- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Syed Wajahat Ali; Chun-Lien Su; Anant Kumar Verma; Claudio Burgos Mellado; Catalina Gonzalez-Castano;doi: 10.3390/su151310662
The proposed work delivers a robust control solution for a single-phase permanent magnet synchronous generator-based wind power conversion system (PMSG-WPCS) to enhance grid integration capability. The proposed control approach also offers an extended facility to fulfill low-voltage fault ride-through (LVRT) requirements under adverse grid conditions. Unlike the conventional observer-based PLL (O-PLL) approach, the proposed improved Lyapunov theory-based prefilter (ILP) is helpful in yielding a quadrature signal to solve the single-phase grid synchronization problem. Moreover, the proposed prefilter can leverage delayed signal operation, which improves the harmonic and the DC-offset component rejection abilities while eliminating the need for internal feedback-based submodule blocks for the case of an O-PLL. Consequently, the proposed ILP-PLL exhibits better dynamic behavior to rapidly synchronize a grid-tied power converter and can accurately track the fundamental amplitude information that is required for inverter control to meet the fault ride-through requirements. In addition, the suggested LVRT controller ensures smooth transition between the unity and non-unity power factor modes for superior converter control over reactive current injection into the grid to recover the grid from faults while maintaining a lower amount of total harmonic current distortions. The dynamic performance of the proposed control scheme is experimentally validated in view of the existing O-PLL approach for lower-rating wind-turbine-based PMSG-WPCS.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151310662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151310662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 DenmarkPublisher:MDPI AG Syed Wajahat Ali; Anant Kumar Verma; Yacine Terriche; Muhammad Sadiq; Chun-Lien Su; Chung-Hong Lee; Mahmoud Elsisi;doi: 10.3390/math10224266
Grid faults are found to be one of the major issues in renewable energy systems, particularly in wind energy conversion systems (WECS) connected to the grid via back-to-back (BTB) converters. Under such faulty grid conditions, the system requires an effective regulation of the active (P) and reactive (Q) power to accomplish low voltage ride through (LVRT) operation in accordance with the grid codes. In this paper, an improved finite-control-set model predictive control (FCS-MPC) scheme is proposed for a PMSG based WECS to achieve LVRT ability under symmetrical and asymmetrical grid faults, including mitigation of DC-link voltage fluctuation. With proposed predictive control, optimized switching states for cost function minimization with weighing factor (WF) selection guidelines are established for robust BTB converter control and reduced cross-coupling amid P and Q during transient conditions. Besides, grid voltage support is provided by grid side inverter control to inject reactive power during voltage dips. The effectiveness of the FCS-MPC method is compared with the conventional proportional-integral (PI) controller in case of symmetrical and asymmetrical grid faults. The simulation and experimental results endorse the superiority of the developed FCS-MPC scheme to diminish the fault effect quickly with lower overshoot and better damping performance than the traditional controller.
Mathematics arrow_drop_down MathematicsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2227-7390/10/22/4266/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/math10224266&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Mathematics arrow_drop_down MathematicsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2227-7390/10/22/4266/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/math10224266&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 DenmarkPublisher:MDPI AG Adeel Ahmad Jamil; Wen Fu Tu; Syed Wajhat Ali; Yacine Terriche; Josep M. Guerrero;doi: 10.3390/en15103800
Fractional-order proportional integral derivative (FOPID) controllers are becoming increasingly popular for various industrial applications due to the advantages they can offer. Among these applications, heating and temperature control systems are receiving significant attention, applying FOPID controllers to achieve better performance and robustness, more stability and flexibility, and faster response. Moreover, with several advantages of using FOPID controllers, the improvement in heating systems and temperature control systems is exceptional. Heating systems are characterized by external disturbance, model uncertainty, non-linearity, and control inaccuracy, which directly affect performance. Temperature control systems are used in industry, households, and many types of equipment. In this paper, fractional-order proportional integral derivative controllers are discussed in the context of controlling the temperature in ambulances, induction heating systems, control of bioreactors, and the improvement achieved by temperature control systems. Moreover, a comparison of conventional and FOPID controllers is also highlighted to show the improvement in production, quality, and accuracy that can be achieved by using such controllers. A composite analysis of the use of such controllers, especially for temperature control systems, is presented. In addition, some hidden and unhighlighted points concerning FOPID controllers are investigated thoroughly, including the most relevant publications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15103800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 65 citations 65 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15103800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 DenmarkPublisher:Institute of Electrical and Electronics Engineers (IEEE) Muhammad Sadiq; Syed Wajahat Ali; Yacine Terriche; Muhammad Umair Mutarraf; Mustafa Alrayah Hassan; Khalid Hamid; Zulfiqar Ali; Jia Yin Sze; Chun-Lien Su; Josep M. Guerrero;Recently, the application of renewable energy sources (RESs) for power distribution systems is growing immensely. This advancement brings several advantages, such as energy sustainability and reliability, easier maintenance, cost-effective energy sources, and ecofriendly. The application of RESs in maritime systems such as port microgrids massively improves energy efficiency and reduces the utilization of fossil fuels, which is a serious threat to the environment. Accordingly, ports are receiving several initiatives to improve their energy efficiency by deploying different types of RESs based on the power electronic converters. This paper conducts a systematic review to provide cutting-edge state-of-the-art on the modern electrification and infrastructure of seaports taking into account some challenges such as the environmental aspects, energy efficiency enhancement, renewable energy integration, and legislative and regulatory requirements. Moreover, the technological methods, including electrifications, digitalization, onshore power supply applications, and energy storage systems of ports, are addressed. Furthermore, details of some operational strategies such as energy-aware operations and peak-shaving are delivered. Besides, the infrastructure scheme to enhance the energy efficiency of modern ports, including port microgrids and seaport smart microgrids are delivered. Finally, the applications of nascent technologies in seaports are presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3081430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 63 citations 63 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3081430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 DenmarkPublisher:MDPI AG Muhammad Sadiq; Carlos Alfaro Aragon; Yacine Terriche; Syed Wajahat Ali; Chun-Lien Su; Ľuboš Buzna; Mahmoud Elsisi; Chung-Hong Lee;doi: 10.3390/math10193444
Zero-emission transportation is currently a public priority, especially in big cities. For this reason, the use of electric vehicles (EVs) is receiving much attention. To facilitate the adoption of EVs, a proper charging infrastructure together with energy management is essential. This article proposes a design guideline for a direct current (DC) charging station with bipolar properties. A bipolar system can convert a two-wire system into three wires in a microgrid system with a neutral line. The configuration of the bipolar system supports different loads; therefore, the unbalanced operation is inherent to the system. The proposed bipolar DC charging station (CS) has a three-level balancing converter that reduces the step-down effort chargers. Moreover, this paper proposes the continuous-control-set model predictive control (CCS-MPC)-based balancing strategy that allows the handling of different output loads while keeping the neutral-line voltage efficiently regulated with improved dynamic performance compared to a traditional controller. Stability and parameter robustness analyses are also performed for the control parameter selection. To ensure the performance of the proposed method, both simulation and experimental results are presented and compared with those obtained from the traditional methods.
Mathematics arrow_drop_down MathematicsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2227-7390/10/19/3444/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/math10193444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Mathematics arrow_drop_down MathematicsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2227-7390/10/19/3444/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/math10193444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Zulfiqar Ali; Syed Abbas; Anzar Mahmood; Syed Ali; Syed Javed; Chun-Lien Su;doi: 10.3390/en16093638
In recent years, renewable energy (RE) has shown promise as a sustainable solution to the rising energy demand worldwide. Photovoltaic (PV) technology has emerged as a highly viable RE alternative. The majority of PV schemes use specific PV models with specified parameters. This study proposes a PV model with generic specifications, a PV array, a DC/DC converter, a DC/AC inverter, maximum power point tracking (MPPT), and grid synchronization using a feedback control system under the MATLAB/Simulink environment. Various MPPT techniques have been adapted to track the PV’s maximum power point (MPP); however, there are various uncertainties. To address these challenges, this paper presented a perturb and observe (P&O) strategy to track the MPP of PV systems reliably. The MPP of a PV system varies according to meteorological order, such as solar radiation and cell temperature. The MPPT primarily gathers the maximum current and voltage of the PV array and provides them to the load using a boost converter. The MPPT performance and PV array attributes are analyzed during abrupt weather changes. Finally, a feedback controller is configured to perform synchronization of the inverter with the grid. The validity and reliability of the PV module using P&O methods provide a higher efficacy of MPPT under MATLAB/simulation. Finally, the presented results endorse the strength of the proposed technique.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/9/3638/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16093638&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/9/3638/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16093638&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Syed Wajahat Ali; Chun-Lien Su; Anant Kumar Verma; Claudio Burgos Mellado; Catalina Gonzalez-Castano;doi: 10.3390/su151310662
The proposed work delivers a robust control solution for a single-phase permanent magnet synchronous generator-based wind power conversion system (PMSG-WPCS) to enhance grid integration capability. The proposed control approach also offers an extended facility to fulfill low-voltage fault ride-through (LVRT) requirements under adverse grid conditions. Unlike the conventional observer-based PLL (O-PLL) approach, the proposed improved Lyapunov theory-based prefilter (ILP) is helpful in yielding a quadrature signal to solve the single-phase grid synchronization problem. Moreover, the proposed prefilter can leverage delayed signal operation, which improves the harmonic and the DC-offset component rejection abilities while eliminating the need for internal feedback-based submodule blocks for the case of an O-PLL. Consequently, the proposed ILP-PLL exhibits better dynamic behavior to rapidly synchronize a grid-tied power converter and can accurately track the fundamental amplitude information that is required for inverter control to meet the fault ride-through requirements. In addition, the suggested LVRT controller ensures smooth transition between the unity and non-unity power factor modes for superior converter control over reactive current injection into the grid to recover the grid from faults while maintaining a lower amount of total harmonic current distortions. The dynamic performance of the proposed control scheme is experimentally validated in view of the existing O-PLL approach for lower-rating wind-turbine-based PMSG-WPCS.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151310662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151310662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 DenmarkPublisher:MDPI AG Syed Wajahat Ali; Anant Kumar Verma; Yacine Terriche; Muhammad Sadiq; Chun-Lien Su; Chung-Hong Lee; Mahmoud Elsisi;doi: 10.3390/math10224266
Grid faults are found to be one of the major issues in renewable energy systems, particularly in wind energy conversion systems (WECS) connected to the grid via back-to-back (BTB) converters. Under such faulty grid conditions, the system requires an effective regulation of the active (P) and reactive (Q) power to accomplish low voltage ride through (LVRT) operation in accordance with the grid codes. In this paper, an improved finite-control-set model predictive control (FCS-MPC) scheme is proposed for a PMSG based WECS to achieve LVRT ability under symmetrical and asymmetrical grid faults, including mitigation of DC-link voltage fluctuation. With proposed predictive control, optimized switching states for cost function minimization with weighing factor (WF) selection guidelines are established for robust BTB converter control and reduced cross-coupling amid P and Q during transient conditions. Besides, grid voltage support is provided by grid side inverter control to inject reactive power during voltage dips. The effectiveness of the FCS-MPC method is compared with the conventional proportional-integral (PI) controller in case of symmetrical and asymmetrical grid faults. The simulation and experimental results endorse the superiority of the developed FCS-MPC scheme to diminish the fault effect quickly with lower overshoot and better damping performance than the traditional controller.
Mathematics arrow_drop_down MathematicsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2227-7390/10/22/4266/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/math10224266&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Mathematics arrow_drop_down MathematicsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2227-7390/10/22/4266/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/math10224266&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 DenmarkPublisher:MDPI AG Adeel Ahmad Jamil; Wen Fu Tu; Syed Wajhat Ali; Yacine Terriche; Josep M. Guerrero;doi: 10.3390/en15103800
Fractional-order proportional integral derivative (FOPID) controllers are becoming increasingly popular for various industrial applications due to the advantages they can offer. Among these applications, heating and temperature control systems are receiving significant attention, applying FOPID controllers to achieve better performance and robustness, more stability and flexibility, and faster response. Moreover, with several advantages of using FOPID controllers, the improvement in heating systems and temperature control systems is exceptional. Heating systems are characterized by external disturbance, model uncertainty, non-linearity, and control inaccuracy, which directly affect performance. Temperature control systems are used in industry, households, and many types of equipment. In this paper, fractional-order proportional integral derivative controllers are discussed in the context of controlling the temperature in ambulances, induction heating systems, control of bioreactors, and the improvement achieved by temperature control systems. Moreover, a comparison of conventional and FOPID controllers is also highlighted to show the improvement in production, quality, and accuracy that can be achieved by using such controllers. A composite analysis of the use of such controllers, especially for temperature control systems, is presented. In addition, some hidden and unhighlighted points concerning FOPID controllers are investigated thoroughly, including the most relevant publications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15103800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 65 citations 65 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15103800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 DenmarkPublisher:Institute of Electrical and Electronics Engineers (IEEE) Muhammad Sadiq; Syed Wajahat Ali; Yacine Terriche; Muhammad Umair Mutarraf; Mustafa Alrayah Hassan; Khalid Hamid; Zulfiqar Ali; Jia Yin Sze; Chun-Lien Su; Josep M. Guerrero;Recently, the application of renewable energy sources (RESs) for power distribution systems is growing immensely. This advancement brings several advantages, such as energy sustainability and reliability, easier maintenance, cost-effective energy sources, and ecofriendly. The application of RESs in maritime systems such as port microgrids massively improves energy efficiency and reduces the utilization of fossil fuels, which is a serious threat to the environment. Accordingly, ports are receiving several initiatives to improve their energy efficiency by deploying different types of RESs based on the power electronic converters. This paper conducts a systematic review to provide cutting-edge state-of-the-art on the modern electrification and infrastructure of seaports taking into account some challenges such as the environmental aspects, energy efficiency enhancement, renewable energy integration, and legislative and regulatory requirements. Moreover, the technological methods, including electrifications, digitalization, onshore power supply applications, and energy storage systems of ports, are addressed. Furthermore, details of some operational strategies such as energy-aware operations and peak-shaving are delivered. Besides, the infrastructure scheme to enhance the energy efficiency of modern ports, including port microgrids and seaport smart microgrids are delivered. Finally, the applications of nascent technologies in seaports are presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3081430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 63 citations 63 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3081430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 DenmarkPublisher:MDPI AG Muhammad Sadiq; Carlos Alfaro Aragon; Yacine Terriche; Syed Wajahat Ali; Chun-Lien Su; Ľuboš Buzna; Mahmoud Elsisi; Chung-Hong Lee;doi: 10.3390/math10193444
Zero-emission transportation is currently a public priority, especially in big cities. For this reason, the use of electric vehicles (EVs) is receiving much attention. To facilitate the adoption of EVs, a proper charging infrastructure together with energy management is essential. This article proposes a design guideline for a direct current (DC) charging station with bipolar properties. A bipolar system can convert a two-wire system into three wires in a microgrid system with a neutral line. The configuration of the bipolar system supports different loads; therefore, the unbalanced operation is inherent to the system. The proposed bipolar DC charging station (CS) has a three-level balancing converter that reduces the step-down effort chargers. Moreover, this paper proposes the continuous-control-set model predictive control (CCS-MPC)-based balancing strategy that allows the handling of different output loads while keeping the neutral-line voltage efficiently regulated with improved dynamic performance compared to a traditional controller. Stability and parameter robustness analyses are also performed for the control parameter selection. To ensure the performance of the proposed method, both simulation and experimental results are presented and compared with those obtained from the traditional methods.
Mathematics arrow_drop_down MathematicsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2227-7390/10/19/3444/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/math10193444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Mathematics arrow_drop_down MathematicsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2227-7390/10/19/3444/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/math10193444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Zulfiqar Ali; Syed Abbas; Anzar Mahmood; Syed Ali; Syed Javed; Chun-Lien Su;doi: 10.3390/en16093638
In recent years, renewable energy (RE) has shown promise as a sustainable solution to the rising energy demand worldwide. Photovoltaic (PV) technology has emerged as a highly viable RE alternative. The majority of PV schemes use specific PV models with specified parameters. This study proposes a PV model with generic specifications, a PV array, a DC/DC converter, a DC/AC inverter, maximum power point tracking (MPPT), and grid synchronization using a feedback control system under the MATLAB/Simulink environment. Various MPPT techniques have been adapted to track the PV’s maximum power point (MPP); however, there are various uncertainties. To address these challenges, this paper presented a perturb and observe (P&O) strategy to track the MPP of PV systems reliably. The MPP of a PV system varies according to meteorological order, such as solar radiation and cell temperature. The MPPT primarily gathers the maximum current and voltage of the PV array and provides them to the load using a boost converter. The MPPT performance and PV array attributes are analyzed during abrupt weather changes. Finally, a feedback controller is configured to perform synchronization of the inverter with the grid. The validity and reliability of the PV module using P&O methods provide a higher efficacy of MPPT under MATLAB/simulation. Finally, the presented results endorse the strength of the proposed technique.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/9/3638/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16093638&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/9/3638/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16093638&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu