region.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverGlobal Change BiologyArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2006.01140.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 115 citations 115 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverGlobal Change BiologyArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2006.01140.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Wiley Christopher Guo; Russell M. Wise; Willem J De Lange; Belinda Reyers; Guy F. Midgley;pmid: 22497474
Abstract: The expansion of protected areas is a critical component of strategies to promote the continued existence of biodiversity (i.e., life at all levels of biological organization) as climate changes, but scientific, social, and economic uncertainties associated with climate change are some of the major obstacles preventing such expansion. New models of climate change and species distribution and new methods of conservation planning now make it possible to explore the uncertainties associated with climate changes and species responses. Yet few reliable estimates of the costs of expanding protected areas and methods for determining these costs exist, largely because of the many (and uncertain) determinants of these costs. We developed a cost‐accounting model to estimate the range in costs of various options for expanding protected areas and to explore the variables that drive these costs. Model development was informed by an existing plan to expand protected areas in the Cape Floristic Region of South Africa to address species conservation under a scenario of climate change. The 50‐year present value of total costs varied from US$260 million ($1077/ha) for an off‐reserve option that involves agreements with landowners and no compensation of forgone production and associated revenue to $1020 million ($4228/ha) for an on‐reserve option that involves land acquisition and protection. The costs of acquiring land or compensating landowners for forgone production and development opportunities were the major drivers of the total costs across all options because most of the area identified in the protected‐area expansion plan consisted of urban and high‐quality agricultural lands. Total costs were also affected by changes in protected area extent and discount rate. Model‐generated outputs such as these may be useful for informing implementation strategies and the allocation of future efforts in monitoring, data collection, and model development.
Conservation Biology arrow_drop_down Conservation BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1523-1739.2012.01841.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Conservation Biology arrow_drop_down Conservation BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1523-1739.2012.01841.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 South AfricaPublisher:Wiley Timo Conradi; Jasper A. Slingsby; Guy F. Midgley; Henning Nottebrock; Andreas H. Schweiger; Steven I. Higgins;SummaryBiomes are constructs for organising knowledge on the structure and functioning of the world’s ecosystems, and serve as useful units for monitoring how the biosphere responds to anthropogenic drivers, including climate change. The current practice of delimiting biomes relies on expert knowledge. Recent studies have questioned the value of such biome maps for comparative ecology and global‐change research, partly due to their subjective origin. Here we propose a flexible method for developing biome maps objectively. The method uses range modelling of several thousands of plant species to reveal spatial attractors for different growth‐form assemblages that define biomes. The workflow is illustrated using distribution data from 23 500 African plant species. In an example application, we create a biome map for Africa and use the fitted species models to project biome shifts. In a second example, we map gradients of growth‐form suitability that can be used to identify sites for comparative ecology. This method provides a flexible framework that (1) allows a range of biome types to be defined according to user needs and (2) enables projections of biome changes that emerge purely from the individualistic responses of plant species to environmental changes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16580&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 36 citations 36 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16580&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 France, NetherlandsPublisher:Wiley Thuiller, W.; Broennimann, O.; Hughes, G.; Alkemade, J. R. M.; Midgley, G. F.; Corsi, F.;AbstractRecent observations show that human‐induced climate change (CC) and land transformation (LT) are threatening wildlife globally. Thus, there is a need to assess the sensitivity of wildlife on large spatial scales and evaluate whether national parks (NPs), a key conservation tools used to protect species, will meet their mandate under future CC and LT conditions. Here, we assess the sensitivity of 277 mammals at African scale to CC at 10′ resolution, using static LT assumptions in a ‘first‐cut’ estimate, in the absence of credible future LT trends. We examine the relationship between species' current distribution and macroclimatic variables using generalized additive models, and include LT indirectly as a filter. Future projections are derived using two CC scenarios (for 2050 and 2080) to estimate the spatial patterns of loss and gain in species richness that might ultimately result. We then apply the IUCN Red List criteria A3(c) of potential range loss to evaluate species sensitivity. We finally estimate the sensitivity of 141 NPs in terms of both species richness and turnover. Assuming no spread of species, 10–15% of the species are projected to fall within the critically endangered or extinct categories by 2050 and between 25% and 40% by 2080. Assuming unlimited species spread, less extreme results show proportions dropping to approximately 10–20% by 2080. Spatial patterns of richness loss and gain show contrasting latitudinal patterns with a westward range shift of species around the species‐rich equatorial zone in central Africa, and an eastward shift in southern Africa, mainly because of latitudinal aridity gradients across these ecological transition zones. Xeric shrubland NPs may face significant richness losses not compensated by species influxes. Other NPs might expect substantial losses and influxes of species. On balance, the NPs might ultimately realize a substantial shift in the mammalian species composition of a magnitude unprecedented in recent geological time. To conclude, the effects of global CC and LT on wildlife communities may be most noticeable not as a loss of species from their current ranges, but instead as a fundamental change in community composition.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverGlobal Change BiologyArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2006.01115.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 254 citations 254 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverGlobal Change BiologyArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2006.01115.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005 FrancePublisher:Wiley Authors: Midgley, G.F.; Thuiller, W.;International audience
New Phytologist arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2005Data sources: INRIA a CCSD electronic archive serverNew PhytologistArticle . 2005 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2005.01522.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert New Phytologist arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2005Data sources: INRIA a CCSD electronic archive serverNew PhytologistArticle . 2005 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2005.01522.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Saudi Arabia, Saudi Arabia, United Kingdom, GermanyPublisher:American Association for the Advancement of Science (AAAS) Pörtner, H-O; Scholes, R J; Arneth, A; Barnes, D K A; Burrows, M T; Diamond, S E; Duarte, C M; Kiessling, W; Leadley, P; Managi, S; McElwee, P; Midgley, G; Ngo, H T; Obura, D; Pascual, U; Sankaran, M; Shin, Y J; Val, A L;Earth’s biodiversity and human societies face pollution, overconsumption of natural resources, urbanization, demographic shifts, social and economic inequalities, and habitat loss, many of which are exacerbated by climate change. Here, we review links among climate, biodiversity, and society and develop a roadmap toward sustainability. These include limiting warming to 1.5°C and effectively conserving and restoring functional ecosystems on 30 to 50% of land, freshwater, and ocean “scapes.” We envision a mosaic of interconnected protected and shared spaces, including intensively used spaces, to strengthen self-sustaining biodiversity, the capacity of people and nature to adapt to and mitigate climate change, and nature’s contributions to people. Fostering interlinked human, ecosystem, and planetary health for a livable future urgently requires bold implementation of transformative policy interventions through interconnected institutions, governance, and social systems from local to global levels.
https://dx.doi.org/1... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abl4881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 133 citations 133 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.abl4881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 2021Publisher:Zenodo Pörtner, Hans-Otto; Scholes, Robert J.; Agard, John; Archer, Emma; Bai, Xuemei; Barnes, David; Burrows, Michael; Chan, Lena; Cheung, Wai Lung (William); Diamond, Sarah; Donatti, Camila; Duarte, Carlos; Eisenhauer, Nico; Foden, Wendy; Gasalla, Maria A.; Handa, Collins; Hickler, Thomas; Hoegh-Guldberg, Ove; Ichii, Kazuhito; Jacob, Ute; Insarov, Gregory; Kiessling, Wolfgang; Leadley, Paul; Leemans, Rik; Levin, Lisa; Lim, Michelle; Maharaj, Shobha; Managi, Shunsuke; Marquet, Pablo A.; McElwee, Pamela; Midgley, Guy; Oberdorff, Thierry; Obura, David; Osman Elasha, Balgis; Pandit, Ram; Pascual, Unai; Pires, Aliny P F; Popp, Alexander; Reyes-García, Victoria; Sankaran, Mahesh; Settele, Josef; Shin, Yunne-Jai; Sintayehu, Dejene W.; Smith, Peter; Steiner, Nadja; Strassburg, Bernardo; Sukumar, Raman; Trisos, Christopher; Val, Adalberto Luis; Wu, Jianguo; Aldrian, Edvin; Parmesan, Camille; Pichs-Madruga, Ramon; Roberts, ; Rogers, Alex D.; Díaz, Sandra; Fischer, Markus; Hashimoto, Shizuka; Lavorel, Sandra; Wu, Ning; Ngo, Hien;Suggested citation: Pörtner, H.O., Scholes, R.J., Agard, J., Archer, E., Arneth, A., Bai, X., Barnes, D., Burrows, M., Chan, L., Cheung, W.L., Diamond, S., Donatti, C., Duarte, C., Eisenhauer, N., Foden, W., Gasalla, M. A., Handa, C., Hickler, T., Hoegh-Guldberg, O., Ichii, K., Jacob, U., Insarov, G., Kiessling, W., Leadley, P., Leemans, R., Levin, L., Lim, M., Maharaj, S., Managi, S., Marquet, P. A., McElwee, P., Midgley, G., Oberdorff, T., Obura, D., Osman, E., Pandit, R., Pascual, U., Pires, A. P. F., Popp, A., Reyes-García, V., Sankaran, M., Settele, J., Shin, Y. J., Sintayehu, D. W., Smith, P., Steiner, N., Strassburg, B., Sukumar, R., Trisos, C., Val, A.L., Wu, J., Aldrian, E., Parmesan, C., Pichs-Madruga, R., Roberts, D.C., Rogers, A.D., Díaz, S., Fischer, M., Hashimoto, S., Lavorel, S., Wu, N., Ngo, H.T. 2021. IPBES-IPCC co-sponsored workshop report synopsis on biodiversity and climate change; IPBES and IPCC, DOI:10.5281/zenodo.4782538 The Synopsis presents the main conclusions of the first-ever IPCC-IPBES co-sponsored workshop which took place in December 2020. The workshop explored diverse facets of the interaction between climate and biodiversity, from current trends to the role and implementation of nature-based solutions and the sustainable development of human society. This Synopsis is underpinned by the Scientific Outcome, which includes seven sections, the complete references and the report glossary. You can find the Scientific Outcome here https://doi.org/10.5281/zenodo.4659158
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4920414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4920414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Wiley Authors: Alexandre de Haldat du Lys; Mathieu Millan; Jean‐François Barczi; Yves Caraglio; +2 AuthorsAlexandre de Haldat du Lys; Mathieu Millan; Jean‐François Barczi; Yves Caraglio; Guy F. Midgley; Tristan Charles‐Dominique;Summary If trees minimize self‐shading, new foliage in shaded parts of the crown should remain minimal. However, many species have abundant foliage on short shoots inside their crown. In this paper, we test the hypothesis that short shoots allow trees to densify their foliage in self‐shaded parts of the crown thanks to reduced costs. Using 30 woody species in Mediterranean and tropical biomes, we estimated the contribution of short shoots to total plant foliage, calculated their costs relative to long shoots including wood cost and used 3D plant simulations calibrated with field measurements to quantify their light interception, self‐shading and yield. In species with short shoots, leaves on short shoots account for the majority of leaf area. The reduced cost of short stems enables the production of leaf area with 36% less biomass. Simulations show that although short shoots are more self‐shaded, they benefit the plant because they cost less. Lastly, the morphological properties of short shoots have major implications for whole plant architecture. Taken together, our results question the validity of only assessing leaf costs to understand leaf economics and call for more integrated observations at the crown scale to understand light capture strategies in woody plants.
CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2023Full-Text: https://hal.inrae.fr/hal-03889601Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18636&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2023Full-Text: https://hal.inrae.fr/hal-03889601Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18636&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:The Royal Society Authors: William J. Bond; Guy F. Midgley;Savannahs are a mixture of trees and grasses often occurring as alternate states to closed forests. Savannah fires are frequent where grass productivity is high in the wet season. Fires help maintain grassy vegetation where the climate is suitable for woodlands or forests. Saplings in savannahs are particularly vulnerable to topkill of above-ground biomass. Larger trees are more fire-resistant and suffer little damage when burnt. Recruitment to large mature tree size classes depends on sapling growth rates to fire-resistant sizes and the time between fires. Carbon dioxide (CO2) can influence the growth rate of juvenile plants, thereby affecting tree recruitment and the conversion of open savannahs to woodlands. Trees have increased in many savannahs throughout the world, whereas some humid savannahs are being invaded by forests. CO2has been implicated in this woody increase but attribution to global drivers has been controversial where changes in grazing and fire have also occurred. We report on diverse tests of the magnitude of CO2effects on both ancient and modern ecosystems with a particular focus on African savannahs. Large increases in trees of mesic savannahs in the region cannot easily be explained by land use change but are consistent with experimental and simulation studies of CO2effects. Changes in arid savannahs seem less obviously linked to CO2effects and may be driven more by overgrazing. Large-scale shifts in the tree–grass balance in the past and the future need to be better understood. They not only have major impacts on the ecology of grassy ecosystems but also on Earth–atmosphere linkages and the global carbon cycle in ways that are still being discovered.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2012 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2012Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2011.0182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 348 citations 348 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2012 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2012Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2011.0182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022 Germany, South Africa, United States, United KingdomPublisher:Wiley Funded by:ANR | SOMBEE, EC | FutureMARESANR| SOMBEE ,EC| FutureMARESYunne‐Jai Shin; Guy F. Midgley; Emma R. M. Archer; Almut Arneth; David K. A. Barnes; Lena Chan; Shizuka Hashimoto; Ove Hoegh‐Guldberg; Gregory Insarov; Paul Leadley; Lisa A. Levin; Hien T. Ngo; Ram Pandit; Aliny P. F. Pires; Hans‐Otto Pörtner; Alex D. Rogers; Robert J. Scholes; Josef Settele; Pete Smith;AbstractThe two most urgent and interlinked environmental challenges humanity faces are climate change and biodiversity loss. We are entering a pivotal decade for both the international biodiversity and climate change agendas with the sharpening of ambitious strategies and targets by the Convention on Biological Diversity and the United Nations Framework Convention on Climate Change. Within their respective Conventions, the biodiversity and climate interlinked challenges have largely been addressed separately. There is evidence that conservation actions that halt, slow or reverse biodiversity loss can simultaneously slow anthropogenic mediated climate change significantly. This review highlights conservation actions which have the largest potential for mitigation of climate change. We note that conservation actions have mainly synergistic benefits and few antagonistic trade‐offs with climate change mitigation. Specifically, we identify direct co‐benefits in 14 out of the 21 action targets of the draft post‐2020 global biodiversity framework of the Convention on Biological Diversity, notwithstanding the many indirect links that can also support both biodiversity conservation and climate change mitigation. These relationships are context and scale‐dependent; therefore, we showcase examples of local biodiversity conservation actions that can be incentivized, guided and prioritized by global objectives and targets. The close interlinkages between biodiversity, climate change mitigation, other nature's contributions to people and good quality of life are seldom as integrated as they should be in management and policy. This review aims to re‐emphasize the vital relationships between biodiversity conservation actions and climate change mitigation in a timely manner, in support to major Conferences of Parties that are about to negotiate strategic frameworks and international goals for the decades to come.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022License: CC BY NCFull-Text: https://hdl.handle.net/2164/18914Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2022License: CC BY NCFull-Text: http://hdl.handle.net/2263/90481Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 76 citations 76 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 67visibility views 67 download downloads 67 Powered bymore_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022License: CC BY NCFull-Text: https://hdl.handle.net/2164/18914Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2022License: CC BY NCFull-Text: http://hdl.handle.net/2263/90481Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16109&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 FrancePublisher:Wiley Thuiller, W.; Midgley, G. F.; Hughes, G. O.; Bomhard, B.; Drew, G.; Rutherford, M. C.; Woodward, F. I.;AbstractWe present a first assessment of the potential impacts of anthropogenic climate change on the endemic flora of Namibia, and on its vegetation structure and function, for a projected climate in ∼2050 and ∼2080. We used both niche‐based models (NBM) to evaluate the sensitivity of 159 endemic species to climate change (of an original 1020 plant species modeled) and a dynamic global vegetation model (DGVM) to assess the impacts of climate change on vegetation structure and ecosystem functioning.Endemic species modeled by NBM are moderately sensitive to projected climate change. Fewer than 5% are predicted to experience complete range loss by 2080, although more than 47% of the species are expected to be vulnerable (range reduction >30%) by 2080 if they are assumed unable to migrate. Disaggregation of results by life‐form showed distinct patterns. Endemic species of perennial herb, geophyte and tree life‐formsare predicted to be negatively impacted in Namibia, whereas annual herb and succulent endemic species remain relatively stable by 2050 and 2080. Endemic annual herb species are even predicted to extend their range north‐eastward into the tree and shrub savanna with migration, and tolerance of novel substrates. The current protected area network is predicted to meet its mandate by protecting most of the current endemicity in Namibia into the future. Vegetation simulated by DGVM is projected to experience a reduction in cover, net primary productivity and leaf area index throughout much of the country by 2050, with important implications for the faunal component of Namibia's ecosystems, and the agricultural sector. The plant functional type (PFT) composition of the major biomes may be substantially affected by climate change and rising atmospheric CO2– currently widespread deciduous broad leaved trees and C4 PFTs decline, with the C4 PFT particularly negatively affected by rising atmospheric CO2 impacts by ∼2080 and deciduous broad leaved trees more likely directly impacted by drying and warming. The C3 PFT may increase in prominence in the northwestern quadrant of the country by ∼2080 as CO2 concentrations increase. These results suggest that substantial changes in species diversity, vegetation structure and ecosystem functioning can be expected in Namibia with anticipated climate change, although endemic plant richness may persist in the topographically diverse central escarpment region.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverGlobal Change BiologyArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2006.01140.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 115 citations 115 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverGlobal Change BiologyArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2006Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2006.01140.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Wiley Christopher Guo; Russell M. Wise; Willem J De Lange; Belinda Reyers; Guy F. Midgley;pmid: 22497474
Abstract: The expansion of protected areas is a critical component of strategies to promote the continued existence of biodiversity (i.e., life at all levels of biological organization) as climate changes, but scientific, social, and economic uncertainties associated with climate change are some of the major obstacles preventing such expansion. New models of climate change and species distribution and new methods of conservation planning now make it possible to explore the uncertainties associated with climate changes and species responses. Yet few reliable estimates of the costs of expanding protected areas and methods for determining these costs exist, largely because of the many (and uncertain) determinants of these costs. We developed a cost‐accounting model to estimate the range in costs of various options for expanding protected areas and to explore the variables that drive these costs. Model development was informed by an existing plan to expand protected areas in the Cape Floristic Region of South Africa to address species conservation under a scenario of climate change. The 50‐year present value of total costs varied from US$260 million ($1077/ha) for an off‐reserve option that involves agreements with landowners and no compensation of forgone production and associated revenue to $1020 million ($4228/ha) for an on‐reserve option that involves land acquisition and protection. The costs of acquiring land or compensating landowners for forgone production and development opportunities were the major drivers of the total costs across all options because most of the area identified in the protected‐area expansion plan consisted of urban and high‐quality agricultural lands. Total costs were also affected by changes in protected area extent and discount rate. Model‐generated outputs such as these may be useful for informing implementation strategies and the allocation of future efforts in monitoring, data collection, and model development.
Conservation Biology arrow_drop_down Conservation BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1523-1739.2012.01841.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Conservation Biology arrow_drop_down Conservation BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1523-1739.2012.01841.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu