Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
5 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Simon L. Croft; Simon L. Croft; Antti Mäntylä; Tomi Järvinen; +5 Authors

    Abstract As the part of a study to develop buparvaquone (BPQ) formulations for the treatment of cutaneous leishmaniasis, the topical delivery of BPQ and one of its prodrugs from a range of formulations was evaluated. In previous studies, BPQ and its prodrugs were shown to be potent antileishmanials in-vitro, with ED50 values in the nanomolar range. 3-Phosphono-oxymethyl-buparvaquone (3-POM-BPQ) was the most potent antileishmanial and was chosen, together with the parent drug, for further investigation. The ability of the parent and prodrug formulations to cross human and murine skin was tested in-vitro using the Franz diffusion cells. Formulations intended for topical application containing either BPQ or 3-POM-BPQ were developed using excipients that were either acceptable for topical use (GRAS or FDA inactive ingredients) or currently going through the regulatory process. BPQ was shown to penetrate both human epidermal membranes and full thickness BALB/c skin from a range of formulations (gels, emulsions). Similarly, 3-POM-BPQ penetrated full-thickness BALB/c skin from several gel formulations. In-vitro binding studies showed that BPQ bound melanin in a dose-dependent manner and preferably bound to delipidized skin over untreated BALB/c skin (on a weight to weight basis). The results confirm that BPQ and its prodrug 3-POM-BPQ can penetrate the skin from several formulations, making them potentially interesting candidates for further investigation of topical formulations using in-vivo models of cutaneous leishmaniasis.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Pharmacy ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Pharmacy and Pharmacology
    Article . 2007 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    26
    citations26
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Pharmacy ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Pharmacy and Pharmacology
      Article . 2007 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jones, Stuart A.; Reid, Monica L.; Brown, Marc B.;

    A transiently supersaturated drug delivery system has the potential to enhance topical drug delivery via heightened thermodynamic activity. The aim of this work was to quantify the degree of saturation (DS) for transiently supersaturated formulations using three traditional and one novel in vitro assessment methods. Metered dose aerosols (MDA) were formulated containing saturated levels of beclomethasone dipropionate monohydrate (BDP) or betamethasone 17-valerate (BMV) within a pressurised canister, and included ethanol (EtOH), hydrofluoroalkane 134a propellant and poly(vinyl pyrrolidone). Attempts to determine the DS via the measurement of drug flux through synthetic membranes did not correlate and was shown to be dependent on the EtOH concentration. The inability of these methods to accurately assess the drug DS may be due to the transient nature of the formulation and the volatile solvents dehydrating the membrane. A mathematical equation that used the evaporation rate of the formulation was derived to determine the theoretical DS at various time points after MDA actuation. It was shown that the MDAs became supersaturated with a high DS, this enhanced drug release from the formulation and therefore these preparations have the potential to increase the amount of drug delivered into the skin.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Pharmaceu...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Pharmaceutical Sciences
    Article . 2009 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    15
    citations15
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Pharmaceu...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Pharmaceutical Sciences
      Article . 2009 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Reid, Monica L.; Brown, Marc B.; Jones, Stuart A.;

    The creation of supersaturation transiently after application overcomes the issue of drug instability. However, if the solvents used to drive supersaturation evaporate too quickly, drug recrystallisation or rapid film drying can occur which will inhibit drug release. As such the effects of a residual solvent, poly(ethylene glycol) 400 (PEG), on the release, mobility and supersaturation kinetics of a transiently supersaturated formulation were studied.Metered dose aerosol (MDA) formulations consisting of hydrofluoroalkane 134a, ethanol, poly(vinyl pyrrolidone) K90, beclomethasone dipropionate (BDP), and 0%, 5% or 10% w/w PEG were prepared in canisters sealed with metered dose valves and tested for release and adhesion over time.The addition of 10% PEG to the MDA formulation resulted in a significant reduction (p < 0.05) in steady state drug release rate (230.4 +/- 17.3 microg/cm(2)/h for 0% PEG MDA, 83.6 +/- 4.9 microg/cm(2)/h for 10% PEG MDA). The presence of PEG caused a delay in dose depletion (2 h for 0% PEG MDA versus 4 h for 10% PEG), retarded supersaturation kinetics and increased film drying time.Whilst equivalent amounts of BDP were released, the residual solvent altered the drug release profile to achieve more constant delivery.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Pharmaceutical Resea...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Pharmaceutical Research
    Article . 2008 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    11
    citations11
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Pharmaceutical Resea...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Pharmaceutical Research
      Article . 2008 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Rob Turner; Sean Robert Wevrett; Suzanne Edmunds; Marc Brown; +2 Authors

    AbstractThe aim of this investigation was to develop receiver and extraction fluids, and subsequently validate an analytical method to quantify the permeation and penetration of flurbiprofen into human pharynx tissue using a Franz diffusion cell. The solubility and stability of flurbiprofen in a suitable receiver fluid, and a suitable extraction method and fluid to recover and quantitate flurbiprofen from human pharynx tissue, were investigated using high‐performance liquid chromatography (HPLC). The potential interference of human pharynx tissue in the receiver fluid was also investigated. The HPLC analytical method was successfully validated according to current guidelines. The final receiver fluid demonstrated sufficient solubility and stability, and the extraction method and fluid resulted in >95% recovery of flurbiprofen following exposure to human pharynx tissue. The lower limit of quantitation of flurbiprofen was 0.045 μg/mL in both the receiver and extraction fluids. There was no interference of the human pharynx tissue with the HPLC method. This investigation validated an analytical method for quantitating flurbiprofen, and determined a suitable receiver fluid and extraction method and fluid, which can be used to investigate the permeation and penetration of flurbiprofen through human pharynx tissue using the Franz diffusion cell method.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biomedical Chromatog...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Biomedical Chromatography
    Article . 2019 . Peer-reviewed
    License: CC BY NC
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Biomedical Chromatography
    Article
    License: CC BY NC
    Data sources: UnpayWall
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    5
    citations5
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biomedical Chromatog...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Biomedical Chromatography
      Article . 2019 . Peer-reviewed
      License: CC BY NC
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Biomedical Chromatography
      Article
      License: CC BY NC
      Data sources: UnpayWall
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Reid, Monica L.; Benaouda, Faiza; Khengar, Rajeshree; Jones, Stuart A.; +1 Authors

    Drug loaded hydrofluoroalkane (HFA) sprays can generate effective pharmaceutical formulations, but a deeper understanding of the manner in which these dynamic systems drive the process of in situ semi-solid dosage form assembly is required. The aim of this study was to investigate the effect of the matrix assembly and composition on drug localisation in human skin. Comparing the characteristics of sprays constituting HFA 134a, ethanol (EtOH), poly(vinyl pyrrolidone) K90, isopropyl myristate (IPM), and poly(ethylene glycol) (PEG) demonstrated that the addition of non-volatile solvents acted to delay EtOH evaporation, control the degree of drug saturation (DS) and enhance the corticosteroid delivery from HFA spray formulations. In a dose matched skin penetration study the HFA sprays containing only EtOH as a co-solvent delivered 2.1 μg BMV (DS 13.5) into the tissue, adding IPM to the EtOH HFA delivered 4.03 μg BMV (DS 11.2), whist adding PEG to the EtOH HFA delivered 6.1 μg BMV (DS 0.3). Compared to commercial cream (delivering 0.91 μg BMV) the EtOH/PEG HFA spray deposited over 6 times (p<0.05) more drug into the skin. Post spray deposition characterisation of the semi-solid suggested that the superior performance of the EtOH/PEG HFA spray was a consequence of retarding EtOH evaporation and presenting the drug in an EtOH rich PEG residual phase, which promoted BMV passage through the SC and into epidermis.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao King's College, Lond...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Pharmaceutics
    Article . 2013 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    18
    citations18
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao King's College, Lond...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Pharmaceutics
      Article . 2013 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
5 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Simon L. Croft; Simon L. Croft; Antti Mäntylä; Tomi Järvinen; +5 Authors

    Abstract As the part of a study to develop buparvaquone (BPQ) formulations for the treatment of cutaneous leishmaniasis, the topical delivery of BPQ and one of its prodrugs from a range of formulations was evaluated. In previous studies, BPQ and its prodrugs were shown to be potent antileishmanials in-vitro, with ED50 values in the nanomolar range. 3-Phosphono-oxymethyl-buparvaquone (3-POM-BPQ) was the most potent antileishmanial and was chosen, together with the parent drug, for further investigation. The ability of the parent and prodrug formulations to cross human and murine skin was tested in-vitro using the Franz diffusion cells. Formulations intended for topical application containing either BPQ or 3-POM-BPQ were developed using excipients that were either acceptable for topical use (GRAS or FDA inactive ingredients) or currently going through the regulatory process. BPQ was shown to penetrate both human epidermal membranes and full thickness BALB/c skin from a range of formulations (gels, emulsions). Similarly, 3-POM-BPQ penetrated full-thickness BALB/c skin from several gel formulations. In-vitro binding studies showed that BPQ bound melanin in a dose-dependent manner and preferably bound to delipidized skin over untreated BALB/c skin (on a weight to weight basis). The results confirm that BPQ and its prodrug 3-POM-BPQ can penetrate the skin from several formulations, making them potentially interesting candidates for further investigation of topical formulations using in-vivo models of cutaneous leishmaniasis.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Pharmacy ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Pharmacy and Pharmacology
    Article . 2007 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    26
    citations26
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Pharmacy ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Pharmacy and Pharmacology
      Article . 2007 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jones, Stuart A.; Reid, Monica L.; Brown, Marc B.;

    A transiently supersaturated drug delivery system has the potential to enhance topical drug delivery via heightened thermodynamic activity. The aim of this work was to quantify the degree of saturation (DS) for transiently supersaturated formulations using three traditional and one novel in vitro assessment methods. Metered dose aerosols (MDA) were formulated containing saturated levels of beclomethasone dipropionate monohydrate (BDP) or betamethasone 17-valerate (BMV) within a pressurised canister, and included ethanol (EtOH), hydrofluoroalkane 134a propellant and poly(vinyl pyrrolidone). Attempts to determine the DS via the measurement of drug flux through synthetic membranes did not correlate and was shown to be dependent on the EtOH concentration. The inability of these methods to accurately assess the drug DS may be due to the transient nature of the formulation and the volatile solvents dehydrating the membrane. A mathematical equation that used the evaporation rate of the formulation was derived to determine the theoretical DS at various time points after MDA actuation. It was shown that the MDAs became supersaturated with a high DS, this enhanced drug release from the formulation and therefore these preparations have the potential to increase the amount of drug delivered into the skin.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Pharmaceu...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Pharmaceutical Sciences
    Article . 2009 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    15
    citations15
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Pharmaceu...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Pharmaceutical Sciences
      Article . 2009 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Reid, Monica L.; Brown, Marc B.; Jones, Stuart A.;

    The creation of supersaturation transiently after application overcomes the issue of drug instability. However, if the solvents used to drive supersaturation evaporate too quickly, drug recrystallisation or rapid film drying can occur which will inhibit drug release. As such the effects of a residual solvent, poly(ethylene glycol) 400 (PEG), on the release, mobility and supersaturation kinetics of a transiently supersaturated formulation were studied.Metered dose aerosol (MDA) formulations consisting of hydrofluoroalkane 134a, ethanol, poly(vinyl pyrrolidone) K90, beclomethasone dipropionate (BDP), and 0%, 5% or 10% w/w PEG were prepared in canisters sealed with metered dose valves and tested for release and adhesion over time.The addition of 10% PEG to the MDA formulation resulted in a significant reduction (p < 0.05) in steady state drug release rate (230.4 +/- 17.3 microg/cm(2)/h for 0% PEG MDA, 83.6 +/- 4.9 microg/cm(2)/h for 10% PEG MDA). The presence of PEG caused a delay in dose depletion (2 h for 0% PEG MDA versus 4 h for 10% PEG), retarded supersaturation kinetics and increased film drying time.Whilst equivalent amounts of BDP were released, the residual solvent altered the drug release profile to achieve more constant delivery.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Pharmaceutical Resea...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Pharmaceutical Research
    Article . 2008 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    11
    citations11
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Pharmaceutical Resea...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Pharmaceutical Research
      Article . 2008 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Rob Turner; Sean Robert Wevrett; Suzanne Edmunds; Marc Brown; +2 Authors

    AbstractThe aim of this investigation was to develop receiver and extraction fluids, and subsequently validate an analytical method to quantify the permeation and penetration of flurbiprofen into human pharynx tissue using a Franz diffusion cell. The solubility and stability of flurbiprofen in a suitable receiver fluid, and a suitable extraction method and fluid to recover and quantitate flurbiprofen from human pharynx tissue, were investigated using high‐performance liquid chromatography (HPLC). The potential interference of human pharynx tissue in the receiver fluid was also investigated. The HPLC analytical method was successfully validated according to current guidelines. The final receiver fluid demonstrated sufficient solubility and stability, and the extraction method and fluid resulted in >95% recovery of flurbiprofen following exposure to human pharynx tissue. The lower limit of quantitation of flurbiprofen was 0.045 μg/mL in both the receiver and extraction fluids. There was no interference of the human pharynx tissue with the HPLC method. This investigation validated an analytical method for quantitating flurbiprofen, and determined a suitable receiver fluid and extraction method and fluid, which can be used to investigate the permeation and penetration of flurbiprofen through human pharynx tissue using the Franz diffusion cell method.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biomedical Chromatog...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Biomedical Chromatography
    Article . 2019 . Peer-reviewed
    License: CC BY NC
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Biomedical Chromatography
    Article
    License: CC BY NC
    Data sources: UnpayWall
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    5
    citations5
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biomedical Chromatog...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Biomedical Chromatography
      Article . 2019 . Peer-reviewed
      License: CC BY NC
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Biomedical Chromatography
      Article
      License: CC BY NC
      Data sources: UnpayWall
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Reid, Monica L.; Benaouda, Faiza; Khengar, Rajeshree; Jones, Stuart A.; +1 Authors

    Drug loaded hydrofluoroalkane (HFA) sprays can generate effective pharmaceutical formulations, but a deeper understanding of the manner in which these dynamic systems drive the process of in situ semi-solid dosage form assembly is required. The aim of this study was to investigate the effect of the matrix assembly and composition on drug localisation in human skin. Comparing the characteristics of sprays constituting HFA 134a, ethanol (EtOH), poly(vinyl pyrrolidone) K90, isopropyl myristate (IPM), and poly(ethylene glycol) (PEG) demonstrated that the addition of non-volatile solvents acted to delay EtOH evaporation, control the degree of drug saturation (DS) and enhance the corticosteroid delivery from HFA spray formulations. In a dose matched skin penetration study the HFA sprays containing only EtOH as a co-solvent delivered 2.1 μg BMV (DS 13.5) into the tissue, adding IPM to the EtOH HFA delivered 4.03 μg BMV (DS 11.2), whist adding PEG to the EtOH HFA delivered 6.1 μg BMV (DS 0.3). Compared to commercial cream (delivering 0.91 μg BMV) the EtOH/PEG HFA spray deposited over 6 times (p<0.05) more drug into the skin. Post spray deposition characterisation of the semi-solid suggested that the superior performance of the EtOH/PEG HFA spray was a consequence of retarding EtOH evaporation and presenting the drug in an EtOH rich PEG residual phase, which promoted BMV passage through the SC and into epidermis.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao King's College, Lond...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Pharmaceutics
    Article . 2013 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    18
    citations18
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao King's College, Lond...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Pharmaceutics
      Article . 2013 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph