- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 Norway, Italy, Netherlands, Morocco, SpainPublisher:Royal Society of Chemistry (RSC) Michel H.M. Eppink; Giuseppe Olivieri; Jeroen H. de Vree; Maria J. Barbosa; Jesús Ruiz; J. Hans Reith; René H. Wijffels; René H. Wijffels; Dorinde M.M. Kleinegris; R. Bosma; Philippe Willems;doi: 10.1039/c6ee01493c
handle: 11588/672032 , 11250/2423370
Model projections show that production of high-value products from microalgae could be profitable nowadays and commodities will become profitable within 10 years.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Repositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2016License: CC BY NC NDWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ee01493c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 393 citations 393 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Repositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2016License: CC BY NC NDWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ee01493c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Portugal, Netherlands, NorwayPublisher:Elsevier BV João A. P. Coutinho; M.H.M. Eppink; Sónia P. M. Ventura; René H. Wijffels; René H. Wijffels;Ionic liquids (ILs) are salts with low melting points that can be used as solvents for mild extraction and selective fractionation of biomolecules (e.g., proteins, carbohydrates, lipids, and pigments), enabling the valorisation of microalgal biomass in a multiproduct biorefinery concept, while maintaining the biomolecules' structural integrity and activity. Aqueous biphasic systems and emulsions stabilised by core-shell particles have been used to fractionate disrupted microalgal biomass into hydrophobic (lipids and pigments) and hydrophilic (proteins and carbohydrates) components. From nondisrupted biomass, the hydrophobic components can be directly extracted using ILs from intact cells, while the most fragile hydrophilic components can be obtained upon further mechanical cell disruption. These multiproduct biorefinery concepts will be discussed in an outlook on future separations using IL-based systems.
Trends in Biotechnol... arrow_drop_down Repositório Institucional da Universidade de AveiroArticle . 2022License: CC BYData sources: Repositório Institucional da Universidade de AveiroWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tibtech.2021.02.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Trends in Biotechnol... arrow_drop_down Repositório Institucional da Universidade de AveiroArticle . 2022License: CC BYData sources: Repositório Institucional da Universidade de AveiroWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tibtech.2021.02.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Norway, NetherlandsPublisher:Elsevier BV Authors: Alavijeh, Razieh Shafiei; Karimi, Keikhosro; Wijffels, Rene H.; van den Berg, Corjan; +1 AuthorsAlavijeh, Razieh Shafiei; Karimi, Keikhosro; Wijffels, Rene H.; van den Berg, Corjan; Eppink, Michel;A combined bead milling and enzymatic hydrolysis process was developed for fractionation of the major valuable biomass components, i.e., proteins, carbohydrates, and lipids from the microalgae Chlorella vulgaris. The cells were treated by bead milling followed by hydrolysis with different hydrolytic enzymes, including lipase, phospholipase, protease, and cellulase. Without enzymatic hydrolysis, the recovery yield of lipids, carbohydrates, and proteins for bead milled biomass was 75%, 31%, and 40%, respectively, while by applying enzymatic treatments these results were improved significantly. The maximum recovery yield for all components was obtained after enzymatic hydrolysis of bead milled biomass by lipase at 37 °C and pH 7.4 for 24 h, yielding 88% lipids in the solid phase while 74% carbohydrate and 68% protein were separated in the liquid phase. The recovery yield of components after enzymatic hydrolysis of biomass without bead milling was 44% lower than that of the milled biomass.
Bioresource Technolo... arrow_drop_down Wageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2020.123321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 125 citations 125 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Wageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2020.123321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 Italy, NetherlandsPublisher:Elsevier BV 't Lam, G.P.; Vermuë, M.H.; Olivieri, G.; van den Broek, L.A.M.; Barbosa, M.J.; Eppink, M.H.M.; Wijffels, R.H.; Kleinegris, D.M.M.;Flocculation of microalgae is a promising technique to reduce the costs and energy required for harvesting microalgae. Harvesting marine microalgae requires suitable flocculants to induce the flocculation under marine conditions. This study demonstrates that cationic polymeric flocculants can be used to harvest marine microalgae. Different organic flocculants were tested to flocculate Phaeodactylum tricornutum and Neochloris oleoabundans grown under marine conditions. Addition of 10 ppm of the commercial available flocculants Zetag 7557 and Synthofloc 5080H to P. tricornutum showed a recovery of, respectively, 98% ± 2.0 and 94% ± 2.9 after flocculation followed by 2h sedimentation. Using the same flocculants and dosage for harvesting N. oleoabundans resulted in a recovery of 52% ± 1.5 and 36% ± 11.3. This study shows that cationic polymeric flocculants are a viable option to pre-concentrate marine cultivated microalgae via flocculation prior to further dewatering.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2014.07.070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2014.07.070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Book , Other literature type 2015 NetherlandsPublisher:Wageningen University Authors: Eppink, M.H.M.;Inaugural speech Wageningen University, 23 April 2015
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______9405::d3b3385d4b6231f3920c4f27ced66e68&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______9405::d3b3385d4b6231f3920c4f27ced66e68&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Belgium, NetherlandsPublisher:Elsevier BV Razieh Shafiei-Alavijeh; Michel Eppink; Joeri F.M. Denayer; Eveline Peeters; Keikhosro Karimi;An integrated biorefinery was developed that utilizes microalgal biomass, Chlorella vulgaris, to sustainably produce proteins, fatty acids, bioethanol, and biogas. The microalgal soluble proteins and fatty acids were initially extracted through a cascading extraction process, including bead milling and solvent extraction. Subsequently, the investigation focused on utilizing the biomass residues for bioethanol and biogas production, ultimately improving energy recovery. Implementing the cascading process resulted in a 25 % enhancement in bioethanol yield and a 22.4 % increase in biomethane yield compared to untreated biomass. This approach resulted in 78.0 g of protein, 50.9 g of lipid, 20.8 ml of ethanol, and 136.5 L of methane from one kilogram of dry C. vulgaris biomass. Considering the potential of 8,640 k tons of annual microalgae production in Iran, an estimated 4.1 million tons of CO2 emissions could be averted. This reduction could result in saving approximately 1394.8 million USD in associated social costs of carbon. These improvements in fully valorizing biomass through practical cascading methods significantly advance microalgal biorefinery.
Research@WUR arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2024Data sources: Vrije Universiteit Brussel Research PortalEnergy Conversion and ManagementArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2024.118683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Research@WUR arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2024Data sources: Vrije Universiteit Brussel Research PortalEnergy Conversion and ManagementArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2024.118683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 Italy, Netherlands, Norway, ItalyPublisher:Elsevier BV Funded by:NWO | ALGAEPRO4YOU: Extraction ...NWO| ALGAEPRO4YOU: Extraction and fractionation of functional proteins from microalgae for potential application in the feed or food industryK. Yonathan; René H. Wijffels; René H. Wijffels; Maria J. Barbosa; E. Suarez-Garcia; Michel H.M. Eppink; Carl Safi; Giuseppe Olivieri; Giuseppe Olivieri; P.R. Postma;The disintegration of three industry relevant algae (Chlorella vulgaris, Neochloris oleoabundans and Tetraselmis suecica) was studied in a lab scale bead mill at different bead sizes (0.3-1mm). Cell disintegration, proteins and carbohydrates released into the water phase followed a first order kinetics. The process is selective towards proteins over carbohydrates during early stages of milling. In general, smaller beads led to higher kinetic rates, with a minimum specific energy consumption of ⩽0.47kWhkgDW-1 for 0.3mm beads. After analysis of the stress parameters (stress number and stress intensity), it appears that optimal disintegration and energy usage for all strains occurs in the 0.3-0.4mm range. During the course of bead milling, the native structure of the marker protein Rubisco was retained, confirming the mildness of the disruption process.
Bioresource Technolo... arrow_drop_down Wageningen Staff PublicationsArticle . 2017License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2016.11.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 140 citations 140 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Wageningen Staff PublicationsArticle . 2017License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2016.11.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Journal , Other literature type 2017 NetherlandsPublisher:Springer International Publishing Hans Reith; Michel H.M. Eppink; Corjan van den Berg; Maria J. Barbosa; Giuseppe Olivieri; René H. Wijffels; René H. Wijffels;doi: 10.1007/10_2016_64
pmid: 28265702
Microalgae are considered to be one of the most promising next generation bio-based/food feedstocks with a unique lipid composition, high protein content, and an almost unlimited amount of other bio-active molecules. High-value components such as the soluble proteins, (poly) unsaturated fatty acids, pigments, and carbohydrates can be used as an important ingredient for several markets, such as the food/feed/chemical/cosmetics and health industries. Although cultivation costs have decreased significantly in the last few decades, large microalgae production processes become economically viable if all complex compounds are optimally valorized in their functional state. To isolate these functional compounds from the biomass, cost-effective, mild, and energy-efficient biorefinery techniques need to be developed and applied. In this review we describe current microalgae biorefinery strategies and the derived products, followed by new technological developments and an outlook toward future products and the biorefinery philosophy.
DANS (Data Archiving... arrow_drop_down DANS (Data Archiving and Networked Services)Part of book or chapter of book . 2017Data sources: DANS (Data Archiving and Networked Services)https://doi.org/10.1007/10_201...Part of book or chapter of book . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/10_2016_64&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu52 citations 52 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert DANS (Data Archiving... arrow_drop_down DANS (Data Archiving and Networked Services)Part of book or chapter of book . 2017Data sources: DANS (Data Archiving and Networked Services)https://doi.org/10.1007/10_201...Part of book or chapter of book . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/10_2016_64&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Netherlands, Norway, ItalyPublisher:Elsevier BV 't Lam, G.P.; Zegeye, E.K.; Vermuë, M.H.; Kleinegris, D.M.M.; Eppink, M.H.M.; Wijffels, R.H.; Olivieri, G.;A mechanistic mathematical model was developed to predict the performance of cationic polymers for flocculating salt water cultivated microalgae. The model was validated on experiments carried out with Neochloris oleoabundans and three different commercial flocculants (Zetag 7557®, Synthofloc 5080H® and SNF H536®). For a wide range of biomass concentrations (0.49-1.37 g L(-1)) and flocculant dosages (0-150 mg L(-1)) the model simulations predicted well the optimal flocculant-to-biomass ratio between 43 and 109 mgflocculant/gbiomass. At optimum conditions biomass recoveries varied between 88% and 99%. The cost of the usage of commercial available flocculants is estimated to range between 0.15$/kgbiomass and 0.49$/kgbiomass.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.09.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.09.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 NetherlandsPublisher:Elsevier BV Boboescu, Iulian; Kazbar, Antoinette; Stegemüller, Lars; Lazeroms, Piet; Triantafyllou, Thanasis; Gao, Fengzheng; Lo, Calvin; Barbosa, Maria J.; Eppink, Michel H.M.; Wijffels, Rene H.;pmid: 35798166
Cellular agriculture could represent a more sustainable alternative to current food and nutraceutical production processes. Tisochrysis lutea microalgae represents a rich source of antioxidants and omega-3 fatty acids essential for human health. However, current downstream technologies are limiting its use. The present work investigates mild targeted acoustic treatment of Tisochrysis lutea biomass at different growth stages and acoustic frequencies, intensities and treatment times. Significant differences have been observed in terms of the impact of these variables on the cell disruption and energy requirements. Lower frequencies of 20 kHz required a minimum of 4500 J to disrupt 90% of the cells, while only 1000 J at 1146 kHz. Comparing these results with current industry standards such as bead milling, up to six times less energy use has been identified. These mild biomass processing approaches offer a certain tunability which could suit a wide range of microorganisms with only minor adjustments.
Bioresource Technolo... arrow_drop_down Wageningen Staff PublicationsArticle . 2022License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Wageningen Staff PublicationsArticle . 2022License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 Norway, Italy, Netherlands, Morocco, SpainPublisher:Royal Society of Chemistry (RSC) Michel H.M. Eppink; Giuseppe Olivieri; Jeroen H. de Vree; Maria J. Barbosa; Jesús Ruiz; J. Hans Reith; René H. Wijffels; René H. Wijffels; Dorinde M.M. Kleinegris; R. Bosma; Philippe Willems;doi: 10.1039/c6ee01493c
handle: 11588/672032 , 11250/2423370
Model projections show that production of high-value products from microalgae could be profitable nowadays and commodities will become profitable within 10 years.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Repositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2016License: CC BY NC NDWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ee01493c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 393 citations 393 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Repositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2016License: CC BY NC NDWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ee01493c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Portugal, Netherlands, NorwayPublisher:Elsevier BV João A. P. Coutinho; M.H.M. Eppink; Sónia P. M. Ventura; René H. Wijffels; René H. Wijffels;Ionic liquids (ILs) are salts with low melting points that can be used as solvents for mild extraction and selective fractionation of biomolecules (e.g., proteins, carbohydrates, lipids, and pigments), enabling the valorisation of microalgal biomass in a multiproduct biorefinery concept, while maintaining the biomolecules' structural integrity and activity. Aqueous biphasic systems and emulsions stabilised by core-shell particles have been used to fractionate disrupted microalgal biomass into hydrophobic (lipids and pigments) and hydrophilic (proteins and carbohydrates) components. From nondisrupted biomass, the hydrophobic components can be directly extracted using ILs from intact cells, while the most fragile hydrophilic components can be obtained upon further mechanical cell disruption. These multiproduct biorefinery concepts will be discussed in an outlook on future separations using IL-based systems.
Trends in Biotechnol... arrow_drop_down Repositório Institucional da Universidade de AveiroArticle . 2022License: CC BYData sources: Repositório Institucional da Universidade de AveiroWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tibtech.2021.02.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Trends in Biotechnol... arrow_drop_down Repositório Institucional da Universidade de AveiroArticle . 2022License: CC BYData sources: Repositório Institucional da Universidade de AveiroWageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tibtech.2021.02.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Norway, NetherlandsPublisher:Elsevier BV Authors: Alavijeh, Razieh Shafiei; Karimi, Keikhosro; Wijffels, Rene H.; van den Berg, Corjan; +1 AuthorsAlavijeh, Razieh Shafiei; Karimi, Keikhosro; Wijffels, Rene H.; van den Berg, Corjan; Eppink, Michel;A combined bead milling and enzymatic hydrolysis process was developed for fractionation of the major valuable biomass components, i.e., proteins, carbohydrates, and lipids from the microalgae Chlorella vulgaris. The cells were treated by bead milling followed by hydrolysis with different hydrolytic enzymes, including lipase, phospholipase, protease, and cellulase. Without enzymatic hydrolysis, the recovery yield of lipids, carbohydrates, and proteins for bead milled biomass was 75%, 31%, and 40%, respectively, while by applying enzymatic treatments these results were improved significantly. The maximum recovery yield for all components was obtained after enzymatic hydrolysis of bead milled biomass by lipase at 37 °C and pH 7.4 for 24 h, yielding 88% lipids in the solid phase while 74% carbohydrate and 68% protein were separated in the liquid phase. The recovery yield of components after enzymatic hydrolysis of biomass without bead milling was 44% lower than that of the milled biomass.
Bioresource Technolo... arrow_drop_down Wageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2020.123321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 125 citations 125 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Wageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2020.123321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 Italy, NetherlandsPublisher:Elsevier BV 't Lam, G.P.; Vermuë, M.H.; Olivieri, G.; van den Broek, L.A.M.; Barbosa, M.J.; Eppink, M.H.M.; Wijffels, R.H.; Kleinegris, D.M.M.;Flocculation of microalgae is a promising technique to reduce the costs and energy required for harvesting microalgae. Harvesting marine microalgae requires suitable flocculants to induce the flocculation under marine conditions. This study demonstrates that cationic polymeric flocculants can be used to harvest marine microalgae. Different organic flocculants were tested to flocculate Phaeodactylum tricornutum and Neochloris oleoabundans grown under marine conditions. Addition of 10 ppm of the commercial available flocculants Zetag 7557 and Synthofloc 5080H to P. tricornutum showed a recovery of, respectively, 98% ± 2.0 and 94% ± 2.9 after flocculation followed by 2h sedimentation. Using the same flocculants and dosage for harvesting N. oleoabundans resulted in a recovery of 52% ± 1.5 and 36% ± 11.3. This study shows that cationic polymeric flocculants are a viable option to pre-concentrate marine cultivated microalgae via flocculation prior to further dewatering.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2014.07.070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2014.07.070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Book , Other literature type 2015 NetherlandsPublisher:Wageningen University Authors: Eppink, M.H.M.;Inaugural speech Wageningen University, 23 April 2015
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______9405::d3b3385d4b6231f3920c4f27ced66e68&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______9405::d3b3385d4b6231f3920c4f27ced66e68&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Belgium, NetherlandsPublisher:Elsevier BV Razieh Shafiei-Alavijeh; Michel Eppink; Joeri F.M. Denayer; Eveline Peeters; Keikhosro Karimi;An integrated biorefinery was developed that utilizes microalgal biomass, Chlorella vulgaris, to sustainably produce proteins, fatty acids, bioethanol, and biogas. The microalgal soluble proteins and fatty acids were initially extracted through a cascading extraction process, including bead milling and solvent extraction. Subsequently, the investigation focused on utilizing the biomass residues for bioethanol and biogas production, ultimately improving energy recovery. Implementing the cascading process resulted in a 25 % enhancement in bioethanol yield and a 22.4 % increase in biomethane yield compared to untreated biomass. This approach resulted in 78.0 g of protein, 50.9 g of lipid, 20.8 ml of ethanol, and 136.5 L of methane from one kilogram of dry C. vulgaris biomass. Considering the potential of 8,640 k tons of annual microalgae production in Iran, an estimated 4.1 million tons of CO2 emissions could be averted. This reduction could result in saving approximately 1394.8 million USD in associated social costs of carbon. These improvements in fully valorizing biomass through practical cascading methods significantly advance microalgal biorefinery.
Research@WUR arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2024Data sources: Vrije Universiteit Brussel Research PortalEnergy Conversion and ManagementArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2024.118683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Research@WUR arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2024Data sources: Vrije Universiteit Brussel Research PortalEnergy Conversion and ManagementArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2024.118683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 Italy, Netherlands, Norway, ItalyPublisher:Elsevier BV Funded by:NWO | ALGAEPRO4YOU: Extraction ...NWO| ALGAEPRO4YOU: Extraction and fractionation of functional proteins from microalgae for potential application in the feed or food industryK. Yonathan; René H. Wijffels; René H. Wijffels; Maria J. Barbosa; E. Suarez-Garcia; Michel H.M. Eppink; Carl Safi; Giuseppe Olivieri; Giuseppe Olivieri; P.R. Postma;The disintegration of three industry relevant algae (Chlorella vulgaris, Neochloris oleoabundans and Tetraselmis suecica) was studied in a lab scale bead mill at different bead sizes (0.3-1mm). Cell disintegration, proteins and carbohydrates released into the water phase followed a first order kinetics. The process is selective towards proteins over carbohydrates during early stages of milling. In general, smaller beads led to higher kinetic rates, with a minimum specific energy consumption of ⩽0.47kWhkgDW-1 for 0.3mm beads. After analysis of the stress parameters (stress number and stress intensity), it appears that optimal disintegration and energy usage for all strains occurs in the 0.3-0.4mm range. During the course of bead milling, the native structure of the marker protein Rubisco was retained, confirming the mildness of the disruption process.
Bioresource Technolo... arrow_drop_down Wageningen Staff PublicationsArticle . 2017License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2016.11.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 140 citations 140 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Wageningen Staff PublicationsArticle . 2017License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2016.11.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Journal , Other literature type 2017 NetherlandsPublisher:Springer International Publishing Hans Reith; Michel H.M. Eppink; Corjan van den Berg; Maria J. Barbosa; Giuseppe Olivieri; René H. Wijffels; René H. Wijffels;doi: 10.1007/10_2016_64
pmid: 28265702
Microalgae are considered to be one of the most promising next generation bio-based/food feedstocks with a unique lipid composition, high protein content, and an almost unlimited amount of other bio-active molecules. High-value components such as the soluble proteins, (poly) unsaturated fatty acids, pigments, and carbohydrates can be used as an important ingredient for several markets, such as the food/feed/chemical/cosmetics and health industries. Although cultivation costs have decreased significantly in the last few decades, large microalgae production processes become economically viable if all complex compounds are optimally valorized in their functional state. To isolate these functional compounds from the biomass, cost-effective, mild, and energy-efficient biorefinery techniques need to be developed and applied. In this review we describe current microalgae biorefinery strategies and the derived products, followed by new technological developments and an outlook toward future products and the biorefinery philosophy.
DANS (Data Archiving... arrow_drop_down DANS (Data Archiving and Networked Services)Part of book or chapter of book . 2017Data sources: DANS (Data Archiving and Networked Services)https://doi.org/10.1007/10_201...Part of book or chapter of book . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/10_2016_64&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu52 citations 52 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert DANS (Data Archiving... arrow_drop_down DANS (Data Archiving and Networked Services)Part of book or chapter of book . 2017Data sources: DANS (Data Archiving and Networked Services)https://doi.org/10.1007/10_201...Part of book or chapter of book . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/10_2016_64&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Netherlands, Norway, ItalyPublisher:Elsevier BV 't Lam, G.P.; Zegeye, E.K.; Vermuë, M.H.; Kleinegris, D.M.M.; Eppink, M.H.M.; Wijffels, R.H.; Olivieri, G.;A mechanistic mathematical model was developed to predict the performance of cationic polymers for flocculating salt water cultivated microalgae. The model was validated on experiments carried out with Neochloris oleoabundans and three different commercial flocculants (Zetag 7557®, Synthofloc 5080H® and SNF H536®). For a wide range of biomass concentrations (0.49-1.37 g L(-1)) and flocculant dosages (0-150 mg L(-1)) the model simulations predicted well the optimal flocculant-to-biomass ratio between 43 and 109 mgflocculant/gbiomass. At optimum conditions biomass recoveries varied between 88% and 99%. The cost of the usage of commercial available flocculants is estimated to range between 0.15$/kgbiomass and 0.49$/kgbiomass.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.09.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.09.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 NetherlandsPublisher:Elsevier BV Boboescu, Iulian; Kazbar, Antoinette; Stegemüller, Lars; Lazeroms, Piet; Triantafyllou, Thanasis; Gao, Fengzheng; Lo, Calvin; Barbosa, Maria J.; Eppink, Michel H.M.; Wijffels, Rene H.;pmid: 35798166
Cellular agriculture could represent a more sustainable alternative to current food and nutraceutical production processes. Tisochrysis lutea microalgae represents a rich source of antioxidants and omega-3 fatty acids essential for human health. However, current downstream technologies are limiting its use. The present work investigates mild targeted acoustic treatment of Tisochrysis lutea biomass at different growth stages and acoustic frequencies, intensities and treatment times. Significant differences have been observed in terms of the impact of these variables on the cell disruption and energy requirements. Lower frequencies of 20 kHz required a minimum of 4500 J to disrupt 90% of the cells, while only 1000 J at 1146 kHz. Comparing these results with current industry standards such as bead milling, up to six times less energy use has been identified. These mild biomass processing approaches offer a certain tunability which could suit a wide range of microorganisms with only minor adjustments.
Bioresource Technolo... arrow_drop_down Wageningen Staff PublicationsArticle . 2022License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Wageningen Staff PublicationsArticle . 2022License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.127582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu