- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Authors: Hongnyoung Yoo;Jaeyeon Kim;
Jaeyeon Kim
Jaeyeon Kim in OpenAIREObeen Kwon;
Hyeok Kim; +6 AuthorsObeen Kwon
Obeen Kwon in OpenAIREHongnyoung Yoo;Jaeyeon Kim;
Jaeyeon Kim
Jaeyeon Kim in OpenAIREObeen Kwon;
Hyeok Kim; Geon Hwi Kim; Heesoo Choi; Hyeonjin Cha; Dasol Kim;Obeen Kwon
Obeen Kwon in OpenAIRESegeun Jang;
Segeun Jang
Segeun Jang in OpenAIRETaehyun Park;
Taehyun Park
Taehyun Park in OpenAIREThis article reports on a flexible polymer electrolyte membrane fuel cell (PEMFC) with a pre-bent flow field. The performances in the flat and bent positions were lower and higher, respectively than that of the traditional flexible fuel cells. The low performance in the flat position was attributed to the void space induced incomplete contact at the interface of the membrane electrode assembly (MEA) and flow-field plates, which resulted in poor performance due to the high ohmic resistance (5.85 Ω cm2) and faradaic resistance (4.17 Ω cm2). However, when bending stress was applied to the MEA, a decreased ohmic resistance (0.954 Ω cm2), faradaic resistance (0.737 Ω cm2), and an enhanced power density (88.7 mW/cm2) were observed because of the improved interfacial contact property between the MEA and the flow-field plates from the increased compressive stress. These experimental results were further analyzed and visualized with aid of the finite element analysis. Despite the relatively low performance in the flat shape, the proposed pre-bent design of the flexible PEMFC possesses promising applicability especially in flexible electronics where the curved shapes are highly required.
International Journa... arrow_drop_down International Journal of Precision Engineering and Manufacturing-Green TechnologyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40684-020-00305-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Precision Engineering and Manufacturing-Green TechnologyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40684-020-00305-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Authors: Hongnyoung Yoo;Jaeyeon Kim;
Jaeyeon Kim
Jaeyeon Kim in OpenAIREObeen Kwon;
Hyeok Kim; +6 AuthorsObeen Kwon
Obeen Kwon in OpenAIREHongnyoung Yoo;Jaeyeon Kim;
Jaeyeon Kim
Jaeyeon Kim in OpenAIREObeen Kwon;
Hyeok Kim; Geon Hwi Kim; Heesoo Choi; Hyeonjin Cha; Dasol Kim;Obeen Kwon
Obeen Kwon in OpenAIRESegeun Jang;
Segeun Jang
Segeun Jang in OpenAIRETaehyun Park;
Taehyun Park
Taehyun Park in OpenAIREThis article reports on a flexible polymer electrolyte membrane fuel cell (PEMFC) with a pre-bent flow field. The performances in the flat and bent positions were lower and higher, respectively than that of the traditional flexible fuel cells. The low performance in the flat position was attributed to the void space induced incomplete contact at the interface of the membrane electrode assembly (MEA) and flow-field plates, which resulted in poor performance due to the high ohmic resistance (5.85 Ω cm2) and faradaic resistance (4.17 Ω cm2). However, when bending stress was applied to the MEA, a decreased ohmic resistance (0.954 Ω cm2), faradaic resistance (0.737 Ω cm2), and an enhanced power density (88.7 mW/cm2) were observed because of the improved interfacial contact property between the MEA and the flow-field plates from the increased compressive stress. These experimental results were further analyzed and visualized with aid of the finite element analysis. Despite the relatively low performance in the flat shape, the proposed pre-bent design of the flexible PEMFC possesses promising applicability especially in flexible electronics where the curved shapes are highly required.
International Journa... arrow_drop_down International Journal of Precision Engineering and Manufacturing-Green TechnologyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40684-020-00305-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Precision Engineering and Manufacturing-Green TechnologyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40684-020-00305-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Publisher:Springer Science and Business Media LLC Authors: Kim, Sang Moon;Ahn, Chi-Yeong;
Cho, Yong-Hun;Ahn, Chi-Yeong
Ahn, Chi-Yeong in OpenAIREKim, Sungjun;
+6 AuthorsKim, Sungjun
Kim, Sungjun in OpenAIREKim, Sang Moon;Ahn, Chi-Yeong;
Cho, Yong-Hun;Ahn, Chi-Yeong
Ahn, Chi-Yeong in OpenAIREKim, Sungjun;
Hwang, Wonchan;Kim, Sungjun
Kim, Sungjun in OpenAIREJang, Segeun;
Shin, Sungsoo; Lee, Gunhee; Sung, Yung-Eun; Choi, Mansoo;Jang, Segeun
Jang, Segeun in OpenAIREAbstractWe have achieved performance enhancement of polymer electrolyte membrane fuel cell (PEMFC) though crack generation on its electrodes. It is the first attempt to enhance the performance of PEMFC by using cracks which are generally considered as defects. The pre-defined, cracked electrode was generated by stretching a catalyst-coated Nafion membrane. With the strain-stress property of the membrane that is unique in the aspect of plastic deformation, membrane electrolyte assembly (MEA) was successfully incorporated into the fuel cell. Cracked electrodes with the variation of strain were investigated and electrochemically evaluated. Remarkably, mechanical stretching of catalyst-coated Nafion membrane led to a decrease in membrane resistance and an improvement in mass transport, which resulted in enhanced device performance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep26503&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep26503&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Publisher:Springer Science and Business Media LLC Authors: Kim, Sang Moon;Ahn, Chi-Yeong;
Cho, Yong-Hun;Ahn, Chi-Yeong
Ahn, Chi-Yeong in OpenAIREKim, Sungjun;
+6 AuthorsKim, Sungjun
Kim, Sungjun in OpenAIREKim, Sang Moon;Ahn, Chi-Yeong;
Cho, Yong-Hun;Ahn, Chi-Yeong
Ahn, Chi-Yeong in OpenAIREKim, Sungjun;
Hwang, Wonchan;Kim, Sungjun
Kim, Sungjun in OpenAIREJang, Segeun;
Shin, Sungsoo; Lee, Gunhee; Sung, Yung-Eun; Choi, Mansoo;Jang, Segeun
Jang, Segeun in OpenAIREAbstractWe have achieved performance enhancement of polymer electrolyte membrane fuel cell (PEMFC) though crack generation on its electrodes. It is the first attempt to enhance the performance of PEMFC by using cracks which are generally considered as defects. The pre-defined, cracked electrode was generated by stretching a catalyst-coated Nafion membrane. With the strain-stress property of the membrane that is unique in the aspect of plastic deformation, membrane electrolyte assembly (MEA) was successfully incorporated into the fuel cell. Cracked electrodes with the variation of strain were investigated and electrochemically evaluated. Remarkably, mechanical stretching of catalyst-coated Nafion membrane led to a decrease in membrane resistance and an improvement in mass transport, which resulted in enhanced device performance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep26503&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep26503&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors:Segeun Jang;
Yung-Eun Sung; Jehyeon Yeon;Segeun Jang
Segeun Jang in OpenAIRESungjun Kim;
+8 AuthorsSungjun Kim
Sungjun Kim in OpenAIRESegeun Jang;
Yung-Eun Sung; Jehyeon Yeon;Segeun Jang
Segeun Jang in OpenAIRESungjun Kim;
Sang Moon Kim; Jiwoo Choi; Yong-Hun Cho; Min Her; Mansoo Choi; Kijoon Bang; Wonchan Hwang;Sungjun Kim
Sungjun Kim in OpenAIREChi-Yeong Ahn;
Chi-Yeong Ahn
Chi-Yeong Ahn in OpenAIREAbstract Capability to fabricate high-performance membrane electrode assemblies (MEAs) is a key to the commercialization of direct methanol fuel cells (DMFCs). This work reports an interface engineering method to introduce a multiscale patterned membrane and a guided metal cracked layer between the catalyst layer and the membrane by the creep-assisted sequential imprinting and simple stretching technique. The MEA with a multiscale patterned membrane, where the nanopatterns covered the whole surface even on the side surface of microstructures, showed improved performance owing to enhanced mass transport by the thinned electrode, effective utilization of the active sites, and increased Pt utilization. To obtain further performance enhancement, we incorporated a guided gold cracked layer into the MEA with the multiscale patterned membrane. The electrochemically inactive thin gold layer acted as a physical barrier for methanol crossover and the guided cracks provided multiple proton pathways. Our interface engineering utility resulted in an enhancement of the device performance by 42.3% compared with that of the reference.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2017.11.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2017.11.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors:Segeun Jang;
Yung-Eun Sung; Jehyeon Yeon;Segeun Jang
Segeun Jang in OpenAIRESungjun Kim;
+8 AuthorsSungjun Kim
Sungjun Kim in OpenAIRESegeun Jang;
Yung-Eun Sung; Jehyeon Yeon;Segeun Jang
Segeun Jang in OpenAIRESungjun Kim;
Sang Moon Kim; Jiwoo Choi; Yong-Hun Cho; Min Her; Mansoo Choi; Kijoon Bang; Wonchan Hwang;Sungjun Kim
Sungjun Kim in OpenAIREChi-Yeong Ahn;
Chi-Yeong Ahn
Chi-Yeong Ahn in OpenAIREAbstract Capability to fabricate high-performance membrane electrode assemblies (MEAs) is a key to the commercialization of direct methanol fuel cells (DMFCs). This work reports an interface engineering method to introduce a multiscale patterned membrane and a guided metal cracked layer between the catalyst layer and the membrane by the creep-assisted sequential imprinting and simple stretching technique. The MEA with a multiscale patterned membrane, where the nanopatterns covered the whole surface even on the side surface of microstructures, showed improved performance owing to enhanced mass transport by the thinned electrode, effective utilization of the active sites, and increased Pt utilization. To obtain further performance enhancement, we incorporated a guided gold cracked layer into the MEA with the multiscale patterned membrane. The electrochemically inactive thin gold layer acted as a physical barrier for methanol crossover and the guided cracks provided multiple proton pathways. Our interface engineering utility resulted in an enhancement of the device performance by 42.3% compared with that of the reference.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2017.11.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2017.11.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Authors: Jinwon Lee; Changwook Seol; Joondong Kim;Segeun Jang;
+1 AuthorsSegeun Jang
Segeun Jang in OpenAIREJinwon Lee; Changwook Seol; Joondong Kim;Segeun Jang;
Segeun Jang
Segeun Jang in OpenAIRESang Moon Kim;
Sang Moon Kim
Sang Moon Kim in OpenAIREWith increasing demand for high‐efficiency and clean energy sources, the polymer electrolyte membrane fuel cell (PEMFC) has received attention in a wide range of fields including transportation and back‐up power. For securing the economic viability of PEMFC, the U.S. Department of Energy (DOE) provides the target of the total Pt catalyst loading as 0.125 mgPt cm−2 on both cathode and anode, which is much less than that currently used (>0.25 mgPt cm−2 for cathode). An optimized ratio of catalyst loading between the anode and cathode with a fixed Pt catalyst loading according to the DOE target is figured out by conducting diverse electrochemical measurements with varying the catalyst loading ratio in single‐cells. Among the experimental set, the membrane electrode assembly (MEA) with 70% catalyst loading on the cathode side shows the highest performance with the maximum power density of 643 mW cm−2, while the MEA with 90% catalyst loading on the cathode side exhibits inferior performance. Experimental results are validated by suggesting the theoretical model, which was established based on considering both the electrochemical kinetics of hydrogen oxidation and oxygen reduction reaction.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202100113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202100113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Authors: Jinwon Lee; Changwook Seol; Joondong Kim;Segeun Jang;
+1 AuthorsSegeun Jang
Segeun Jang in OpenAIREJinwon Lee; Changwook Seol; Joondong Kim;Segeun Jang;
Segeun Jang
Segeun Jang in OpenAIRESang Moon Kim;
Sang Moon Kim
Sang Moon Kim in OpenAIREWith increasing demand for high‐efficiency and clean energy sources, the polymer electrolyte membrane fuel cell (PEMFC) has received attention in a wide range of fields including transportation and back‐up power. For securing the economic viability of PEMFC, the U.S. Department of Energy (DOE) provides the target of the total Pt catalyst loading as 0.125 mgPt cm−2 on both cathode and anode, which is much less than that currently used (>0.25 mgPt cm−2 for cathode). An optimized ratio of catalyst loading between the anode and cathode with a fixed Pt catalyst loading according to the DOE target is figured out by conducting diverse electrochemical measurements with varying the catalyst loading ratio in single‐cells. Among the experimental set, the membrane electrode assembly (MEA) with 70% catalyst loading on the cathode side shows the highest performance with the maximum power density of 643 mW cm−2, while the MEA with 90% catalyst loading on the cathode side exhibits inferior performance. Experimental results are validated by suggesting the theoretical model, which was established based on considering both the electrochemical kinetics of hydrogen oxidation and oxygen reduction reaction.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202100113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202100113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Mansoo Choi; Yun Sik Kang; Suk Won Cha;Segeun Jang;
+4 AuthorsSegeun Jang
Segeun Jang in OpenAIREMansoo Choi; Yun Sik Kang; Suk Won Cha;Segeun Jang;
Segeun Jang
Segeun Jang in OpenAIRETaehyun Park;
Taehyun Park;Taehyun Park
Taehyun Park in OpenAIRESung Jong Yoo;
Sung Jong Yoo;Sung Jong Yoo
Sung Jong Yoo in OpenAIREAbstract Membrane electrode assemblies (MEAs) with carbon paper and cloth for bendable polymer electrolyte membrane fuel cell were characterized as it is subject to repetitive bending. The performance of the MEA with carbon paper was decreased significantly while the MEA with carbon cloth remained constant after repetitive bending. Electrochemical impedance spectroscopy revealed ohmic and charge transfer resistances of the MEA with carbon paper were increased by repetitive bending. Such performance degradation is due to physically observed damages in carbon paper and its detachment from the MEA, which was not in the MEA with carbon cloth due to its intrinsic flexibility.
Journal of Industria... arrow_drop_down Journal of Industrial and Engineering ChemistryArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jiec.2016.11.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Industria... arrow_drop_down Journal of Industrial and Engineering ChemistryArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jiec.2016.11.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Mansoo Choi; Yun Sik Kang; Suk Won Cha;Segeun Jang;
+4 AuthorsSegeun Jang
Segeun Jang in OpenAIREMansoo Choi; Yun Sik Kang; Suk Won Cha;Segeun Jang;
Segeun Jang
Segeun Jang in OpenAIRETaehyun Park;
Taehyun Park;Taehyun Park
Taehyun Park in OpenAIRESung Jong Yoo;
Sung Jong Yoo;Sung Jong Yoo
Sung Jong Yoo in OpenAIREAbstract Membrane electrode assemblies (MEAs) with carbon paper and cloth for bendable polymer electrolyte membrane fuel cell were characterized as it is subject to repetitive bending. The performance of the MEA with carbon paper was decreased significantly while the MEA with carbon cloth remained constant after repetitive bending. Electrochemical impedance spectroscopy revealed ohmic and charge transfer resistances of the MEA with carbon paper were increased by repetitive bending. Such performance degradation is due to physically observed damages in carbon paper and its detachment from the MEA, which was not in the MEA with carbon cloth due to its intrinsic flexibility.
Journal of Industria... arrow_drop_down Journal of Industrial and Engineering ChemistryArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jiec.2016.11.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Industria... arrow_drop_down Journal of Industrial and Engineering ChemistryArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jiec.2016.11.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu