- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023 United StatesPublisher:Springer Science and Business Media LLC Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthNicole K. Ward; Abigail J. Lynch; Erik A. Beever; Joshua Booker; Kristen L. Bouska; Holly Embke; Jeffrey N. Houser; John F. Kocik; Joshua Kocik; David J. Lawrence; Mary Grace Lemon; Doug Limpinsel; Madeline R. Magee; Bryan M. Maitland; Owen McKenna; Andrew Meier; John M. Morton; Jeffrey D. Muehlbauer; Robert Newman; Devon C. Oliver; Heidi M. Rantala; Greg G. Sass; Aaron Shultz; Laura M. Thompson; Jennifer L. Wilkening;Abstract Background Large-river decision-makers are charged with maintaining diverse ecosystem services through unprecedented social-ecological transformations as climate change and other global stressors intensify. The interconnected, dendritic habitats of rivers, which often demarcate jurisdictional boundaries, generate complex management challenges. Here, we explore how the Resist–Accept–Direct (RAD) framework may enhance large-river management by promoting coordinated and deliberate responses to social-ecological trajectories of change. The RAD framework identifies the full decision space of potential management approaches, wherein managers may resist change to maintain historical conditions, accept change toward different conditions, or direct change to a specified future with novel conditions. In the Upper Mississippi River System, managers are facing social-ecological transformations from more frequent and extreme high-water events. We illustrate how RAD-informed basin-, reach-, and site-scale decisions could: (1) provide cross-spatial scale framing; (2) open the entire decision space of potential management approaches; and (3) enhance coordinated inter-jurisdictional management in response to the trajectory of the Upper Mississippi River hydrograph. Results The RAD framework helps identify plausible long-term trajectories in different reaches (or subbasins) of the river and how the associated social-ecological transformations could be managed by altering site-scale conditions. Strategic reach-scale objectives may reprioritize how, where, and when site conditions could be altered to contribute to the basin goal, given the basin’s plausible trajectories of change (e.g., by coordinating action across sites to alter habitat connectivity, diversity, and redundancy in the river mosaic). Conclusions When faced with long-term systemic transformations (e.g., > 50 years), the RAD framework helps explicitly consider whether or when the basin vision or goals may no longer be achievable, and direct options may open yet unconsidered potential for the basin. Embedding the RAD framework in hierarchical decision-making clarifies that the selection of actions in space and time should be derived from basin-wide goals and reach-scale objectives to ensure that site-scale actions contribute effectively to the larger river habitat mosaic. Embedding the RAD framework in large-river decisions can provide the necessary conduit to link flexibility and innovation at the site scale with stability at larger scales for adaptive governance of changing social-ecological systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13717-023-00460-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13717-023-00460-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Wiley Authors: K. D. Smith; William W. Taylor; Abigail J. Lynch;pmid: 21078089
The Laurentian Great Lakes Basin provides an ecological system to evaluate the potential effect of climate change on dynamics of fish populations and the management of their fisheries. This review describes the physical and biological mechanisms by which fish populations will be affected by changes in timing and duration of ice cover, precipitation events and temperature regimes associated with projected climate change in the Great Lakes Basin with a principal focus on the fish communities in shallower regions of the basin. Lake whitefish Coregonus clupeaformis, walleye Sander vitreus and smallmouth bass Micropterus dolomieu were examined to assess the potential effects of climate change on guilds of Great Lakes cold, cool and warm‐water fishes, respectively. Overall, the projections for these fishes are for the increased thermally suitable habitat within the lakes, though in different regions than they currently inhabit. Colder‐water fishes will seek refuge further north and deeper in the water column and warmer‐water fishes will fill the vacated habitat space in the warmer regions of the lakes. While these projections can be modified by a number of other habitat elements (e.g. anoxia, ice cover, dispersal ability and trophic productivity), it is clear that climate‐change drivers will challenge the nature, flexibility and public perception of current fisheries management programmes. Fisheries agencies should develop decision support tools to provide a systematic method for incorporating ecological responses to climate change and moderating public interests to ensure a sustainable future for Great Lakes fishes and fisheries.
Journal of Fish Biol... arrow_drop_down Journal of Fish BiologyArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1095-8649.2010.02759.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Fish Biol... arrow_drop_down Journal of Fish BiologyArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1095-8649.2010.02759.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 01 Jan 2024 France, France, Australia, SwitzerlandPublisher:Canadian Science Publishing Abigail J. Lynch; Amanda A. Hyman; Steven J. Cooke; Samantha J. Capon; Paul A. Franklin; Sonja C. Jähnig; Matthew McCartney; Nguyễn Phú Hòa; Margaret Awuor Owuor; Jamie Pittock; Michael J. Samways; Luiz G. M. Silva; E. Ashley Steel; David Tickner;handle: 10072/426211 , 10568/131695
Freshwater biodiversity loss is accelerating globally, but humanity can change this trajectory through actions that enable recovery. To be successful, these actions require coordination and planning at a global scale. The Emergency Recovery Plan for global freshwater biodiversity aims to reduce the risk for freshwater biodiversity loss through six priority actions: (1) accelerate implementation of environmental flows; (2) improve water quality to sustain aquatic life; (3) protect and restore critical habitats; (4) manage exploitation of freshwater species and riverine aggregates; (5) prevent and control nonnative species invasions in freshwater habitats; and (6) safeguard and restore freshwater connectivity. These actions can be implemented using future-proofing approaches that anticipate future risks (e.g., emerging pollutants, new invaders, and synergistic effects) and minimize likely stressors to make conservation of freshwater biodiversity more resilient to climate change and other global environmental challenges. While uncertainty with respect to past observations is not a new concern for freshwater biodiversity, future-proofing has the distinction of accounting for the uncertainty of future conditions that have no historical baseline. The level of uncertainty with respect to future conditions is unprecedented. Future-proofing of the Emergency Recovery Plan for freshwater biodiversity will require anticipating future changes and developing and implementing actions to address those future changes. Here, we showcase future-proofing approaches likely to be successful using local case studies and examples. Ensuring that response options within the Emergency Recovery Plan are future-proofed will provide decision makers with science-informed choices, even in the face of uncertain and potentially new future conditions. We are at an inflection point for global freshwater biodiversity loss; learning from defeats and successes can support improved actions toward a sustainable future.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10072/426211Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/131695Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1139/er-2022-0116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10072/426211Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/131695Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1139/er-2022-0116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024 United StatesPublisher:U.S. Geological Survey Nicole L Berry; David Bunnell; Erin P Overholt; Jennifer A Schumacher; Addison Z Almeda; Casey W Schoenebeck; Peter C Jacobson; Kristopher Dey; Jason B Smith; Andrew Tucker; Thomas Fisher; Elizabeth Mette; Brad Carlson; Gretchen Hansen; Tyler Arhenstorff; Derek Bahr; Kevin M Keeler; Brian C Weidel; Abigail J Lynch; Craig E Williamson;doi: 10.5066/p14bjt2z
These data contain the survivorship, hatching dates, and two metrics of sublethal effects of ultraviolet radiation (UV-B; 320 nm) exposure on Cisco (Coregonus artedi) embryos. These data were derived from UV-lamp phototron experiments conducted in the laboratory using fertilized Cisco eggs from wild caught fish from Lake Koronis, MN from 2021 - 2022. Cisco are an important species of fish that is distributed across many lakes throughout northern North America, including the Great Lakes where their conservation or restoration is of great interest. These experiments were conducted to help understand if UV-B could contribute to the recruitment bottlenecks of the early life stages of these fish.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5066/p14bjt2z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5066/p14bjt2z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United Kingdom, United States, United KingdomPublisher:Springer Science and Business Media LLC Funded by:NIH | TRAINING GRANT IN ACADEMI..., NSF | CNH-L: Interactive Dynami...NIH| TRAINING GRANT IN ACADEMIC NUTRITION ,NSF| CNH-L: Interactive Dynamics of Reef Fisheries and Human HealthHeather Kelahan; Stefania Vannuccini; Daniel F. Viana; Daniel F. Viana; Simone Passarelli; Ling Cao; Pierre Charlebois; Abigail J. Lynch; Sabri Bromage; Jessica Fanzo; Christopher M. Free; Edward H. Allison; Jacob G. Eurich; Christopher D. Golden; Alon Shepon; Alon Shepon; Alon Shepon; Etienne Fluet-Chouinard; Camille DeSisto; Goodarz Danaei; Holger Matthey; Kristin M. Kleisner; Kathryn J. Fiorella; Manuel Barange; J. Zachary Koehn; David C. Little; Shakuntala H. Thilsted; Eric B. Rimm; Marian Kjellevold; Elizabeth A. Nyboer; Jessica A. Gephart;Despite contributing to healthy diets for billions of people, aquatic foods are often undervalued as a nutritional solution because their diversity is often reduced to the protein and energy value of a single food type (‘seafood’ or ‘fish’)1–4. Here we create a cohesive model that unites terrestrial foods with nearly 3,000 taxa of aquatic foods to understand the future impact of aquatic foods on human nutrition. We project two plausible futures to 2030: a baseline scenario with moderate growth in aquatic animal-source food (AASF) production, and a high-production scenario with a 15-million-tonne increased supply of AASFs over the business-as-usual scenario in 2030, driven largely by investment and innovation in aquaculture production. By comparing changes in AASF consumption between the scenarios, we elucidate geographic and demographic vulnerabilities and estimate health impacts from diet-related causes. Globally, we find that a high-production scenario will decrease AASF prices by 26% and increase their consumption, thereby reducing the consumption of red and processed meats that can lead to diet-related non-communicable diseases5,6 while also preventing approximately 166 million cases of inadequate micronutrient intake. This finding provides a broad evidentiary basis for policy makers and development stakeholders to capitalize on the potential of aquatic foods to reduce food and nutrition insecurity and tackle malnutrition in all its forms.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/5k9293p7Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-021-03917-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 377 citations 377 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/5k9293p7Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-021-03917-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:American Association for the Advancement of Science (AAAS) Timothy J. Cline; Clint C. Muhlfeld; Ryan Kovach; Robert Al-Chokhachy; David Schmetterling; Diane Whited; Abigail J. Lynch;Heterogeneity is a central feature of ecosystem resilience, but how this translates to socioeconomic resilience depends on people’s ability to track shifting resources in space and time. Here, we quantify how climatic extremes have influenced how people (fishers) track economically valuable ecosystem services (fishing opportunities) across a range of spatial scales in rivers of the northern Rocky Mountains, USA, over the past three decades. Fishers opportunistically shifted from drought-sensitive to drought-resistant rivers during periods of low streamflows and warm temperatures. This adaptive behavior stabilized fishing pressure and expenditures by a factor of 2.6 at the scale of the regional fishery (i.e., portfolio effect). However, future warming is predicted to homogenize habitat options that enable adaptive behavior by fishers, putting ~30% of current spending at risk across the region. Maintaining a diverse portfolio of fishing opportunities that enable people to exploit shifting resources provides an important resilience mechanism for mitigating the socioeconomic impacts of climate change on fisheries.
Science Advances arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.abn1396&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Science Advances arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.abn1396&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSERC, FCT | LA 1, EC | CERESNSERC ,FCT| LA 1 ,EC| CERESPaukert, Craig P.; Lynch, Abigail J.; Beard, T. Douglas; Chen, Yushun; Cooke, Steven J.; Cooperman, Michael S.; Cowx, Ian G.; Ibengwe, Lilian; Infante, Dana M.; Myers, Bonnie J.E.; Nguyễn, Hòa Phú; Winfield, Ian J.;To date, there are few comprehensive assessments of how climate change affects inland finfish, fisheries, and aquaculture at a global scale, but one is necessary to identify research needs and commonalities across regions and to help guide decision making and funding priorities. Broadly, the consequences of climate change on inland fishes will impact global food security, the livelihoods of people who depend on inland capture and recreational fisheries. However, understanding how climate change will affect inland fishes and fisheries has lagged behind marine assessments. Building from a North American inland fisheries assessment, we convened an expert panel from seven countries to provide a first-step to a framework for determining how to approach an assessment of how climate change may affect inland fishes, capture fisheries, and aquaculture globally. Starting with the small group helped frame the key questions (e.g., who is the audience? What is the best approach and spatial scale?). Data gaps identified by the group include: the tolerances of inland fisheries to changes in temperature, stream flows, salinity, and other environmental factors linked to climate change, and the adaptive capacity of fishes and fisheries to adjust to these changes. These questions are difficult to address, but long-term and large-scale datasets are becoming more readily available as a means to test hypotheses related to climate change. We hope this perspective will help researchers and decision makers identify research priorities and provide a framework to help sustain inland fish populations and fisheries for the diversity of users around the globe.
NERC Open Research A... arrow_drop_down University of Hull: Repository@HullArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Reviews in Fish Biology and FisheriesArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefReviews in Fish Biology and FisheriesArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalNatural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11160-017-9477-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down University of Hull: Repository@HullArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Reviews in Fish Biology and FisheriesArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefReviews in Fish Biology and FisheriesArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalNatural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11160-017-9477-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Netherlands, Italy, Netherlands, United Kingdom, France, Italy, FrancePublisher:Springer Science and Business Media LLC Yu-Chun Kao; Mark W. Rogers; David B. Bunnell; Ian G. Cowx; Song S. Qian; Orlane Anneville; T. Douglas Beard; Alexander Brinker; J. Robert Britton; René Chura-Cruz; Natasha J. Gownaris; James R. Jackson; Külli Kangur; Jeppe Kolding; Anatoly A. Lukin; Abigail J. Lynch; Norman Mercado-Silva; Rodrigo Moncayo-Estrada; Friday J. Njaya; Ilia Ostrovsky; Lars G. Rudstam; Alfred L. E. Sandström; Yuichi Sato; Humberto Siguayro-Mamani; Andy Thorpe; Paul A. M. van Zwieten; Pietro Volta; Yuyu Wang; András Weiperth; Olaf L. F. Weyl; Joelle D. Young;AbstractGlobally, our knowledge on lake fisheries is still limited despite their importance to food security and livelihoods. Here we show that fish catches can respond either positively or negatively to climate and land-use changes, by analyzing time-series data (1970–2014) for 31 lakes across five continents. We find that effects of a climate or land-use driver (e.g., air temperature) on lake environment could be relatively consistent in directions, but consequential changes in a lake-environmental factor (e.g., water temperature) could result in either increases or decreases in fish catch in a given lake. A subsequent correlation analysis indicates that reductions in fish catch was less likely to occur in response to potential climate and land-use changes if a lake is located in a region with greater access to clean water. This finding suggests that adequate investments for water-quality protection and water-use efficiency can provide additional benefits to lake fisheries and food security.
CORE arrow_drop_down University of Hull: Repository@HullArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2020Full-Text: https://hal.inrae.fr/hal-02647929Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-14624-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down University of Hull: Repository@HullArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2020Full-Text: https://hal.inrae.fr/hal-02647929Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-14624-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 25 Aug 2023 France, Australia, France, Australia, Denmark, Germany, SwedenPublisher:Wiley Lynch, Abigail J.; Cooke, Steven J.; Arthington, Angela H.; Baigun, Claudio; Bossenbroek, Lisa; Dickens, Chris; Harrison, Ian; Kimirei, Ismael; Langhans, Simone D.; Murchie, Karen J.; Olden, Julian D.; Ormerod, Steve J.; Owuor, Margaret; Raghavan, Rajeev; Samways, Michael J.; Schinegger, Rafaela; Sharma, Subodh; Tachamo‐Shah, Ram‐Devi; Tickner, David; Tweddle, Denis; Young, Nathan; Jähnig, Sonja C.; Lynch, Abigail J.;; Cooke, Steven J.;; Arthington, Angela H.;; Baigun, Claudio;; Bossenbroek, Lisa;; Dickens, Chris;; Harrison, Ian;; Kimirei, Ismael;; Langhans, Simone D.;; Murchie, Karen J.;; Olden, Julian D.;; Ormerod, Steve J.;; Owuor, Margaret;; Raghavan, Rajeev;; Samways, Michael J.;; Schinegger, Rafaela;; Sharma, Subodh;; Tachamo‐Shah, Ram‐Devi;; Tickner, David;; Tweddle, Denis;; Young, Nathan;; Jähnig, Sonja C.;;handle: 10072/423937 , 10568/129109
AbstractFreshwater biodiversity, from fish to frogs and microbes to macrophytes, provides a vast array of services to people. Mounting concerns focus on the accelerating pace of biodiversity loss and declining ecological function within freshwater ecosystems that continue to threaten these natural benefits. Here, we catalog nine fundamental ecosystem services that the biotic components of indigenous freshwater biodiversity provide to people, organized into three categories: material (food; health and genetic resources; material goods), non‐material (culture; education and science; recreation), and regulating (catchment integrity; climate regulation; water purification and nutrient cycling). If freshwater biodiversity is protected, conserved, and restored in an integrated manner, as well as more broadly appreciated by humanity, it will continue to contribute to human well‐being and our sustainable future via this wide range of services and associated nature‐based solutions to our sustainable future.This article is categorized under:Human Water > Value of WaterWater and Life > Nature of Freshwater EcosystemsScience of Water > Water and Environmental Change
SLU publication data... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2023Full-Text: http://hdl.handle.net/10072/423937Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129109Data sources: Bielefeld Academic Search Engine (BASE)Wiley Interdisciplinary Reviews WaterArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationsserver der Humboldt-Universität zu BerlinArticle . 2023 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wat2.1633&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 78 citations 78 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 90visibility views 90 download downloads 50 Powered bymore_vert SLU publication data... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2023Full-Text: http://hdl.handle.net/10072/423937Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129109Data sources: Bielefeld Academic Search Engine (BASE)Wiley Interdisciplinary Reviews WaterArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationsserver der Humboldt-Universität zu BerlinArticle . 2023 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wat2.1633&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:Springer Science and Business Media LLC Krabbenhoft, Trevor J.; Myers, Bonnie J. E.; Wong, Jesse P.; Chu, Cindy; Tingley III, Ralph W.; Falke, Jeffrey A.; Kwak, Thomas J.; Paukert, Craig P.; Lynch, Abigail J.;AbstractInland fishes provide important ecosystem services to communities worldwide and are especially vulnerable to the impacts of climate change. Fish respond to climate change in diverse and nuanced ways, which creates challenges for practitioners of fish conservation, climate change adaptation, and management. Although climate change is known to affect fish globally, a comprehensive online, public database of how climate change has impacted inland fishes worldwide and adaptation or management practices that may address these impacts does not exist. We conducted an extensive, systematic primary literature review to identify peer-reviewed journal publications describing projected and documented examples of climate change impacts on inland fishes. From this standardized Fish and Climate Change database, FiCli (pronounced fick-lee), researchers and managers can query fish families, species, response types, or geographic locations to obtain summary information on inland fish responses to climate change and recommended management actions. The FiCli database is updatable and provides access to comprehensive published information to inform inland fish conservation and adaptation planning in a changing climate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0465-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0465-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 United StatesPublisher:Springer Science and Business Media LLC Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthNicole K. Ward; Abigail J. Lynch; Erik A. Beever; Joshua Booker; Kristen L. Bouska; Holly Embke; Jeffrey N. Houser; John F. Kocik; Joshua Kocik; David J. Lawrence; Mary Grace Lemon; Doug Limpinsel; Madeline R. Magee; Bryan M. Maitland; Owen McKenna; Andrew Meier; John M. Morton; Jeffrey D. Muehlbauer; Robert Newman; Devon C. Oliver; Heidi M. Rantala; Greg G. Sass; Aaron Shultz; Laura M. Thompson; Jennifer L. Wilkening;Abstract Background Large-river decision-makers are charged with maintaining diverse ecosystem services through unprecedented social-ecological transformations as climate change and other global stressors intensify. The interconnected, dendritic habitats of rivers, which often demarcate jurisdictional boundaries, generate complex management challenges. Here, we explore how the Resist–Accept–Direct (RAD) framework may enhance large-river management by promoting coordinated and deliberate responses to social-ecological trajectories of change. The RAD framework identifies the full decision space of potential management approaches, wherein managers may resist change to maintain historical conditions, accept change toward different conditions, or direct change to a specified future with novel conditions. In the Upper Mississippi River System, managers are facing social-ecological transformations from more frequent and extreme high-water events. We illustrate how RAD-informed basin-, reach-, and site-scale decisions could: (1) provide cross-spatial scale framing; (2) open the entire decision space of potential management approaches; and (3) enhance coordinated inter-jurisdictional management in response to the trajectory of the Upper Mississippi River hydrograph. Results The RAD framework helps identify plausible long-term trajectories in different reaches (or subbasins) of the river and how the associated social-ecological transformations could be managed by altering site-scale conditions. Strategic reach-scale objectives may reprioritize how, where, and when site conditions could be altered to contribute to the basin goal, given the basin’s plausible trajectories of change (e.g., by coordinating action across sites to alter habitat connectivity, diversity, and redundancy in the river mosaic). Conclusions When faced with long-term systemic transformations (e.g., > 50 years), the RAD framework helps explicitly consider whether or when the basin vision or goals may no longer be achievable, and direct options may open yet unconsidered potential for the basin. Embedding the RAD framework in hierarchical decision-making clarifies that the selection of actions in space and time should be derived from basin-wide goals and reach-scale objectives to ensure that site-scale actions contribute effectively to the larger river habitat mosaic. Embedding the RAD framework in large-river decisions can provide the necessary conduit to link flexibility and innovation at the site scale with stability at larger scales for adaptive governance of changing social-ecological systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13717-023-00460-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13717-023-00460-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Wiley Authors: K. D. Smith; William W. Taylor; Abigail J. Lynch;pmid: 21078089
The Laurentian Great Lakes Basin provides an ecological system to evaluate the potential effect of climate change on dynamics of fish populations and the management of their fisheries. This review describes the physical and biological mechanisms by which fish populations will be affected by changes in timing and duration of ice cover, precipitation events and temperature regimes associated with projected climate change in the Great Lakes Basin with a principal focus on the fish communities in shallower regions of the basin. Lake whitefish Coregonus clupeaformis, walleye Sander vitreus and smallmouth bass Micropterus dolomieu were examined to assess the potential effects of climate change on guilds of Great Lakes cold, cool and warm‐water fishes, respectively. Overall, the projections for these fishes are for the increased thermally suitable habitat within the lakes, though in different regions than they currently inhabit. Colder‐water fishes will seek refuge further north and deeper in the water column and warmer‐water fishes will fill the vacated habitat space in the warmer regions of the lakes. While these projections can be modified by a number of other habitat elements (e.g. anoxia, ice cover, dispersal ability and trophic productivity), it is clear that climate‐change drivers will challenge the nature, flexibility and public perception of current fisheries management programmes. Fisheries agencies should develop decision support tools to provide a systematic method for incorporating ecological responses to climate change and moderating public interests to ensure a sustainable future for Great Lakes fishes and fisheries.
Journal of Fish Biol... arrow_drop_down Journal of Fish BiologyArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1095-8649.2010.02759.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Fish Biol... arrow_drop_down Journal of Fish BiologyArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1095-8649.2010.02759.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 01 Jan 2024 France, France, Australia, SwitzerlandPublisher:Canadian Science Publishing Abigail J. Lynch; Amanda A. Hyman; Steven J. Cooke; Samantha J. Capon; Paul A. Franklin; Sonja C. Jähnig; Matthew McCartney; Nguyễn Phú Hòa; Margaret Awuor Owuor; Jamie Pittock; Michael J. Samways; Luiz G. M. Silva; E. Ashley Steel; David Tickner;handle: 10072/426211 , 10568/131695
Freshwater biodiversity loss is accelerating globally, but humanity can change this trajectory through actions that enable recovery. To be successful, these actions require coordination and planning at a global scale. The Emergency Recovery Plan for global freshwater biodiversity aims to reduce the risk for freshwater biodiversity loss through six priority actions: (1) accelerate implementation of environmental flows; (2) improve water quality to sustain aquatic life; (3) protect and restore critical habitats; (4) manage exploitation of freshwater species and riverine aggregates; (5) prevent and control nonnative species invasions in freshwater habitats; and (6) safeguard and restore freshwater connectivity. These actions can be implemented using future-proofing approaches that anticipate future risks (e.g., emerging pollutants, new invaders, and synergistic effects) and minimize likely stressors to make conservation of freshwater biodiversity more resilient to climate change and other global environmental challenges. While uncertainty with respect to past observations is not a new concern for freshwater biodiversity, future-proofing has the distinction of accounting for the uncertainty of future conditions that have no historical baseline. The level of uncertainty with respect to future conditions is unprecedented. Future-proofing of the Emergency Recovery Plan for freshwater biodiversity will require anticipating future changes and developing and implementing actions to address those future changes. Here, we showcase future-proofing approaches likely to be successful using local case studies and examples. Ensuring that response options within the Emergency Recovery Plan are future-proofed will provide decision makers with science-informed choices, even in the face of uncertain and potentially new future conditions. We are at an inflection point for global freshwater biodiversity loss; learning from defeats and successes can support improved actions toward a sustainable future.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10072/426211Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/131695Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1139/er-2022-0116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/10072/426211Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/131695Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1139/er-2022-0116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024 United StatesPublisher:U.S. Geological Survey Nicole L Berry; David Bunnell; Erin P Overholt; Jennifer A Schumacher; Addison Z Almeda; Casey W Schoenebeck; Peter C Jacobson; Kristopher Dey; Jason B Smith; Andrew Tucker; Thomas Fisher; Elizabeth Mette; Brad Carlson; Gretchen Hansen; Tyler Arhenstorff; Derek Bahr; Kevin M Keeler; Brian C Weidel; Abigail J Lynch; Craig E Williamson;doi: 10.5066/p14bjt2z
These data contain the survivorship, hatching dates, and two metrics of sublethal effects of ultraviolet radiation (UV-B; 320 nm) exposure on Cisco (Coregonus artedi) embryos. These data were derived from UV-lamp phototron experiments conducted in the laboratory using fertilized Cisco eggs from wild caught fish from Lake Koronis, MN from 2021 - 2022. Cisco are an important species of fish that is distributed across many lakes throughout northern North America, including the Great Lakes where their conservation or restoration is of great interest. These experiments were conducted to help understand if UV-B could contribute to the recruitment bottlenecks of the early life stages of these fish.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5066/p14bjt2z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5066/p14bjt2z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United Kingdom, United States, United KingdomPublisher:Springer Science and Business Media LLC Funded by:NIH | TRAINING GRANT IN ACADEMI..., NSF | CNH-L: Interactive Dynami...NIH| TRAINING GRANT IN ACADEMIC NUTRITION ,NSF| CNH-L: Interactive Dynamics of Reef Fisheries and Human HealthHeather Kelahan; Stefania Vannuccini; Daniel F. Viana; Daniel F. Viana; Simone Passarelli; Ling Cao; Pierre Charlebois; Abigail J. Lynch; Sabri Bromage; Jessica Fanzo; Christopher M. Free; Edward H. Allison; Jacob G. Eurich; Christopher D. Golden; Alon Shepon; Alon Shepon; Alon Shepon; Etienne Fluet-Chouinard; Camille DeSisto; Goodarz Danaei; Holger Matthey; Kristin M. Kleisner; Kathryn J. Fiorella; Manuel Barange; J. Zachary Koehn; David C. Little; Shakuntala H. Thilsted; Eric B. Rimm; Marian Kjellevold; Elizabeth A. Nyboer; Jessica A. Gephart;Despite contributing to healthy diets for billions of people, aquatic foods are often undervalued as a nutritional solution because their diversity is often reduced to the protein and energy value of a single food type (‘seafood’ or ‘fish’)1–4. Here we create a cohesive model that unites terrestrial foods with nearly 3,000 taxa of aquatic foods to understand the future impact of aquatic foods on human nutrition. We project two plausible futures to 2030: a baseline scenario with moderate growth in aquatic animal-source food (AASF) production, and a high-production scenario with a 15-million-tonne increased supply of AASFs over the business-as-usual scenario in 2030, driven largely by investment and innovation in aquaculture production. By comparing changes in AASF consumption between the scenarios, we elucidate geographic and demographic vulnerabilities and estimate health impacts from diet-related causes. Globally, we find that a high-production scenario will decrease AASF prices by 26% and increase their consumption, thereby reducing the consumption of red and processed meats that can lead to diet-related non-communicable diseases5,6 while also preventing approximately 166 million cases of inadequate micronutrient intake. This finding provides a broad evidentiary basis for policy makers and development stakeholders to capitalize on the potential of aquatic foods to reduce food and nutrition insecurity and tackle malnutrition in all its forms.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/5k9293p7Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-021-03917-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 377 citations 377 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/5k9293p7Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-021-03917-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:American Association for the Advancement of Science (AAAS) Timothy J. Cline; Clint C. Muhlfeld; Ryan Kovach; Robert Al-Chokhachy; David Schmetterling; Diane Whited; Abigail J. Lynch;Heterogeneity is a central feature of ecosystem resilience, but how this translates to socioeconomic resilience depends on people’s ability to track shifting resources in space and time. Here, we quantify how climatic extremes have influenced how people (fishers) track economically valuable ecosystem services (fishing opportunities) across a range of spatial scales in rivers of the northern Rocky Mountains, USA, over the past three decades. Fishers opportunistically shifted from drought-sensitive to drought-resistant rivers during periods of low streamflows and warm temperatures. This adaptive behavior stabilized fishing pressure and expenditures by a factor of 2.6 at the scale of the regional fishery (i.e., portfolio effect). However, future warming is predicted to homogenize habitat options that enable adaptive behavior by fishers, putting ~30% of current spending at risk across the region. Maintaining a diverse portfolio of fishing opportunities that enable people to exploit shifting resources provides an important resilience mechanism for mitigating the socioeconomic impacts of climate change on fisheries.
Science Advances arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.abn1396&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Science Advances arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.abn1396&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSERC, FCT | LA 1, EC | CERESNSERC ,FCT| LA 1 ,EC| CERESPaukert, Craig P.; Lynch, Abigail J.; Beard, T. Douglas; Chen, Yushun; Cooke, Steven J.; Cooperman, Michael S.; Cowx, Ian G.; Ibengwe, Lilian; Infante, Dana M.; Myers, Bonnie J.E.; Nguyễn, Hòa Phú; Winfield, Ian J.;To date, there are few comprehensive assessments of how climate change affects inland finfish, fisheries, and aquaculture at a global scale, but one is necessary to identify research needs and commonalities across regions and to help guide decision making and funding priorities. Broadly, the consequences of climate change on inland fishes will impact global food security, the livelihoods of people who depend on inland capture and recreational fisheries. However, understanding how climate change will affect inland fishes and fisheries has lagged behind marine assessments. Building from a North American inland fisheries assessment, we convened an expert panel from seven countries to provide a first-step to a framework for determining how to approach an assessment of how climate change may affect inland fishes, capture fisheries, and aquaculture globally. Starting with the small group helped frame the key questions (e.g., who is the audience? What is the best approach and spatial scale?). Data gaps identified by the group include: the tolerances of inland fisheries to changes in temperature, stream flows, salinity, and other environmental factors linked to climate change, and the adaptive capacity of fishes and fisheries to adjust to these changes. These questions are difficult to address, but long-term and large-scale datasets are becoming more readily available as a means to test hypotheses related to climate change. We hope this perspective will help researchers and decision makers identify research priorities and provide a framework to help sustain inland fish populations and fisheries for the diversity of users around the globe.
NERC Open Research A... arrow_drop_down University of Hull: Repository@HullArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Reviews in Fish Biology and FisheriesArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefReviews in Fish Biology and FisheriesArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalNatural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11160-017-9477-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down University of Hull: Repository@HullArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Reviews in Fish Biology and FisheriesArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefReviews in Fish Biology and FisheriesArticle . 2017 . Peer-reviewedData sources: European Union Open Data PortalNatural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11160-017-9477-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Netherlands, Italy, Netherlands, United Kingdom, France, Italy, FrancePublisher:Springer Science and Business Media LLC Yu-Chun Kao; Mark W. Rogers; David B. Bunnell; Ian G. Cowx; Song S. Qian; Orlane Anneville; T. Douglas Beard; Alexander Brinker; J. Robert Britton; René Chura-Cruz; Natasha J. Gownaris; James R. Jackson; Külli Kangur; Jeppe Kolding; Anatoly A. Lukin; Abigail J. Lynch; Norman Mercado-Silva; Rodrigo Moncayo-Estrada; Friday J. Njaya; Ilia Ostrovsky; Lars G. Rudstam; Alfred L. E. Sandström; Yuichi Sato; Humberto Siguayro-Mamani; Andy Thorpe; Paul A. M. van Zwieten; Pietro Volta; Yuyu Wang; András Weiperth; Olaf L. F. Weyl; Joelle D. Young;AbstractGlobally, our knowledge on lake fisheries is still limited despite their importance to food security and livelihoods. Here we show that fish catches can respond either positively or negatively to climate and land-use changes, by analyzing time-series data (1970–2014) for 31 lakes across five continents. We find that effects of a climate or land-use driver (e.g., air temperature) on lake environment could be relatively consistent in directions, but consequential changes in a lake-environmental factor (e.g., water temperature) could result in either increases or decreases in fish catch in a given lake. A subsequent correlation analysis indicates that reductions in fish catch was less likely to occur in response to potential climate and land-use changes if a lake is located in a region with greater access to clean water. This finding suggests that adequate investments for water-quality protection and water-use efficiency can provide additional benefits to lake fisheries and food security.
CORE arrow_drop_down University of Hull: Repository@HullArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2020Full-Text: https://hal.inrae.fr/hal-02647929Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-14624-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down University of Hull: Repository@HullArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2020Full-Text: https://hal.inrae.fr/hal-02647929Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-14624-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 25 Aug 2023 France, Australia, France, Australia, Denmark, Germany, SwedenPublisher:Wiley Lynch, Abigail J.; Cooke, Steven J.; Arthington, Angela H.; Baigun, Claudio; Bossenbroek, Lisa; Dickens, Chris; Harrison, Ian; Kimirei, Ismael; Langhans, Simone D.; Murchie, Karen J.; Olden, Julian D.; Ormerod, Steve J.; Owuor, Margaret; Raghavan, Rajeev; Samways, Michael J.; Schinegger, Rafaela; Sharma, Subodh; Tachamo‐Shah, Ram‐Devi; Tickner, David; Tweddle, Denis; Young, Nathan; Jähnig, Sonja C.; Lynch, Abigail J.;; Cooke, Steven J.;; Arthington, Angela H.;; Baigun, Claudio;; Bossenbroek, Lisa;; Dickens, Chris;; Harrison, Ian;; Kimirei, Ismael;; Langhans, Simone D.;; Murchie, Karen J.;; Olden, Julian D.;; Ormerod, Steve J.;; Owuor, Margaret;; Raghavan, Rajeev;; Samways, Michael J.;; Schinegger, Rafaela;; Sharma, Subodh;; Tachamo‐Shah, Ram‐Devi;; Tickner, David;; Tweddle, Denis;; Young, Nathan;; Jähnig, Sonja C.;;handle: 10072/423937 , 10568/129109
AbstractFreshwater biodiversity, from fish to frogs and microbes to macrophytes, provides a vast array of services to people. Mounting concerns focus on the accelerating pace of biodiversity loss and declining ecological function within freshwater ecosystems that continue to threaten these natural benefits. Here, we catalog nine fundamental ecosystem services that the biotic components of indigenous freshwater biodiversity provide to people, organized into three categories: material (food; health and genetic resources; material goods), non‐material (culture; education and science; recreation), and regulating (catchment integrity; climate regulation; water purification and nutrient cycling). If freshwater biodiversity is protected, conserved, and restored in an integrated manner, as well as more broadly appreciated by humanity, it will continue to contribute to human well‐being and our sustainable future via this wide range of services and associated nature‐based solutions to our sustainable future.This article is categorized under:Human Water > Value of WaterWater and Life > Nature of Freshwater EcosystemsScience of Water > Water and Environmental Change
SLU publication data... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2023Full-Text: http://hdl.handle.net/10072/423937Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129109Data sources: Bielefeld Academic Search Engine (BASE)Wiley Interdisciplinary Reviews WaterArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationsserver der Humboldt-Universität zu BerlinArticle . 2023 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wat2.1633&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 78 citations 78 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 90visibility views 90 download downloads 50 Powered bymore_vert SLU publication data... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2023Full-Text: http://hdl.handle.net/10072/423937Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129109Data sources: Bielefeld Academic Search Engine (BASE)Wiley Interdisciplinary Reviews WaterArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationsserver der Humboldt-Universität zu BerlinArticle . 2023 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wat2.1633&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:Springer Science and Business Media LLC Krabbenhoft, Trevor J.; Myers, Bonnie J. E.; Wong, Jesse P.; Chu, Cindy; Tingley III, Ralph W.; Falke, Jeffrey A.; Kwak, Thomas J.; Paukert, Craig P.; Lynch, Abigail J.;AbstractInland fishes provide important ecosystem services to communities worldwide and are especially vulnerable to the impacts of climate change. Fish respond to climate change in diverse and nuanced ways, which creates challenges for practitioners of fish conservation, climate change adaptation, and management. Although climate change is known to affect fish globally, a comprehensive online, public database of how climate change has impacted inland fishes worldwide and adaptation or management practices that may address these impacts does not exist. We conducted an extensive, systematic primary literature review to identify peer-reviewed journal publications describing projected and documented examples of climate change impacts on inland fishes. From this standardized Fish and Climate Change database, FiCli (pronounced fick-lee), researchers and managers can query fish families, species, response types, or geographic locations to obtain summary information on inland fish responses to climate change and recommended management actions. The FiCli database is updatable and provides access to comprehensive published information to inform inland fish conservation and adaptation planning in a changing climate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0465-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-0465-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu