- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Wiley Funded by:DFG | The role of tree and shru..., DFGDFG| The role of tree and shrub diversity for production, erosion control, element cycling, and species conservation in Chinese subtropical forest ecosystems (BEF-China) ,DFGAndreas Fichtner; Florian Schnabel; Helge Bruelheide; Matthias Kunz; Katharina Mausolf; Andreas Schuldt; Werner Härdtle; Goddert von Oheimb;Abstract Biodiversity is considered to mitigate detrimental impacts of climate change on the functioning of forest ecosystems, such as drought‐induced decline in forest productivity. However, previous studies produced controversial results and experimental evidence is rare. Specifically, the biological mechanisms underlying mitigation effects remain unclear, as existing work focuses on biodiversity effects related to the community scale. Using trait‐based neighbourhood models, we quantified changes in above‐ground wood productivity of 3,397 trees that were planted in a large‐scale tree diversity experiment in subtropical China across gradients of neighbourhood diversity and climatic conditions over a 6‐year period. This approach allowed us to simultaneously assess to what extent functional traits of a focal tree and biodiversity at the local neighbourhood scale mediate the growth response of individual trees to drought events. We found that neighbourhood tree species richness can mitigate for drought‐induced growth decline of young trees. Overall, positive net biodiversity effects were strongest during drought and increased with increasing taxonomic diversity of neighbours. In particular, drought‐sensitive species (i.e. those with a low cavitation resistance) benefitted the most from growing in diverse neighbourhoods, suggesting that soil water partitioning among local neighbours during drought particularly facilitated most vulnerable individuals. Thus, diverse neighbourhoods may enhance ecosystem resistance to drought by locally supporting drought‐sensitive species in the community. Synthesis. Our findings demonstrate that mechanisms operating at the local neighbourhood scale are a key component for regulating forests responses to drought and improve insights into how local species interactions vary along stress gradients in highly diverse tree communities.
University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2020Full-Text: https://freidok.uni-freiburg.de/data/241554Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2020Full-Text: https://freidok.uni-freiburg.de/data/241554Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Wiley Funded by:DFG | The role of tree and shru..., DFGDFG| The role of tree and shrub diversity for production, erosion control, element cycling, and species conservation in Chinese subtropical forest ecosystems (BEF-China) ,DFGAndreas Fichtner; Florian Schnabel; Helge Bruelheide; Matthias Kunz; Katharina Mausolf; Andreas Schuldt; Werner Härdtle; Goddert von Oheimb;Abstract Biodiversity is considered to mitigate detrimental impacts of climate change on the functioning of forest ecosystems, such as drought‐induced decline in forest productivity. However, previous studies produced controversial results and experimental evidence is rare. Specifically, the biological mechanisms underlying mitigation effects remain unclear, as existing work focuses on biodiversity effects related to the community scale. Using trait‐based neighbourhood models, we quantified changes in above‐ground wood productivity of 3,397 trees that were planted in a large‐scale tree diversity experiment in subtropical China across gradients of neighbourhood diversity and climatic conditions over a 6‐year period. This approach allowed us to simultaneously assess to what extent functional traits of a focal tree and biodiversity at the local neighbourhood scale mediate the growth response of individual trees to drought events. We found that neighbourhood tree species richness can mitigate for drought‐induced growth decline of young trees. Overall, positive net biodiversity effects were strongest during drought and increased with increasing taxonomic diversity of neighbours. In particular, drought‐sensitive species (i.e. those with a low cavitation resistance) benefitted the most from growing in diverse neighbourhoods, suggesting that soil water partitioning among local neighbours during drought particularly facilitated most vulnerable individuals. Thus, diverse neighbourhoods may enhance ecosystem resistance to drought by locally supporting drought‐sensitive species in the community. Synthesis. Our findings demonstrate that mechanisms operating at the local neighbourhood scale are a key component for regulating forests responses to drought and improve insights into how local species interactions vary along stress gradients in highly diverse tree communities.
University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2020Full-Text: https://freidok.uni-freiburg.de/data/241554Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2020Full-Text: https://freidok.uni-freiburg.de/data/241554Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, FrancePublisher:Wiley Funded by:DFGDFGAndreas Fichtner; Tobias Gebauer; Florian Schnabel; Florian Schnabel; Catherine Potvin; Catherine Potvin; Joannès Guillemot; Goddert von Oheimb; Werner Härdtle; Christopher Madsen; Matthias Kunz;doi: 10.1111/nph.16722
pmid: 32496591
SummaryVariations in crown forms promote canopy space‐use and productivity in mixed‐species forests. However, we have a limited understanding on how this response is mediated by changes in within‐tree biomass allocation. Here, we explored the role of changes in tree allometry, biomass allocation and architecture in shaping diversity–productivity relationships (DPRs) in the oldest tropical tree diversity experiment.We conducted whole‐tree destructive biomass measurements and terrestrial laser scanning. Spatially explicit models were built at the tree level to investigate the effects of tree size and local neighbourhood conditions. Results were then upscaled to the stand level, and mixture effects were explored using a bootstrapping procedure.Biomass allocation and architecture substantially changed in mixtures, which resulted from both tree‐size effects and neighbourhood‐mediated plasticity. Shifts in biomass allocation among branch orders explained substantial shares of the observed overyielding. By contrast, root‐to‐shoot ratios, as well as the allometric relationships between tree basal area and aboveground biomass, were little affected by the local neighbourhood.Our results suggest that generic allometric equations can be used to estimate forest aboveground biomass overyielding from diameter inventory data. Overall, we demonstrate that shifts in tree biomass allocation are mediated by the local neighbourhood and promote DPRs in tropical forests.
New Phytologist arrow_drop_down New PhytologistArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 50 citations 50 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, FrancePublisher:Wiley Funded by:DFGDFGAndreas Fichtner; Tobias Gebauer; Florian Schnabel; Florian Schnabel; Catherine Potvin; Catherine Potvin; Joannès Guillemot; Goddert von Oheimb; Werner Härdtle; Christopher Madsen; Matthias Kunz;doi: 10.1111/nph.16722
pmid: 32496591
SummaryVariations in crown forms promote canopy space‐use and productivity in mixed‐species forests. However, we have a limited understanding on how this response is mediated by changes in within‐tree biomass allocation. Here, we explored the role of changes in tree allometry, biomass allocation and architecture in shaping diversity–productivity relationships (DPRs) in the oldest tropical tree diversity experiment.We conducted whole‐tree destructive biomass measurements and terrestrial laser scanning. Spatially explicit models were built at the tree level to investigate the effects of tree size and local neighbourhood conditions. Results were then upscaled to the stand level, and mixture effects were explored using a bootstrapping procedure.Biomass allocation and architecture substantially changed in mixtures, which resulted from both tree‐size effects and neighbourhood‐mediated plasticity. Shifts in biomass allocation among branch orders explained substantial shares of the observed overyielding. By contrast, root‐to‐shoot ratios, as well as the allometric relationships between tree basal area and aboveground biomass, were little affected by the local neighbourhood.Our results suggest that generic allometric equations can be used to estimate forest aboveground biomass overyielding from diameter inventory data. Overall, we demonstrate that shifts in tree biomass allocation are mediated by the local neighbourhood and promote DPRs in tropical forests.
New Phytologist arrow_drop_down New PhytologistArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 50 citations 50 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Research , Preprint 2022 France, Germany, France, France, France, NetherlandsPublisher:Cold Spring Harbor Laboratory Funded by:DFGDFGSchnabel, F; Barry, K; Eckhardt, S; Guillemot, Joannès; Geilmann, H; Kahl, A; Moossen, H; Bauhus, J; Wirth, C;pmid: 38196270
AbstractMixed-species forests are promoted as a forest management strategy for climate change adaptation, but whether they are more resistant to drought than monospecific forests remains contested. Particularly, the trait-based mechanisms driving the role of tree diversity under drought remain elusive.Using tree cores from a large-scale biodiversity experiment, we investigated tree growth and physiological stress responses (i.e. increase in wood carbon isotopic ratio; δ13C) to changes in climate-induced water availability (wet to dry years) along gradients in neighbourhood tree species richness and drought-tolerance traits. We hypothesized that neighbourhood species richness increases growth and decreases δ13C and that these relationships are modulated by the abiotic (i.e. climatic conditions) and the biotic context. We characterized the biotic context using drought-tolerance traits of focal trees and their neighbours. These traits are related to cavitation resistance vs resource acquisition and stomatal control.Tree growth increased with neighbourhood species richness. However, we did not observe a universal relief of water stress in species-rich neighbourhoods. Neighbourhood species richness effects on growth and δ13C did not strengthen from wet to dry years. Instead, richness-growth and richness-δ13C relationships were modulated by climatic conditions and the traits of trees and their neighbours. At either end of each drought-tolerance gradient, species responded in opposing directions during drought and non-drought years.We show that species’ drought-tolerance traits can explain the strength and nature of biodiversity-ecosystem functioning relationships in experimental tree communities experiencing drought. Mixing tree species can increase growth but may not universally relieve drought stress.One-sentence summaryThe drought-tolerance traits of trees and their neighbours determine biodiversity-ecosystem functioning relationships in experimental tree communities.
Plant Biology arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2022.11.22.517351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Plant Biology arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2022.11.22.517351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Research , Preprint 2022 France, Germany, France, France, France, NetherlandsPublisher:Cold Spring Harbor Laboratory Funded by:DFGDFGSchnabel, F; Barry, K; Eckhardt, S; Guillemot, Joannès; Geilmann, H; Kahl, A; Moossen, H; Bauhus, J; Wirth, C;pmid: 38196270
AbstractMixed-species forests are promoted as a forest management strategy for climate change adaptation, but whether they are more resistant to drought than monospecific forests remains contested. Particularly, the trait-based mechanisms driving the role of tree diversity under drought remain elusive.Using tree cores from a large-scale biodiversity experiment, we investigated tree growth and physiological stress responses (i.e. increase in wood carbon isotopic ratio; δ13C) to changes in climate-induced water availability (wet to dry years) along gradients in neighbourhood tree species richness and drought-tolerance traits. We hypothesized that neighbourhood species richness increases growth and decreases δ13C and that these relationships are modulated by the abiotic (i.e. climatic conditions) and the biotic context. We characterized the biotic context using drought-tolerance traits of focal trees and their neighbours. These traits are related to cavitation resistance vs resource acquisition and stomatal control.Tree growth increased with neighbourhood species richness. However, we did not observe a universal relief of water stress in species-rich neighbourhoods. Neighbourhood species richness effects on growth and δ13C did not strengthen from wet to dry years. Instead, richness-growth and richness-δ13C relationships were modulated by climatic conditions and the traits of trees and their neighbours. At either end of each drought-tolerance gradient, species responded in opposing directions during drought and non-drought years.We show that species’ drought-tolerance traits can explain the strength and nature of biodiversity-ecosystem functioning relationships in experimental tree communities experiencing drought. Mixing tree species can increase growth but may not universally relieve drought stress.One-sentence summaryThe drought-tolerance traits of trees and their neighbours determine biodiversity-ecosystem functioning relationships in experimental tree communities.
Plant Biology arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2022.11.22.517351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Plant Biology arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2022.11.22.517351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 GermanyPublisher:Wiley Funded by:DFGDFGFlorian Schnabel; Sarah Purrucker; Lara Schmitt; Rolf A. Engelmann; Anja Kahl; Ronny Richter; Carolin Seele‐Dilbat; Georgios Skiadaresis; Christian Wirth;pmid: 34927360
AbstractDroughts increasingly threaten the world's forests and their potential to mitigate climate change. In 2018–2019, Central European forests were hit by two consecutive hotter drought years, an unprecedented phenomenon that is likely to occur more frequently with climate change. Here, we examine tree growth and physiological stress responses (increase in carbon isotope composition; Δδ13C) to this consecutive drought based on tree rings of dominant tree species in a Central European floodplain forest. Tree growth was not reduced for most species in 2018, indicating that water supply in floodplain forests can partly buffer meteorological water deficits. Drought stress responses in 2018 were comparable to former single drought years but the hotter drought in 2018 induced drought legacies in tree growth while former droughts did not. We observed strong decreases in tree growth and increases in Δδ13C across all tree species in 2019, which are likely driven by the cumulative stress both consecutive hotter droughts exerted. Our results show that consecutive hotter droughts pose a novel threat to forests under climate change, even in forest ecosystems with comparably high levels of water supply.
University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/224458Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2021.0...Article . 2021 . Peer-reviewedLicense: CC BY NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/224458Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2021.0...Article . 2021 . Peer-reviewedLicense: CC BY NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 GermanyPublisher:Wiley Funded by:DFGDFGFlorian Schnabel; Sarah Purrucker; Lara Schmitt; Rolf A. Engelmann; Anja Kahl; Ronny Richter; Carolin Seele‐Dilbat; Georgios Skiadaresis; Christian Wirth;pmid: 34927360
AbstractDroughts increasingly threaten the world's forests and their potential to mitigate climate change. In 2018–2019, Central European forests were hit by two consecutive hotter drought years, an unprecedented phenomenon that is likely to occur more frequently with climate change. Here, we examine tree growth and physiological stress responses (increase in carbon isotope composition; Δδ13C) to this consecutive drought based on tree rings of dominant tree species in a Central European floodplain forest. Tree growth was not reduced for most species in 2018, indicating that water supply in floodplain forests can partly buffer meteorological water deficits. Drought stress responses in 2018 were comparable to former single drought years but the hotter drought in 2018 induced drought legacies in tree growth while former droughts did not. We observed strong decreases in tree growth and increases in Δδ13C across all tree species in 2019, which are likely driven by the cumulative stress both consecutive hotter droughts exerted. Our results show that consecutive hotter droughts pose a novel threat to forests under climate change, even in forest ecosystems with comparably high levels of water supply.
University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/224458Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2021.0...Article . 2021 . Peer-reviewedLicense: CC BY NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/224458Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2021.0...Article . 2021 . Peer-reviewedLicense: CC BY NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Netherlands, Germany, Germany, FrancePublisher:Cold Spring Harbor Laboratory Funded by:DFG, NSERCDFG ,NSERCSchnabel, Florian; Guillemot, Joannès; Barry, Kathryn; Brunn, Melanie; Cesarz, Simone; Eisenhauer, Nico; Gebauer, Tobias; Guerrero‐ramirez, Nathaly; Handa, I; Madsen, Chris; Mancilla, Lady; Monteza, Jose; Moore, Tim; Oelmann, Yvonne; Scherer‐lorenzen, Michael; Schwendenmann, Luitgard; Wagner, Audrey; Wirth, Christian; Potvin, Catherine;International commitments advocate large-scale forest restoration as a nature-based solution to climate change mitigation through carbon (C) sequestration. Mounting evidence suggests that mixed compared to monospecific planted forests may sequester more C, exhibit lower susceptibility to climate extremes and offer a broader range of ecosystem services. However, experimental studies comprehensively examining the control of tree diversity on multiple C stocks and fluxes above- and belowground are lacking. To address this gap, we leverage data from the Sardinilla experiment in Panama, the oldest tropical tree diversity experiment which features a gradient of one–, two–, three–, and five–species mixtures of native tree species. Over 16 years, we measured multiple above- and belowground C stocks and fluxes, ranging from tree aboveground C, over leaf litter C production, to soil organic carbon (SOC). We show that tree diversity significantly increased aboveground C stocks and fluxes, with a 57% higher gain in aboveground tree C in five-species mixtures compared to monocultures (35.7±1.8 vs 22.8±3.4 Mg C ha-1) 16 years after planting. In contrast, we observed a net reduction in SOC (on average -11.2±1.1 Mg C ha-1) and no significant difference in SOC3stocks (the predominantly tree-derived, i.e., C3plant-derived SOC fraction) between five-species mixtures and monocultures (13.0±0.9 vs 15.1±1.3 Mg C ha-1). Positive tree diversity effects persisted despite repeated climate extremes and strengthened over time for aboveground tree growth. Structural equation models showed that higher tree growth in mixtures enhanced leaf litter and coarse woody debris C fluxes to the soil, resulting in a tightly linked C cycle aboveground. However, we did not observe significant links between above- and belowground C stocks and fluxes. Our study elucidates the mechanisms through which higher tree diversity bolsters the climate mitigation potential of tropical forest restoration. Restoration schemes should prioritize mixed over monospecific planted forests.
University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2025Full-Text: https://freidok.uni-freiburg.de/data/263274Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2024.0...Article . 2024 . Peer-reviewedLicense: CC BY NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2024.06.20.599915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2025Full-Text: https://freidok.uni-freiburg.de/data/263274Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2024.0...Article . 2024 . Peer-reviewedLicense: CC BY NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2024.06.20.599915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Netherlands, Germany, Germany, FrancePublisher:Cold Spring Harbor Laboratory Funded by:DFG, NSERCDFG ,NSERCSchnabel, Florian; Guillemot, Joannès; Barry, Kathryn; Brunn, Melanie; Cesarz, Simone; Eisenhauer, Nico; Gebauer, Tobias; Guerrero‐ramirez, Nathaly; Handa, I; Madsen, Chris; Mancilla, Lady; Monteza, Jose; Moore, Tim; Oelmann, Yvonne; Scherer‐lorenzen, Michael; Schwendenmann, Luitgard; Wagner, Audrey; Wirth, Christian; Potvin, Catherine;International commitments advocate large-scale forest restoration as a nature-based solution to climate change mitigation through carbon (C) sequestration. Mounting evidence suggests that mixed compared to monospecific planted forests may sequester more C, exhibit lower susceptibility to climate extremes and offer a broader range of ecosystem services. However, experimental studies comprehensively examining the control of tree diversity on multiple C stocks and fluxes above- and belowground are lacking. To address this gap, we leverage data from the Sardinilla experiment in Panama, the oldest tropical tree diversity experiment which features a gradient of one–, two–, three–, and five–species mixtures of native tree species. Over 16 years, we measured multiple above- and belowground C stocks and fluxes, ranging from tree aboveground C, over leaf litter C production, to soil organic carbon (SOC). We show that tree diversity significantly increased aboveground C stocks and fluxes, with a 57% higher gain in aboveground tree C in five-species mixtures compared to monocultures (35.7±1.8 vs 22.8±3.4 Mg C ha-1) 16 years after planting. In contrast, we observed a net reduction in SOC (on average -11.2±1.1 Mg C ha-1) and no significant difference in SOC3stocks (the predominantly tree-derived, i.e., C3plant-derived SOC fraction) between five-species mixtures and monocultures (13.0±0.9 vs 15.1±1.3 Mg C ha-1). Positive tree diversity effects persisted despite repeated climate extremes and strengthened over time for aboveground tree growth. Structural equation models showed that higher tree growth in mixtures enhanced leaf litter and coarse woody debris C fluxes to the soil, resulting in a tightly linked C cycle aboveground. However, we did not observe significant links between above- and belowground C stocks and fluxes. Our study elucidates the mechanisms through which higher tree diversity bolsters the climate mitigation potential of tropical forest restoration. Restoration schemes should prioritize mixed over monospecific planted forests.
University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2025Full-Text: https://freidok.uni-freiburg.de/data/263274Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2024.0...Article . 2024 . Peer-reviewedLicense: CC BY NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2024.06.20.599915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2025Full-Text: https://freidok.uni-freiburg.de/data/263274Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2024.0...Article . 2024 . Peer-reviewedLicense: CC BY NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2024.06.20.599915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Wiley Funded by:DFG | The role of tree and shru..., DFGDFG| The role of tree and shrub diversity for production, erosion control, element cycling, and species conservation in Chinese subtropical forest ecosystems (BEF-China) ,DFGAndreas Fichtner; Florian Schnabel; Helge Bruelheide; Matthias Kunz; Katharina Mausolf; Andreas Schuldt; Werner Härdtle; Goddert von Oheimb;Abstract Biodiversity is considered to mitigate detrimental impacts of climate change on the functioning of forest ecosystems, such as drought‐induced decline in forest productivity. However, previous studies produced controversial results and experimental evidence is rare. Specifically, the biological mechanisms underlying mitigation effects remain unclear, as existing work focuses on biodiversity effects related to the community scale. Using trait‐based neighbourhood models, we quantified changes in above‐ground wood productivity of 3,397 trees that were planted in a large‐scale tree diversity experiment in subtropical China across gradients of neighbourhood diversity and climatic conditions over a 6‐year period. This approach allowed us to simultaneously assess to what extent functional traits of a focal tree and biodiversity at the local neighbourhood scale mediate the growth response of individual trees to drought events. We found that neighbourhood tree species richness can mitigate for drought‐induced growth decline of young trees. Overall, positive net biodiversity effects were strongest during drought and increased with increasing taxonomic diversity of neighbours. In particular, drought‐sensitive species (i.e. those with a low cavitation resistance) benefitted the most from growing in diverse neighbourhoods, suggesting that soil water partitioning among local neighbours during drought particularly facilitated most vulnerable individuals. Thus, diverse neighbourhoods may enhance ecosystem resistance to drought by locally supporting drought‐sensitive species in the community. Synthesis. Our findings demonstrate that mechanisms operating at the local neighbourhood scale are a key component for regulating forests responses to drought and improve insights into how local species interactions vary along stress gradients in highly diverse tree communities.
University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2020Full-Text: https://freidok.uni-freiburg.de/data/241554Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2020Full-Text: https://freidok.uni-freiburg.de/data/241554Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Wiley Funded by:DFG | The role of tree and shru..., DFGDFG| The role of tree and shrub diversity for production, erosion control, element cycling, and species conservation in Chinese subtropical forest ecosystems (BEF-China) ,DFGAndreas Fichtner; Florian Schnabel; Helge Bruelheide; Matthias Kunz; Katharina Mausolf; Andreas Schuldt; Werner Härdtle; Goddert von Oheimb;Abstract Biodiversity is considered to mitigate detrimental impacts of climate change on the functioning of forest ecosystems, such as drought‐induced decline in forest productivity. However, previous studies produced controversial results and experimental evidence is rare. Specifically, the biological mechanisms underlying mitigation effects remain unclear, as existing work focuses on biodiversity effects related to the community scale. Using trait‐based neighbourhood models, we quantified changes in above‐ground wood productivity of 3,397 trees that were planted in a large‐scale tree diversity experiment in subtropical China across gradients of neighbourhood diversity and climatic conditions over a 6‐year period. This approach allowed us to simultaneously assess to what extent functional traits of a focal tree and biodiversity at the local neighbourhood scale mediate the growth response of individual trees to drought events. We found that neighbourhood tree species richness can mitigate for drought‐induced growth decline of young trees. Overall, positive net biodiversity effects were strongest during drought and increased with increasing taxonomic diversity of neighbours. In particular, drought‐sensitive species (i.e. those with a low cavitation resistance) benefitted the most from growing in diverse neighbourhoods, suggesting that soil water partitioning among local neighbours during drought particularly facilitated most vulnerable individuals. Thus, diverse neighbourhoods may enhance ecosystem resistance to drought by locally supporting drought‐sensitive species in the community. Synthesis. Our findings demonstrate that mechanisms operating at the local neighbourhood scale are a key component for regulating forests responses to drought and improve insights into how local species interactions vary along stress gradients in highly diverse tree communities.
University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2020Full-Text: https://freidok.uni-freiburg.de/data/241554Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2020Full-Text: https://freidok.uni-freiburg.de/data/241554Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13353&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, FrancePublisher:Wiley Funded by:DFGDFGAndreas Fichtner; Tobias Gebauer; Florian Schnabel; Florian Schnabel; Catherine Potvin; Catherine Potvin; Joannès Guillemot; Goddert von Oheimb; Werner Härdtle; Christopher Madsen; Matthias Kunz;doi: 10.1111/nph.16722
pmid: 32496591
SummaryVariations in crown forms promote canopy space‐use and productivity in mixed‐species forests. However, we have a limited understanding on how this response is mediated by changes in within‐tree biomass allocation. Here, we explored the role of changes in tree allometry, biomass allocation and architecture in shaping diversity–productivity relationships (DPRs) in the oldest tropical tree diversity experiment.We conducted whole‐tree destructive biomass measurements and terrestrial laser scanning. Spatially explicit models were built at the tree level to investigate the effects of tree size and local neighbourhood conditions. Results were then upscaled to the stand level, and mixture effects were explored using a bootstrapping procedure.Biomass allocation and architecture substantially changed in mixtures, which resulted from both tree‐size effects and neighbourhood‐mediated plasticity. Shifts in biomass allocation among branch orders explained substantial shares of the observed overyielding. By contrast, root‐to‐shoot ratios, as well as the allometric relationships between tree basal area and aboveground biomass, were little affected by the local neighbourhood.Our results suggest that generic allometric equations can be used to estimate forest aboveground biomass overyielding from diameter inventory data. Overall, we demonstrate that shifts in tree biomass allocation are mediated by the local neighbourhood and promote DPRs in tropical forests.
New Phytologist arrow_drop_down New PhytologistArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 50 citations 50 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, FrancePublisher:Wiley Funded by:DFGDFGAndreas Fichtner; Tobias Gebauer; Florian Schnabel; Florian Schnabel; Catherine Potvin; Catherine Potvin; Joannès Guillemot; Goddert von Oheimb; Werner Härdtle; Christopher Madsen; Matthias Kunz;doi: 10.1111/nph.16722
pmid: 32496591
SummaryVariations in crown forms promote canopy space‐use and productivity in mixed‐species forests. However, we have a limited understanding on how this response is mediated by changes in within‐tree biomass allocation. Here, we explored the role of changes in tree allometry, biomass allocation and architecture in shaping diversity–productivity relationships (DPRs) in the oldest tropical tree diversity experiment.We conducted whole‐tree destructive biomass measurements and terrestrial laser scanning. Spatially explicit models were built at the tree level to investigate the effects of tree size and local neighbourhood conditions. Results were then upscaled to the stand level, and mixture effects were explored using a bootstrapping procedure.Biomass allocation and architecture substantially changed in mixtures, which resulted from both tree‐size effects and neighbourhood‐mediated plasticity. Shifts in biomass allocation among branch orders explained substantial shares of the observed overyielding. By contrast, root‐to‐shoot ratios, as well as the allometric relationships between tree basal area and aboveground biomass, were little affected by the local neighbourhood.Our results suggest that generic allometric equations can be used to estimate forest aboveground biomass overyielding from diameter inventory data. Overall, we demonstrate that shifts in tree biomass allocation are mediated by the local neighbourhood and promote DPRs in tropical forests.
New Phytologist arrow_drop_down New PhytologistArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 50 citations 50 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert New Phytologist arrow_drop_down New PhytologistArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.16722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Research , Preprint 2022 France, Germany, France, France, France, NetherlandsPublisher:Cold Spring Harbor Laboratory Funded by:DFGDFGSchnabel, F; Barry, K; Eckhardt, S; Guillemot, Joannès; Geilmann, H; Kahl, A; Moossen, H; Bauhus, J; Wirth, C;pmid: 38196270
AbstractMixed-species forests are promoted as a forest management strategy for climate change adaptation, but whether they are more resistant to drought than monospecific forests remains contested. Particularly, the trait-based mechanisms driving the role of tree diversity under drought remain elusive.Using tree cores from a large-scale biodiversity experiment, we investigated tree growth and physiological stress responses (i.e. increase in wood carbon isotopic ratio; δ13C) to changes in climate-induced water availability (wet to dry years) along gradients in neighbourhood tree species richness and drought-tolerance traits. We hypothesized that neighbourhood species richness increases growth and decreases δ13C and that these relationships are modulated by the abiotic (i.e. climatic conditions) and the biotic context. We characterized the biotic context using drought-tolerance traits of focal trees and their neighbours. These traits are related to cavitation resistance vs resource acquisition and stomatal control.Tree growth increased with neighbourhood species richness. However, we did not observe a universal relief of water stress in species-rich neighbourhoods. Neighbourhood species richness effects on growth and δ13C did not strengthen from wet to dry years. Instead, richness-growth and richness-δ13C relationships were modulated by climatic conditions and the traits of trees and their neighbours. At either end of each drought-tolerance gradient, species responded in opposing directions during drought and non-drought years.We show that species’ drought-tolerance traits can explain the strength and nature of biodiversity-ecosystem functioning relationships in experimental tree communities experiencing drought. Mixing tree species can increase growth but may not universally relieve drought stress.One-sentence summaryThe drought-tolerance traits of trees and their neighbours determine biodiversity-ecosystem functioning relationships in experimental tree communities.
Plant Biology arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2022.11.22.517351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Plant Biology arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2022.11.22.517351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Research , Preprint 2022 France, Germany, France, France, France, NetherlandsPublisher:Cold Spring Harbor Laboratory Funded by:DFGDFGSchnabel, F; Barry, K; Eckhardt, S; Guillemot, Joannès; Geilmann, H; Kahl, A; Moossen, H; Bauhus, J; Wirth, C;pmid: 38196270
AbstractMixed-species forests are promoted as a forest management strategy for climate change adaptation, but whether they are more resistant to drought than monospecific forests remains contested. Particularly, the trait-based mechanisms driving the role of tree diversity under drought remain elusive.Using tree cores from a large-scale biodiversity experiment, we investigated tree growth and physiological stress responses (i.e. increase in wood carbon isotopic ratio; δ13C) to changes in climate-induced water availability (wet to dry years) along gradients in neighbourhood tree species richness and drought-tolerance traits. We hypothesized that neighbourhood species richness increases growth and decreases δ13C and that these relationships are modulated by the abiotic (i.e. climatic conditions) and the biotic context. We characterized the biotic context using drought-tolerance traits of focal trees and their neighbours. These traits are related to cavitation resistance vs resource acquisition and stomatal control.Tree growth increased with neighbourhood species richness. However, we did not observe a universal relief of water stress in species-rich neighbourhoods. Neighbourhood species richness effects on growth and δ13C did not strengthen from wet to dry years. Instead, richness-growth and richness-δ13C relationships were modulated by climatic conditions and the traits of trees and their neighbours. At either end of each drought-tolerance gradient, species responded in opposing directions during drought and non-drought years.We show that species’ drought-tolerance traits can explain the strength and nature of biodiversity-ecosystem functioning relationships in experimental tree communities experiencing drought. Mixing tree species can increase growth but may not universally relieve drought stress.One-sentence summaryThe drought-tolerance traits of trees and their neighbours determine biodiversity-ecosystem functioning relationships in experimental tree communities.
Plant Biology arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2022.11.22.517351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Plant Biology arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2022.11.22.517351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 GermanyPublisher:Wiley Funded by:DFGDFGFlorian Schnabel; Sarah Purrucker; Lara Schmitt; Rolf A. Engelmann; Anja Kahl; Ronny Richter; Carolin Seele‐Dilbat; Georgios Skiadaresis; Christian Wirth;pmid: 34927360
AbstractDroughts increasingly threaten the world's forests and their potential to mitigate climate change. In 2018–2019, Central European forests were hit by two consecutive hotter drought years, an unprecedented phenomenon that is likely to occur more frequently with climate change. Here, we examine tree growth and physiological stress responses (increase in carbon isotope composition; Δδ13C) to this consecutive drought based on tree rings of dominant tree species in a Central European floodplain forest. Tree growth was not reduced for most species in 2018, indicating that water supply in floodplain forests can partly buffer meteorological water deficits. Drought stress responses in 2018 were comparable to former single drought years but the hotter drought in 2018 induced drought legacies in tree growth while former droughts did not. We observed strong decreases in tree growth and increases in Δδ13C across all tree species in 2019, which are likely driven by the cumulative stress both consecutive hotter droughts exerted. Our results show that consecutive hotter droughts pose a novel threat to forests under climate change, even in forest ecosystems with comparably high levels of water supply.
University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/224458Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2021.0...Article . 2021 . Peer-reviewedLicense: CC BY NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/224458Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2021.0...Article . 2021 . Peer-reviewedLicense: CC BY NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 GermanyPublisher:Wiley Funded by:DFGDFGFlorian Schnabel; Sarah Purrucker; Lara Schmitt; Rolf A. Engelmann; Anja Kahl; Ronny Richter; Carolin Seele‐Dilbat; Georgios Skiadaresis; Christian Wirth;pmid: 34927360
AbstractDroughts increasingly threaten the world's forests and their potential to mitigate climate change. In 2018–2019, Central European forests were hit by two consecutive hotter drought years, an unprecedented phenomenon that is likely to occur more frequently with climate change. Here, we examine tree growth and physiological stress responses (increase in carbon isotope composition; Δδ13C) to this consecutive drought based on tree rings of dominant tree species in a Central European floodplain forest. Tree growth was not reduced for most species in 2018, indicating that water supply in floodplain forests can partly buffer meteorological water deficits. Drought stress responses in 2018 were comparable to former single drought years but the hotter drought in 2018 induced drought legacies in tree growth while former droughts did not. We observed strong decreases in tree growth and increases in Δδ13C across all tree species in 2019, which are likely driven by the cumulative stress both consecutive hotter droughts exerted. Our results show that consecutive hotter droughts pose a novel threat to forests under climate change, even in forest ecosystems with comparably high levels of water supply.
University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/224458Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2021.0...Article . 2021 . Peer-reviewedLicense: CC BY NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/224458Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2021.0...Article . 2021 . Peer-reviewedLicense: CC BY NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Netherlands, Germany, Germany, FrancePublisher:Cold Spring Harbor Laboratory Funded by:DFG, NSERCDFG ,NSERCSchnabel, Florian; Guillemot, Joannès; Barry, Kathryn; Brunn, Melanie; Cesarz, Simone; Eisenhauer, Nico; Gebauer, Tobias; Guerrero‐ramirez, Nathaly; Handa, I; Madsen, Chris; Mancilla, Lady; Monteza, Jose; Moore, Tim; Oelmann, Yvonne; Scherer‐lorenzen, Michael; Schwendenmann, Luitgard; Wagner, Audrey; Wirth, Christian; Potvin, Catherine;International commitments advocate large-scale forest restoration as a nature-based solution to climate change mitigation through carbon (C) sequestration. Mounting evidence suggests that mixed compared to monospecific planted forests may sequester more C, exhibit lower susceptibility to climate extremes and offer a broader range of ecosystem services. However, experimental studies comprehensively examining the control of tree diversity on multiple C stocks and fluxes above- and belowground are lacking. To address this gap, we leverage data from the Sardinilla experiment in Panama, the oldest tropical tree diversity experiment which features a gradient of one–, two–, three–, and five–species mixtures of native tree species. Over 16 years, we measured multiple above- and belowground C stocks and fluxes, ranging from tree aboveground C, over leaf litter C production, to soil organic carbon (SOC). We show that tree diversity significantly increased aboveground C stocks and fluxes, with a 57% higher gain in aboveground tree C in five-species mixtures compared to monocultures (35.7±1.8 vs 22.8±3.4 Mg C ha-1) 16 years after planting. In contrast, we observed a net reduction in SOC (on average -11.2±1.1 Mg C ha-1) and no significant difference in SOC3stocks (the predominantly tree-derived, i.e., C3plant-derived SOC fraction) between five-species mixtures and monocultures (13.0±0.9 vs 15.1±1.3 Mg C ha-1). Positive tree diversity effects persisted despite repeated climate extremes and strengthened over time for aboveground tree growth. Structural equation models showed that higher tree growth in mixtures enhanced leaf litter and coarse woody debris C fluxes to the soil, resulting in a tightly linked C cycle aboveground. However, we did not observe significant links between above- and belowground C stocks and fluxes. Our study elucidates the mechanisms through which higher tree diversity bolsters the climate mitigation potential of tropical forest restoration. Restoration schemes should prioritize mixed over monospecific planted forests.
University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2025Full-Text: https://freidok.uni-freiburg.de/data/263274Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2024.0...Article . 2024 . Peer-reviewedLicense: CC BY NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2024.06.20.599915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2025Full-Text: https://freidok.uni-freiburg.de/data/263274Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2024.0...Article . 2024 . Peer-reviewedLicense: CC BY NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2024.06.20.599915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Netherlands, Germany, Germany, FrancePublisher:Cold Spring Harbor Laboratory Funded by:DFG, NSERCDFG ,NSERCSchnabel, Florian; Guillemot, Joannès; Barry, Kathryn; Brunn, Melanie; Cesarz, Simone; Eisenhauer, Nico; Gebauer, Tobias; Guerrero‐ramirez, Nathaly; Handa, I; Madsen, Chris; Mancilla, Lady; Monteza, Jose; Moore, Tim; Oelmann, Yvonne; Scherer‐lorenzen, Michael; Schwendenmann, Luitgard; Wagner, Audrey; Wirth, Christian; Potvin, Catherine;International commitments advocate large-scale forest restoration as a nature-based solution to climate change mitigation through carbon (C) sequestration. Mounting evidence suggests that mixed compared to monospecific planted forests may sequester more C, exhibit lower susceptibility to climate extremes and offer a broader range of ecosystem services. However, experimental studies comprehensively examining the control of tree diversity on multiple C stocks and fluxes above- and belowground are lacking. To address this gap, we leverage data from the Sardinilla experiment in Panama, the oldest tropical tree diversity experiment which features a gradient of one–, two–, three–, and five–species mixtures of native tree species. Over 16 years, we measured multiple above- and belowground C stocks and fluxes, ranging from tree aboveground C, over leaf litter C production, to soil organic carbon (SOC). We show that tree diversity significantly increased aboveground C stocks and fluxes, with a 57% higher gain in aboveground tree C in five-species mixtures compared to monocultures (35.7±1.8 vs 22.8±3.4 Mg C ha-1) 16 years after planting. In contrast, we observed a net reduction in SOC (on average -11.2±1.1 Mg C ha-1) and no significant difference in SOC3stocks (the predominantly tree-derived, i.e., C3plant-derived SOC fraction) between five-species mixtures and monocultures (13.0±0.9 vs 15.1±1.3 Mg C ha-1). Positive tree diversity effects persisted despite repeated climate extremes and strengthened over time for aboveground tree growth. Structural equation models showed that higher tree growth in mixtures enhanced leaf litter and coarse woody debris C fluxes to the soil, resulting in a tightly linked C cycle aboveground. However, we did not observe significant links between above- and belowground C stocks and fluxes. Our study elucidates the mechanisms through which higher tree diversity bolsters the climate mitigation potential of tropical forest restoration. Restoration schemes should prioritize mixed over monospecific planted forests.
University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2025Full-Text: https://freidok.uni-freiburg.de/data/263274Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2024.0...Article . 2024 . Peer-reviewedLicense: CC BY NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2024.06.20.599915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Freibu... arrow_drop_down University of Freiburg: FreiDokArticle . 2025Full-Text: https://freidok.uni-freiburg.de/data/263274Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1101/2024.0...Article . 2024 . Peer-reviewedLicense: CC BY NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2024.06.20.599915&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu