- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Maria M. H. Wang; Ben Bond-Lamberty; Alan J. Tepley; Jennifer C. McGarvey; Valentine Herrmann; David LeBauer; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira;AbstractForests play an influential role in the global carbon (C) cycle, storing roughly half of terrestrial C and annually exchanging with the atmosphere more than five times the carbon dioxide (CO2) emitted by anthropogenic activities. Yet, scaling up from field‐based measurements of forest C stocks and fluxes to understand global scale C cycling and its climate sensitivity remains an important challenge. Tens of thousands of forest C measurements have been made, but these data have yet to be integrated into a single database that makes them accessible for integrated analyses. Here we present an open‐access global Forest Carbon database (ForC) containing previously published records of field‐based measurements of ecosystem‐level C stocks and annual fluxes, along with disturbance history and methodological information. ForC expands upon the previously published tropical portion of this database, TropForC (https://doi.org/10.5061/dryad.t516f), now including 17,367 records (previously 3,568) representing 2,731 plots (previously 845) in 826 geographically distinct areas. The database covers all forested biogeographic and climate zones, represents forest stands of all ages, and currently includes data collected between 1934 and 2015. We expect that ForC will prove useful for macroecological analyses of forest C cycling, for evaluation of model predictions or remote sensing products, for quantifying the contribution of forests to the global C cycle, and for supporting international efforts to inventory forest carbon and greenhouse gas exchange. A dynamic version of ForC is maintained at on GitHub (https://GitHub.com/forc-db), and we encourage the research community to collaborate in updating, correcting, expanding, and utilizing this database. ForC is an open access database, and we encourage use of the data for scientific research and education purposes. Data may not be used for commercial purposes without written permission of the database PI. Any publications using ForC data should cite this publication and Anderson‐Teixeira et al. (2016a) (see Metadata S1). No other copyright or cost restrictions are associated with the use of this data set.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Maria M. H. Wang; Ben Bond-Lamberty; Alan J. Tepley; Jennifer C. McGarvey; Valentine Herrmann; David LeBauer; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira;AbstractForests play an influential role in the global carbon (C) cycle, storing roughly half of terrestrial C and annually exchanging with the atmosphere more than five times the carbon dioxide (CO2) emitted by anthropogenic activities. Yet, scaling up from field‐based measurements of forest C stocks and fluxes to understand global scale C cycling and its climate sensitivity remains an important challenge. Tens of thousands of forest C measurements have been made, but these data have yet to be integrated into a single database that makes them accessible for integrated analyses. Here we present an open‐access global Forest Carbon database (ForC) containing previously published records of field‐based measurements of ecosystem‐level C stocks and annual fluxes, along with disturbance history and methodological information. ForC expands upon the previously published tropical portion of this database, TropForC (https://doi.org/10.5061/dryad.t516f), now including 17,367 records (previously 3,568) representing 2,731 plots (previously 845) in 826 geographically distinct areas. The database covers all forested biogeographic and climate zones, represents forest stands of all ages, and currently includes data collected between 1934 and 2015. We expect that ForC will prove useful for macroecological analyses of forest C cycling, for evaluation of model predictions or remote sensing products, for quantifying the contribution of forests to the global C cycle, and for supporting international efforts to inventory forest carbon and greenhouse gas exchange. A dynamic version of ForC is maintained at on GitHub (https://GitHub.com/forc-db), and we encourage the research community to collaborate in updating, correcting, expanding, and utilizing this database. ForC is an open access database, and we encourage use of the data for scientific research and education purposes. Data may not be used for commercial purposes without written permission of the database PI. Any publications using ForC data should cite this publication and Anderson‐Teixeira et al. (2016a) (see Metadata S1). No other copyright or cost restrictions are associated with the use of this data set.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, Singapore, United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: C...NSF| Collaborative Research: Climate Change Impacts on Forest Biodiversity: Individual Risk to Subcontinental ImpactsDaniel J. Johnson; Jessica Needham; Chonggang Xu; Elias C. Massoud; Stuart J. Davies; Kristina J. Anderson-Teixeira; Sarayudh Bunyavejchewin; Jeffery Q. Chambers; Chia-Hao Chang-Yang; Jyh-Min Chiang; George B. Chuyong; Richard Condit; Susan Cordell; Christine Fletcher; Christian P. Giardina; Thomas W. Giambelluca; Nimal Gunatilleke; Savitri Gunatilleke; Chang-Fu Hsieh; Stephen Hubbell; Faith Inman-Narahari; Abdul Rahman Kassim; Masatoshi Katabuchi; David Kenfack; Creighton M. Litton; Shawn Lum; Mohizah Mohamad; Musalmah Nasardin; Perry S. Ong; Rebecca Ostertag; Lawren Sack; Nathan G. Swenson; I Fang Sun; Sylvester Tan; Duncan W. Thomas; Jill Thompson; Maria Natalia Umaña; Maria Uriarte; Renato Valencia; Sandra Yap; Jess Zimmerman; Nate G. McDowell; Sean M. McMahon;Survival rates of large trees determine forest biomass dynamics. Survival rates of small trees have been linked to mechanisms that maintain biodiversity across tropical forests. How species survival rates change with size offers insight into the links between biodiversity and ecosystem function across tropical forests. We tested patterns of size-dependent tree survival across the tropics using data from 1,781 species and over 2 million individuals to assess whether tropical forests can be characterized by size-dependent life-history survival strategies. We found that species were classifiable into four 'survival modes' that explain life-history variation that shapes carbon cycling and the relative abundance within forests. Frequently collected functional traits, such as wood density, leaf mass per area and seed mass, were not generally predictive of the survival modes of species. Mean annual temperature and cumulative water deficit predicted the proportion of biomass of survival modes, indicating important links between evolutionary strategies, climate and carbon cycling. The application of survival modes in demographic simulations predicted biomass change across forest sites. Our results reveal globally identifiable size-dependent survival strategies that differ across diverse systems in a consistent way. The abundance of survival modes and interaction with climate ultimately determine forest structure, carbon storage in biomass and future forest trajectories.
NERC Open Research A... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/8sv5v438Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0626-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/8sv5v438Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0626-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, Singapore, United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: C...NSF| Collaborative Research: Climate Change Impacts on Forest Biodiversity: Individual Risk to Subcontinental ImpactsDaniel J. Johnson; Jessica Needham; Chonggang Xu; Elias C. Massoud; Stuart J. Davies; Kristina J. Anderson-Teixeira; Sarayudh Bunyavejchewin; Jeffery Q. Chambers; Chia-Hao Chang-Yang; Jyh-Min Chiang; George B. Chuyong; Richard Condit; Susan Cordell; Christine Fletcher; Christian P. Giardina; Thomas W. Giambelluca; Nimal Gunatilleke; Savitri Gunatilleke; Chang-Fu Hsieh; Stephen Hubbell; Faith Inman-Narahari; Abdul Rahman Kassim; Masatoshi Katabuchi; David Kenfack; Creighton M. Litton; Shawn Lum; Mohizah Mohamad; Musalmah Nasardin; Perry S. Ong; Rebecca Ostertag; Lawren Sack; Nathan G. Swenson; I Fang Sun; Sylvester Tan; Duncan W. Thomas; Jill Thompson; Maria Natalia Umaña; Maria Uriarte; Renato Valencia; Sandra Yap; Jess Zimmerman; Nate G. McDowell; Sean M. McMahon;Survival rates of large trees determine forest biomass dynamics. Survival rates of small trees have been linked to mechanisms that maintain biodiversity across tropical forests. How species survival rates change with size offers insight into the links between biodiversity and ecosystem function across tropical forests. We tested patterns of size-dependent tree survival across the tropics using data from 1,781 species and over 2 million individuals to assess whether tropical forests can be characterized by size-dependent life-history survival strategies. We found that species were classifiable into four 'survival modes' that explain life-history variation that shapes carbon cycling and the relative abundance within forests. Frequently collected functional traits, such as wood density, leaf mass per area and seed mass, were not generally predictive of the survival modes of species. Mean annual temperature and cumulative water deficit predicted the proportion of biomass of survival modes, indicating important links between evolutionary strategies, climate and carbon cycling. The application of survival modes in demographic simulations predicted biomass change across forest sites. Our results reveal globally identifiable size-dependent survival strategies that differ across diverse systems in a consistent way. The abundance of survival modes and interaction with climate ultimately determine forest structure, carbon storage in biomass and future forest trajectories.
NERC Open Research A... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/8sv5v438Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0626-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/8sv5v438Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0626-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006Publisher:Wiley James F. Gillooly; James F. Gillooly; Kristina J. Anderson; James H. Brown; James H. Brown; Andrew P. Allen; Andrew P. Allen;pmid: 16706912
AbstractRates of ecosystem recovery following disturbance affect many ecological processes, including carbon cycling in the biosphere. Here, we present a model that predicts the temperature dependence of the biomass accumulation rate following disturbances in forests. Model predictions are derived based on allometric and biochemical principles that govern plant energetics and are tested using a global database of 91 studies of secondary succession compiled from the literature. The rate of biomass accumulation during secondary succession increases with average growing season temperature as predicted based on the biochemical kinetics of photosynthesis in chloroplasts. In addition, the rate of biomass accumulation is greater in angiosperm‐dominated communities than in gymnosperm‐dominated ones and greater in plantations than in naturally regenerating stands. By linking the temperature‐dependence of photosynthesis to the rate of whole‐ecosystem biomass accumulation during secondary succession, our model and results provide one example of how emergent, ecosystem‐level rate processes can be predicted based on the kinetics of individual metabolic rate.
Ecology Letters arrow_drop_down Ecology LettersArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2006.00914.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu86 citations 86 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecology Letters arrow_drop_down Ecology LettersArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2006.00914.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006Publisher:Wiley James F. Gillooly; James F. Gillooly; Kristina J. Anderson; James H. Brown; James H. Brown; Andrew P. Allen; Andrew P. Allen;pmid: 16706912
AbstractRates of ecosystem recovery following disturbance affect many ecological processes, including carbon cycling in the biosphere. Here, we present a model that predicts the temperature dependence of the biomass accumulation rate following disturbances in forests. Model predictions are derived based on allometric and biochemical principles that govern plant energetics and are tested using a global database of 91 studies of secondary succession compiled from the literature. The rate of biomass accumulation during secondary succession increases with average growing season temperature as predicted based on the biochemical kinetics of photosynthesis in chloroplasts. In addition, the rate of biomass accumulation is greater in angiosperm‐dominated communities than in gymnosperm‐dominated ones and greater in plantations than in naturally regenerating stands. By linking the temperature‐dependence of photosynthesis to the rate of whole‐ecosystem biomass accumulation during secondary succession, our model and results provide one example of how emergent, ecosystem‐level rate processes can be predicted based on the kinetics of individual metabolic rate.
Ecology Letters arrow_drop_down Ecology LettersArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2006.00914.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu86 citations 86 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecology Letters arrow_drop_down Ecology LettersArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2006.00914.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United Kingdom, United Kingdom, United Kingdom, United Kingdom, Russian Federation, France, United Kingdom, United Kingdom, Germany, Netherlands, France, Italy, Netherlands, Italy, France, Italy, United Kingdom, United Kingdom, United KingdomPublisher:IOP Publishing Funded by:EC | PANTROP, EC | VERIFY, EC | T-FORCES +3 projectsEC| PANTROP ,EC| VERIFY ,EC| T-FORCES ,UKRI| Tropical Biomes in Transition ,UKRI| A Socio-Ecological Observatory for the Southern African Woodlands ,UKRI| SECO: Resolving the current and future carbon dynamics of the dry tropicsAuthors: Danaë M. A. Rozendaal; Daniela Requena Suárez; Véronique De Sy; Valerio Avitabile; +53 AuthorsDanaë M. A. Rozendaal; Daniela Requena Suárez; Véronique De Sy; Valerio Avitabile; Sarah Carter; Constant Yves Adou Yao; Esteban Álvarez-Dávila; Kristina J. Anderson‐Teixeira; Alejandro Araujo‐Murakami; Luzmila Arroyo; Benjamin Barca; Timothy R. Baker; Luca Birigazzi; Frans Bongers; Anne Branthomme; Roel Brienen; João M. B. Carreiras; Roberto Cazzolla Gatti; Susan C. Cook‐Patton; Mathieu Decuyper; Ben DeVries; Andrés Espejo; Ted R. Feldpausch; J Fox; Javier G. P. Gamarra; Bronson W. Griscom; Nancy L. Harris; Bruno Hérault; Eurídice N. Honorio Coronado; Inge Jonckheere; Eric Konan; Sara M. Leavitt; Simon L. Lewis; Jeremy Lindsell; Justin Kassi N'dja; Anny Estelle N'Guessan; Beatriz Schwantes Marimon; Edward T. A. Mitchard; A. Monteagudo; Alexandra Morel; Anssi Pekkarinen; Oliver L. Phillips; Lourens Poorter; Lan Qie; Ervan Rutishauser; Casey M. Ryan; Maurizio Santoro; Dos Santos Silayo; Plínio Sist; J. W. Ferry Slik; Bonaventure Sonké; Martin J. P. Sullivan; Gaia Vaglio Laurin; Emilio Vilanova; Maria M. H. Wang; Eliakimu Zahabu; Martin Herold;Abstract For monitoring and reporting forest carbon stocks and fluxes, many countries in the tropics and subtropics rely on default values of forest aboveground biomass (AGB) from the Intergovernmental Panel on Climate Change (IPCC) guidelines for National Greenhouse Gas (GHG) Inventories. Default IPCC forest AGB values originated from 2006, and are relatively crude estimates of average values per continent and ecological zone. The 2006 default values were based on limited plot data available at the time, methods for their derivation were not fully clear, and no distinction between successional stages was made. As part of the 2019 Refinement to the 2006 IPCC Guidelines for GHG Inventories, we updated the default AGB values for tropical and subtropical forests based on AGB data from >25 000 plots in natural forests and a global AGB map where no plot data were available. We calculated refined AGB default values per continent, ecological zone, and successional stage, and provided a measure of uncertainty. AGB in tropical and subtropical forests varies by an order of magnitude across continents, ecological zones, and successional stage. Our refined default values generally reflect the climatic gradients in the tropics, with more AGB in wetter areas. AGB is generally higher in old-growth than in secondary forests, and higher in older secondary (regrowth >20 years old and degraded/logged forests) than in young secondary forests (⩽20 years old). While refined default values for tropical old-growth forest are largely similar to the previous 2006 default values, the new default values are 4.0–7.7-fold lower for young secondary forests. Thus, the refined values will strongly alter estimated carbon stocks and fluxes, and emphasize the critical importance of old-growth forest conservation. We provide a reproducible approach to facilitate future refinements and encourage targeted efforts to establish permanent plots in areas with data gaps.
CORE arrow_drop_down COREArticle . 2022License: CC BYFull-Text: https://eprints.whiterose.ac.uk/182599/1/Rozendaal_2022_Environ._Res._Lett._17_014047.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2022License: CC BYFull-Text: https://eprints.whiterose.ac.uk/182599/1/Rozendaal_2022_Environ._Res._Lett._17_014047.pdfData sources: CORE (RIOXX-UK Aggregator)University of St Andrews: Digital Research RepositoryArticle . 2022License: CC BYFull-Text: https://hdl.handle.net/10023/24951Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10871/128940Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/117672Data sources: Bielefeld Academic Search Engine (BASE)Digital library (repository) of Tomsk State UniversityArticle . 2022Data sources: Digital library (repository) of Tomsk State Universitye-space at Manchester Metropolitan UniversityArticle . 2022Data sources: e-space at Manchester Metropolitan UniversityGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsSt Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research RepositoryEnvironmental Research LettersArticle . 2022 . Peer-reviewedData sources: European Union Open Data PortalUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac45b3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2022License: CC BYFull-Text: https://eprints.whiterose.ac.uk/182599/1/Rozendaal_2022_Environ._Res._Lett._17_014047.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2022License: CC BYFull-Text: https://eprints.whiterose.ac.uk/182599/1/Rozendaal_2022_Environ._Res._Lett._17_014047.pdfData sources: CORE (RIOXX-UK Aggregator)University of St Andrews: Digital Research RepositoryArticle . 2022License: CC BYFull-Text: https://hdl.handle.net/10023/24951Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10871/128940Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/117672Data sources: Bielefeld Academic Search Engine (BASE)Digital library (repository) of Tomsk State UniversityArticle . 2022Data sources: Digital library (repository) of Tomsk State Universitye-space at Manchester Metropolitan UniversityArticle . 2022Data sources: e-space at Manchester Metropolitan UniversityGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsSt Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research RepositoryEnvironmental Research LettersArticle . 2022 . Peer-reviewedData sources: European Union Open Data PortalUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac45b3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United Kingdom, United Kingdom, United Kingdom, United Kingdom, Russian Federation, France, United Kingdom, United Kingdom, Germany, Netherlands, France, Italy, Netherlands, Italy, France, Italy, United Kingdom, United Kingdom, United KingdomPublisher:IOP Publishing Funded by:EC | PANTROP, EC | VERIFY, EC | T-FORCES +3 projectsEC| PANTROP ,EC| VERIFY ,EC| T-FORCES ,UKRI| Tropical Biomes in Transition ,UKRI| A Socio-Ecological Observatory for the Southern African Woodlands ,UKRI| SECO: Resolving the current and future carbon dynamics of the dry tropicsAuthors: Danaë M. A. Rozendaal; Daniela Requena Suárez; Véronique De Sy; Valerio Avitabile; +53 AuthorsDanaë M. A. Rozendaal; Daniela Requena Suárez; Véronique De Sy; Valerio Avitabile; Sarah Carter; Constant Yves Adou Yao; Esteban Álvarez-Dávila; Kristina J. Anderson‐Teixeira; Alejandro Araujo‐Murakami; Luzmila Arroyo; Benjamin Barca; Timothy R. Baker; Luca Birigazzi; Frans Bongers; Anne Branthomme; Roel Brienen; João M. B. Carreiras; Roberto Cazzolla Gatti; Susan C. Cook‐Patton; Mathieu Decuyper; Ben DeVries; Andrés Espejo; Ted R. Feldpausch; J Fox; Javier G. P. Gamarra; Bronson W. Griscom; Nancy L. Harris; Bruno Hérault; Eurídice N. Honorio Coronado; Inge Jonckheere; Eric Konan; Sara M. Leavitt; Simon L. Lewis; Jeremy Lindsell; Justin Kassi N'dja; Anny Estelle N'Guessan; Beatriz Schwantes Marimon; Edward T. A. Mitchard; A. Monteagudo; Alexandra Morel; Anssi Pekkarinen; Oliver L. Phillips; Lourens Poorter; Lan Qie; Ervan Rutishauser; Casey M. Ryan; Maurizio Santoro; Dos Santos Silayo; Plínio Sist; J. W. Ferry Slik; Bonaventure Sonké; Martin J. P. Sullivan; Gaia Vaglio Laurin; Emilio Vilanova; Maria M. H. Wang; Eliakimu Zahabu; Martin Herold;Abstract For monitoring and reporting forest carbon stocks and fluxes, many countries in the tropics and subtropics rely on default values of forest aboveground biomass (AGB) from the Intergovernmental Panel on Climate Change (IPCC) guidelines for National Greenhouse Gas (GHG) Inventories. Default IPCC forest AGB values originated from 2006, and are relatively crude estimates of average values per continent and ecological zone. The 2006 default values were based on limited plot data available at the time, methods for their derivation were not fully clear, and no distinction between successional stages was made. As part of the 2019 Refinement to the 2006 IPCC Guidelines for GHG Inventories, we updated the default AGB values for tropical and subtropical forests based on AGB data from >25 000 plots in natural forests and a global AGB map where no plot data were available. We calculated refined AGB default values per continent, ecological zone, and successional stage, and provided a measure of uncertainty. AGB in tropical and subtropical forests varies by an order of magnitude across continents, ecological zones, and successional stage. Our refined default values generally reflect the climatic gradients in the tropics, with more AGB in wetter areas. AGB is generally higher in old-growth than in secondary forests, and higher in older secondary (regrowth >20 years old and degraded/logged forests) than in young secondary forests (⩽20 years old). While refined default values for tropical old-growth forest are largely similar to the previous 2006 default values, the new default values are 4.0–7.7-fold lower for young secondary forests. Thus, the refined values will strongly alter estimated carbon stocks and fluxes, and emphasize the critical importance of old-growth forest conservation. We provide a reproducible approach to facilitate future refinements and encourage targeted efforts to establish permanent plots in areas with data gaps.
CORE arrow_drop_down COREArticle . 2022License: CC BYFull-Text: https://eprints.whiterose.ac.uk/182599/1/Rozendaal_2022_Environ._Res._Lett._17_014047.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2022License: CC BYFull-Text: https://eprints.whiterose.ac.uk/182599/1/Rozendaal_2022_Environ._Res._Lett._17_014047.pdfData sources: CORE (RIOXX-UK Aggregator)University of St Andrews: Digital Research RepositoryArticle . 2022License: CC BYFull-Text: https://hdl.handle.net/10023/24951Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10871/128940Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/117672Data sources: Bielefeld Academic Search Engine (BASE)Digital library (repository) of Tomsk State UniversityArticle . 2022Data sources: Digital library (repository) of Tomsk State Universitye-space at Manchester Metropolitan UniversityArticle . 2022Data sources: e-space at Manchester Metropolitan UniversityGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsSt Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research RepositoryEnvironmental Research LettersArticle . 2022 . Peer-reviewedData sources: European Union Open Data PortalUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac45b3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2022License: CC BYFull-Text: https://eprints.whiterose.ac.uk/182599/1/Rozendaal_2022_Environ._Res._Lett._17_014047.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2022License: CC BYFull-Text: https://eprints.whiterose.ac.uk/182599/1/Rozendaal_2022_Environ._Res._Lett._17_014047.pdfData sources: CORE (RIOXX-UK Aggregator)University of St Andrews: Digital Research RepositoryArticle . 2022License: CC BYFull-Text: https://hdl.handle.net/10023/24951Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10871/128940Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/117672Data sources: Bielefeld Academic Search Engine (BASE)Digital library (repository) of Tomsk State UniversityArticle . 2022Data sources: Digital library (repository) of Tomsk State Universitye-space at Manchester Metropolitan UniversityArticle . 2022Data sources: e-space at Manchester Metropolitan UniversityGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsSt Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research RepositoryEnvironmental Research LettersArticle . 2022 . Peer-reviewedData sources: European Union Open Data PortalUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac45b3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Australia, United States, Netherlands, United States, FrancePublisher:Wiley Funded by:NSF | Collaborative Research: U...NSF| Collaborative Research: Understanding the potential for a climate change-driven critical transition from forest to chaparralCraig D. Allen; James A. Lutz; Neil Pederson; M. Ross Alexander; Cameron Dow; Cameron Dow; Mart Vlam; Valentine Herrmann; Christine R. Rollinson; Ellis Q. Margolis; Sarayudh Bunyavejchewin; Sean M. McMahon; Sean M. McMahon; Ryan Helcoski; Anastasia E. Sniderhan; Jakub Kašpar; Sabrina E. Russo; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira; Joseph D. Birch; Jennifer L. Baltzer; Stuart J. Davies; Camille Piponiot; Camille Piponiot; Raquel Alfaro-Sánchez; Pieter A. Zuidema; Alan J. Tepley; Alan J. Tepley; Pavel Šamonil; Erika Gonzalez-Akre; Paolo Cherubini; Paolo Cherubini; Ivana Vašíčková; Justin T. Maxwell; Bianca Gonzalez; Patrick J. Baker; Tala Awada;AbstractTree rings provide an invaluable long‐term record for understanding how climate and other drivers shape tree growth and forest productivity. However, conventional tree‐ring analysis methods were not designed to simultaneously test effects of climate, tree size, and other drivers on individual growth. This has limited the potential to test ecologically relevant hypotheses on tree growth sensitivity to environmental drivers and their interactions with tree size. Here, we develop and apply a new method to simultaneously model nonlinear effects of primary climate drivers, reconstructed tree diameter at breast height (DBH), and calendar year in generalized least squares models that account for the temporal autocorrelation inherent to each individual tree's growth. We analyze data from 3811 trees representing 40 species at 10 globally distributed sites, showing that precipitation, temperature, DBH, and calendar year have additively, and often interactively, influenced annual growth over the past 120 years. Growth responses were predominantly positive to precipitation (usually over ≥3‐month seasonal windows) and negative to temperature (usually maximum temperature, over ≤3‐month seasonal windows), with concave‐down responses in 63% of relationships. Climate sensitivity commonly varied with DBH (45% of cases tested), with larger trees usually more sensitive. Trends in ring width at small DBH were linked to the light environment under which trees established, but basal area or biomass increments consistently reached maxima at intermediate DBH. Accounting for climate and DBH, growth rate declined over time for 92% of species in secondary or disturbed stands, whereas growth trends were mixed in older forests. These trends were largely attributable to stand dynamics as cohorts and stands age, which remain challenging to disentangle from global change drivers. By providing a parsimonious approach for characterizing multiple interacting drivers of tree growth, our method reveals a more complete picture of the factors influencing growth than has previously been possible.
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/315826Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15934&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 79 citations 79 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/315826Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15934&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Australia, United States, Netherlands, United States, FrancePublisher:Wiley Funded by:NSF | Collaborative Research: U...NSF| Collaborative Research: Understanding the potential for a climate change-driven critical transition from forest to chaparralCraig D. Allen; James A. Lutz; Neil Pederson; M. Ross Alexander; Cameron Dow; Cameron Dow; Mart Vlam; Valentine Herrmann; Christine R. Rollinson; Ellis Q. Margolis; Sarayudh Bunyavejchewin; Sean M. McMahon; Sean M. McMahon; Ryan Helcoski; Anastasia E. Sniderhan; Jakub Kašpar; Sabrina E. Russo; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira; Joseph D. Birch; Jennifer L. Baltzer; Stuart J. Davies; Camille Piponiot; Camille Piponiot; Raquel Alfaro-Sánchez; Pieter A. Zuidema; Alan J. Tepley; Alan J. Tepley; Pavel Šamonil; Erika Gonzalez-Akre; Paolo Cherubini; Paolo Cherubini; Ivana Vašíčková; Justin T. Maxwell; Bianca Gonzalez; Patrick J. Baker; Tala Awada;AbstractTree rings provide an invaluable long‐term record for understanding how climate and other drivers shape tree growth and forest productivity. However, conventional tree‐ring analysis methods were not designed to simultaneously test effects of climate, tree size, and other drivers on individual growth. This has limited the potential to test ecologically relevant hypotheses on tree growth sensitivity to environmental drivers and their interactions with tree size. Here, we develop and apply a new method to simultaneously model nonlinear effects of primary climate drivers, reconstructed tree diameter at breast height (DBH), and calendar year in generalized least squares models that account for the temporal autocorrelation inherent to each individual tree's growth. We analyze data from 3811 trees representing 40 species at 10 globally distributed sites, showing that precipitation, temperature, DBH, and calendar year have additively, and often interactively, influenced annual growth over the past 120 years. Growth responses were predominantly positive to precipitation (usually over ≥3‐month seasonal windows) and negative to temperature (usually maximum temperature, over ≤3‐month seasonal windows), with concave‐down responses in 63% of relationships. Climate sensitivity commonly varied with DBH (45% of cases tested), with larger trees usually more sensitive. Trends in ring width at small DBH were linked to the light environment under which trees established, but basal area or biomass increments consistently reached maxima at intermediate DBH. Accounting for climate and DBH, growth rate declined over time for 92% of species in secondary or disturbed stands, whereas growth trends were mixed in older forests. These trends were largely attributable to stand dynamics as cohorts and stands age, which remain challenging to disentangle from global change drivers. By providing a parsimonious approach for characterizing multiple interacting drivers of tree growth, our method reveals a more complete picture of the factors influencing growth than has previously been possible.
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/315826Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15934&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 79 citations 79 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/315826Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15934&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Wiley Justin M. Mathias; Kenneth R. Smith; Kristin E. Lantz; Keanan T Allen; Marvin J. Wright; Afsoon Sabet; Kristina J. Anderson‐Teixeira; Randall S. Thomas;pmid: 36897273
AbstractTrees continuously regulate leaf physiology to acquire CO2 while simultaneously avoiding excessive water loss. The balance between these two processes, or water use efficiency (WUE), is fundamentally important to understanding changes in carbon uptake and transpiration from the leaf to the globe under environmental change. While increasing atmospheric CO2 (iCO2) is known to increase tree intrinsic water use efficiency (iWUE), less clear are the additional impacts of climate and acidic air pollution and how they vary by tree species. Here, we couple annually resolved long‐term records of tree‐ring carbon isotope signatures with leaf physiological measurements of Quercus rubra (Quru) and Liriodendron tulipifera (Litu) at four study locations spanning nearly 100 km in the eastern United States to reconstruct historical iWUE, net photosynthesis (Anet), and stomatal conductance to water (gs) since 1940. We first show 16%–25% increases in tree iWUE since the mid‐20th century, primarily driven by iCO2, but also document the individual and interactive effects of nitrogen (NOx) and sulfur (SO2) air pollution overwhelming climate. We find evidence for Quru leaf gas exchange being less tightly regulated than Litu through an analysis of isotope‐derived leaf internal CO2 (Ci), particularly in wetter, recent years. Modeled estimates of seasonally integrated Anet and gs revealed a 43%–50% stimulation of Anet was responsible for increasing iWUE in both tree species throughout 79%–86% of the chronologies with reductions in gs attributable to the remaining 14%–21%, building upon a growing body of literature documenting stimulated Anet overwhelming reductions in gs as a primary mechanism of increasing iWUE of trees. Finally, our results underscore the importance of considering air pollution, which remains a major environmental issue in many areas of the world, alongside climate in the interpretation of leaf physiology derived from tree rings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16673&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16673&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Wiley Justin M. Mathias; Kenneth R. Smith; Kristin E. Lantz; Keanan T Allen; Marvin J. Wright; Afsoon Sabet; Kristina J. Anderson‐Teixeira; Randall S. Thomas;pmid: 36897273
AbstractTrees continuously regulate leaf physiology to acquire CO2 while simultaneously avoiding excessive water loss. The balance between these two processes, or water use efficiency (WUE), is fundamentally important to understanding changes in carbon uptake and transpiration from the leaf to the globe under environmental change. While increasing atmospheric CO2 (iCO2) is known to increase tree intrinsic water use efficiency (iWUE), less clear are the additional impacts of climate and acidic air pollution and how they vary by tree species. Here, we couple annually resolved long‐term records of tree‐ring carbon isotope signatures with leaf physiological measurements of Quercus rubra (Quru) and Liriodendron tulipifera (Litu) at four study locations spanning nearly 100 km in the eastern United States to reconstruct historical iWUE, net photosynthesis (Anet), and stomatal conductance to water (gs) since 1940. We first show 16%–25% increases in tree iWUE since the mid‐20th century, primarily driven by iCO2, but also document the individual and interactive effects of nitrogen (NOx) and sulfur (SO2) air pollution overwhelming climate. We find evidence for Quru leaf gas exchange being less tightly regulated than Litu through an analysis of isotope‐derived leaf internal CO2 (Ci), particularly in wetter, recent years. Modeled estimates of seasonally integrated Anet and gs revealed a 43%–50% stimulation of Anet was responsible for increasing iWUE in both tree species throughout 79%–86% of the chronologies with reductions in gs attributable to the remaining 14%–21%, building upon a growing body of literature documenting stimulated Anet overwhelming reductions in gs as a primary mechanism of increasing iWUE of trees. Finally, our results underscore the importance of considering air pollution, which remains a major environmental issue in many areas of the world, alongside climate in the interpretation of leaf physiology derived from tree rings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16673&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16673&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United StatesPublisher:Wiley Funded by:NSF | Collaborative Research: T..., NSF | COLLABORATIVE RESEARCH: T...NSF| Collaborative Research: The other side of tropical forest drought: Do shallow water table regions of Amazonia act as large-scale hydrologic refugia from drought? ,NSF| COLLABORATIVE RESEARCH: THE CRITICAL IMPORTANCE OF DIVERSE LEAF "HAIRSTYLES": INTEGRATIVE QUANTIFICATION OF ANATOMY, FUNCTION, EVOLUTION AND ECOLOGY OF TRICHOMESNidhi Vinod; Martijn Slot; Ian R. McGregor; Elsa M. Ordway; Marielle N. Smith; Tyeen C. Taylor; Lawren Sack; Thomas N. Buckley; Kristina J. Anderson‐Teixeira;SummaryRising temperatures are influencing forests on many scales, with potentially strong variation vertically across forest strata. Using published research and new analyses, we evaluate how microclimate and leaf temperatures, traits, and gas exchange vary vertically in forests, shaping tree, and ecosystem ecology. In closed‐canopy forests, upper canopy leaves are exposed to the highest solar radiation and evaporative demand, which can elevate leaf temperature (Tleaf), particularly when transpirational cooling is curtailed by limited stomatal conductance. However, foliar traits also vary across height or light gradients, partially mitigating and protecting against the elevation of upper canopyTleaf. Leaf metabolism generally increases with height across the vertical gradient, yet differences in thermal sensitivity across the gradient appear modest. Scaling from leaves to trees, canopy trees have higher absolute metabolic capacity and growth, yet are more vulnerable to drought and damagingTleafthan their smaller counterparts, particularly under climate change. By contrast, understory trees experience fewer extreme highTleaf's but have fewer cooling mechanisms and thus may be strongly impacted by warming under some conditions, particularly when exposed to a harsher microenvironment through canopy disturbance. As the climate changes, integrating the patterns and mechanisms reviewed here into models will be critical to forecasting forest–climate feedback.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/7mw6g0t9Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaNew PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Michigan: Deep BlueArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 50 citations 50 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/7mw6g0t9Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaNew PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Michigan: Deep BlueArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United StatesPublisher:Wiley Funded by:NSF | Collaborative Research: T..., NSF | COLLABORATIVE RESEARCH: T...NSF| Collaborative Research: The other side of tropical forest drought: Do shallow water table regions of Amazonia act as large-scale hydrologic refugia from drought? ,NSF| COLLABORATIVE RESEARCH: THE CRITICAL IMPORTANCE OF DIVERSE LEAF "HAIRSTYLES": INTEGRATIVE QUANTIFICATION OF ANATOMY, FUNCTION, EVOLUTION AND ECOLOGY OF TRICHOMESNidhi Vinod; Martijn Slot; Ian R. McGregor; Elsa M. Ordway; Marielle N. Smith; Tyeen C. Taylor; Lawren Sack; Thomas N. Buckley; Kristina J. Anderson‐Teixeira;SummaryRising temperatures are influencing forests on many scales, with potentially strong variation vertically across forest strata. Using published research and new analyses, we evaluate how microclimate and leaf temperatures, traits, and gas exchange vary vertically in forests, shaping tree, and ecosystem ecology. In closed‐canopy forests, upper canopy leaves are exposed to the highest solar radiation and evaporative demand, which can elevate leaf temperature (Tleaf), particularly when transpirational cooling is curtailed by limited stomatal conductance. However, foliar traits also vary across height or light gradients, partially mitigating and protecting against the elevation of upper canopyTleaf. Leaf metabolism generally increases with height across the vertical gradient, yet differences in thermal sensitivity across the gradient appear modest. Scaling from leaves to trees, canopy trees have higher absolute metabolic capacity and growth, yet are more vulnerable to drought and damagingTleafthan their smaller counterparts, particularly under climate change. By contrast, understory trees experience fewer extreme highTleaf's but have fewer cooling mechanisms and thus may be strongly impacted by warming under some conditions, particularly when exposed to a harsher microenvironment through canopy disturbance. As the climate changes, integrating the patterns and mechanisms reviewed here into models will be critical to forecasting forest–climate feedback.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/7mw6g0t9Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaNew PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Michigan: Deep BlueArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 50 citations 50 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/7mw6g0t9Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaNew PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Michigan: Deep BlueArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:IOP Publishing Ben Bond-Lamberty; Susan C. Cook-Patton; Maria M. H. Wang; Maria M. H. Wang; Helene C. Muller-Landau; Abigail E. Ferson; Abigail E. Ferson; Rebecca Banbury Morgan; Rebecca Banbury Morgan; Valentine Herrmann; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira;Abstract Forests are major components of the global carbon (C) cycle and thereby strongly influence atmospheric carbon dioxide (CO2) and climate. However, efforts to incorporate forests into climate models and CO2 accounting frameworks have been constrained by a lack of accessible, global-scale synthesis on how C cycling varies across forest types and stand ages. Here, we draw from the Global Forest Carbon Database, ForC, to provide a macroscopic overview of C cycling in the world’s forests, giving special attention to stand age-related variation. Specifically, we use 11 923 ForC records for 34 C cycle variables from 865 geographic locations to characterize ensemble C budgets for four broad forest types—tropical broadleaf evergreen, temperate broadleaf, temperate conifer, and boreal. We calculate means and standard deviations for both mature and regrowth (age < 100 years) forests and quantify trends with stand age in regrowth forests for all variables with sufficient data. C cycling rates generally decreased from tropical to temperate to boreal in both mature and regrowth forests, whereas C stocks showed less directional variation. Mature forest net ecosystem production did not differ significantly among biomes. The majority of flux variables, together with most live biomass pools, increased significantly with the logarithm of stand age. As climate change accelerates, understanding and managing the carbon dynamics of forests is critical to forecasting, mitigation, and adaptation. This comprehensive and synthetic global overview of C stocks and fluxes across biomes and stand ages contributes to these efforts.
CORE arrow_drop_down COREArticle . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/183959/1/Anderson-Teixeira_2021_Environ._Res._Lett._16_053009.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/183959/1/Anderson-Teixeira_2021_Environ._Res._Lett._16_053009.pdfData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abed01&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/183959/1/Anderson-Teixeira_2021_Environ._Res._Lett._16_053009.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/183959/1/Anderson-Teixeira_2021_Environ._Res._Lett._16_053009.pdfData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abed01&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:IOP Publishing Ben Bond-Lamberty; Susan C. Cook-Patton; Maria M. H. Wang; Maria M. H. Wang; Helene C. Muller-Landau; Abigail E. Ferson; Abigail E. Ferson; Rebecca Banbury Morgan; Rebecca Banbury Morgan; Valentine Herrmann; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira;Abstract Forests are major components of the global carbon (C) cycle and thereby strongly influence atmospheric carbon dioxide (CO2) and climate. However, efforts to incorporate forests into climate models and CO2 accounting frameworks have been constrained by a lack of accessible, global-scale synthesis on how C cycling varies across forest types and stand ages. Here, we draw from the Global Forest Carbon Database, ForC, to provide a macroscopic overview of C cycling in the world’s forests, giving special attention to stand age-related variation. Specifically, we use 11 923 ForC records for 34 C cycle variables from 865 geographic locations to characterize ensemble C budgets for four broad forest types—tropical broadleaf evergreen, temperate broadleaf, temperate conifer, and boreal. We calculate means and standard deviations for both mature and regrowth (age < 100 years) forests and quantify trends with stand age in regrowth forests for all variables with sufficient data. C cycling rates generally decreased from tropical to temperate to boreal in both mature and regrowth forests, whereas C stocks showed less directional variation. Mature forest net ecosystem production did not differ significantly among biomes. The majority of flux variables, together with most live biomass pools, increased significantly with the logarithm of stand age. As climate change accelerates, understanding and managing the carbon dynamics of forests is critical to forecasting, mitigation, and adaptation. This comprehensive and synthetic global overview of C stocks and fluxes across biomes and stand ages contributes to these efforts.
CORE arrow_drop_down COREArticle . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/183959/1/Anderson-Teixeira_2021_Environ._Res._Lett._16_053009.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/183959/1/Anderson-Teixeira_2021_Environ._Res._Lett._16_053009.pdfData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abed01&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/183959/1/Anderson-Teixeira_2021_Environ._Res._Lett._16_053009.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/183959/1/Anderson-Teixeira_2021_Environ._Res._Lett._16_053009.pdfData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abed01&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Authors: Ethan P. Belair; Ethan P. Belair; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira;doi: 10.1111/gcb.16008
pmid: 34846762
AbstractCalifornia's Cap‐and‐Trade Program sets a limit on the major sources of greenhouse gas emissions and allows a portion of excess emissions to be offset through purchase of credits for climate benefits accrued elsewhere. Badgley et al. (2021, Global Change Biology, https://doi.org/10.1111/gcb.15943) describe how the use of mean forest carbon stocks from ecological supersections can create perverse incentives for project developers, potentially leading to over‐crediting and nonadditional offsets. Carbon markets remain a valuable tool in combating climate change, but ensuring projects’ additionality is of critical importance to effective carbon mitigation. Badgley’s article should serve as a call to action to redouble efforts at integrating the latest carbon science into effective and timely policy solutions.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Authors: Ethan P. Belair; Ethan P. Belair; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira;doi: 10.1111/gcb.16008
pmid: 34846762
AbstractCalifornia's Cap‐and‐Trade Program sets a limit on the major sources of greenhouse gas emissions and allows a portion of excess emissions to be offset through purchase of credits for climate benefits accrued elsewhere. Badgley et al. (2021, Global Change Biology, https://doi.org/10.1111/gcb.15943) describe how the use of mean forest carbon stocks from ecological supersections can create perverse incentives for project developers, potentially leading to over‐crediting and nonadditional offsets. Carbon markets remain a valuable tool in combating climate change, but ensuring projects’ additionality is of critical importance to effective carbon mitigation. Badgley’s article should serve as a call to action to redouble efforts at integrating the latest carbon science into effective and timely policy solutions.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 France, United Kingdom, Netherlands, United Kingdom, United Kingdom, United Kingdom, United Kingdom, United Kingdom, United Kingdom, France, Netherlands, Germany, United Kingdom, France, United KingdomPublisher:Wiley Funded by:EC | VERIFY, EC | T-FORCES, UKRI | BIOmes of Brasil - Resili... +1 projectsEC| VERIFY ,EC| T-FORCES ,UKRI| BIOmes of Brasil - Resilience, rEcovery, and Diversity: BIO-RED ,UKRI| Tropical Biomes in TransitionEsteban Álvarez-Dávila; Bonaventure Sonké; Luzmila Arroyo; Ted R. Feldpausch; Martin J. P. Sullivan; Martin Herold; Susan C. Cook-Patton; Bronson W. Griscom; Sarah Carter; Nancy L. Harris; Alejandro Araujo-Murakami; Timothy R. Baker; Daniela Requena Suarez; Christopher Martius; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira; Lan Qie; Frans Bongers; Veronique De Sy; Oliver L. Phillips; Beatriz Schwantes Marimon; Maria M. H. Wang; Danaë M. A. Rozendaal; Ervan Rutishauser; Emilio Vilanova; Emilio Vilanova; Lourens Poorter; Sara M. Leavitt; Anny Estelle N'Guessan; Eurídice N. Honorio Coronado; Simon L. Lewis; Simon L. Lewis; Bruno Hérault; Plinio Sist; Justin Kassi N'dja; Roel Jacobus Wilhelmus Brienen; Abel Monteagudo Mendoza;pmid: 31310673
pmc: PMC6852081
handle: 20.500.12921/439 , 10871/38215 , 10088/98326 , 10568/112347 , 10023/24450
pmid: 31310673
pmc: PMC6852081
handle: 20.500.12921/439 , 10871/38215 , 10088/98326 , 10568/112347 , 10023/24450
AbstractAs countries advance in greenhouse gas (GHG) accounting for climate change mitigation, consistent estimates of aboveground net biomass change (∆AGB) are needed. Countries with limited forest monitoring capabilities in the tropics and subtropics rely on IPCC 2006 default ∆AGB rates, which are values per ecological zone, per continent. Similarly, research into forest biomass change at a large scale also makes use of these rates. IPCC 2006 default rates come from a handful of studies, provide no uncertainty indications and do not distinguish between older secondary forests and old‐growth forests. As part of the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, we incorporate ∆AGB data available from 2006 onwards, comprising 176 chronosequences in secondary forests and 536 permanent plots in old‐growth and managed/logged forests located in 42 countries in Africa, North and South America and Asia. We generated ∆AGB rate estimates for younger secondary forests (≤20 years), older secondary forests (>20 years and up to 100 years) and old‐growth forests, and accounted for uncertainties in our estimates. In tropical rainforests, for which data availability was the highest, our ∆AGB rate estimates ranged from 3.4 (Asia) to 7.6 (Africa) Mg ha−1 year−1 in younger secondary forests, from 2.3 (North and South America) to 3.5 (Africa) Mg ha−1 year−1 in older secondary forests, and 0.7 (Asia) to 1.3 (Africa) Mg ha−1 year−1 in old‐growth forests. We provide a rigorous and traceable refinement of the IPCC 2006 default rates in tropical and subtropical ecological zones, and identify which areas require more research on ∆AGB. In this respect, this study should be considered as an important step towards quantifying the role of tropical and subtropical forests as carbon sinks with higher accuracy; our new rates can be used for large‐scale GHG accounting by governmental bodies, nongovernmental organizations and in scientific research.
LAReferencia - Red F... arrow_drop_down LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2019License: CC BYCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/112347Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2021License: CC BYFull-Text: https://hdl.handle.net/10023/24450Data sources: Bielefeld Academic Search Engine (BASE)e-space at Manchester Metropolitan UniversityArticle . 2019Data sources: e-space at Manchester Metropolitan UniversityGFZ German Research Centre for GeosciencesArticle . 2019Data sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Lincoln: Lincoln RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 93 citations 93 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2019License: CC BYCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/112347Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2021License: CC BYFull-Text: https://hdl.handle.net/10023/24450Data sources: Bielefeld Academic Search Engine (BASE)e-space at Manchester Metropolitan UniversityArticle . 2019Data sources: e-space at Manchester Metropolitan UniversityGFZ German Research Centre for GeosciencesArticle . 2019Data sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Lincoln: Lincoln RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 France, United Kingdom, Netherlands, United Kingdom, United Kingdom, United Kingdom, United Kingdom, United Kingdom, United Kingdom, France, Netherlands, Germany, United Kingdom, France, United KingdomPublisher:Wiley Funded by:EC | VERIFY, EC | T-FORCES, UKRI | BIOmes of Brasil - Resili... +1 projectsEC| VERIFY ,EC| T-FORCES ,UKRI| BIOmes of Brasil - Resilience, rEcovery, and Diversity: BIO-RED ,UKRI| Tropical Biomes in TransitionEsteban Álvarez-Dávila; Bonaventure Sonké; Luzmila Arroyo; Ted R. Feldpausch; Martin J. P. Sullivan; Martin Herold; Susan C. Cook-Patton; Bronson W. Griscom; Sarah Carter; Nancy L. Harris; Alejandro Araujo-Murakami; Timothy R. Baker; Daniela Requena Suarez; Christopher Martius; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira; Lan Qie; Frans Bongers; Veronique De Sy; Oliver L. Phillips; Beatriz Schwantes Marimon; Maria M. H. Wang; Danaë M. A. Rozendaal; Ervan Rutishauser; Emilio Vilanova; Emilio Vilanova; Lourens Poorter; Sara M. Leavitt; Anny Estelle N'Guessan; Eurídice N. Honorio Coronado; Simon L. Lewis; Simon L. Lewis; Bruno Hérault; Plinio Sist; Justin Kassi N'dja; Roel Jacobus Wilhelmus Brienen; Abel Monteagudo Mendoza;pmid: 31310673
pmc: PMC6852081
handle: 20.500.12921/439 , 10871/38215 , 10088/98326 , 10568/112347 , 10023/24450
pmid: 31310673
pmc: PMC6852081
handle: 20.500.12921/439 , 10871/38215 , 10088/98326 , 10568/112347 , 10023/24450
AbstractAs countries advance in greenhouse gas (GHG) accounting for climate change mitigation, consistent estimates of aboveground net biomass change (∆AGB) are needed. Countries with limited forest monitoring capabilities in the tropics and subtropics rely on IPCC 2006 default ∆AGB rates, which are values per ecological zone, per continent. Similarly, research into forest biomass change at a large scale also makes use of these rates. IPCC 2006 default rates come from a handful of studies, provide no uncertainty indications and do not distinguish between older secondary forests and old‐growth forests. As part of the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, we incorporate ∆AGB data available from 2006 onwards, comprising 176 chronosequences in secondary forests and 536 permanent plots in old‐growth and managed/logged forests located in 42 countries in Africa, North and South America and Asia. We generated ∆AGB rate estimates for younger secondary forests (≤20 years), older secondary forests (>20 years and up to 100 years) and old‐growth forests, and accounted for uncertainties in our estimates. In tropical rainforests, for which data availability was the highest, our ∆AGB rate estimates ranged from 3.4 (Asia) to 7.6 (Africa) Mg ha−1 year−1 in younger secondary forests, from 2.3 (North and South America) to 3.5 (Africa) Mg ha−1 year−1 in older secondary forests, and 0.7 (Asia) to 1.3 (Africa) Mg ha−1 year−1 in old‐growth forests. We provide a rigorous and traceable refinement of the IPCC 2006 default rates in tropical and subtropical ecological zones, and identify which areas require more research on ∆AGB. In this respect, this study should be considered as an important step towards quantifying the role of tropical and subtropical forests as carbon sinks with higher accuracy; our new rates can be used for large‐scale GHG accounting by governmental bodies, nongovernmental organizations and in scientific research.
LAReferencia - Red F... arrow_drop_down LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2019License: CC BYCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/112347Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2021License: CC BYFull-Text: https://hdl.handle.net/10023/24450Data sources: Bielefeld Academic Search Engine (BASE)e-space at Manchester Metropolitan UniversityArticle . 2019Data sources: e-space at Manchester Metropolitan UniversityGFZ German Research Centre for GeosciencesArticle . 2019Data sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Lincoln: Lincoln RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 93 citations 93 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2019License: CC BYCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/112347Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2021License: CC BYFull-Text: https://hdl.handle.net/10023/24450Data sources: Bielefeld Academic Search Engine (BASE)e-space at Manchester Metropolitan UniversityArticle . 2019Data sources: e-space at Manchester Metropolitan UniversityGFZ German Research Centre for GeosciencesArticle . 2019Data sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Lincoln: Lincoln RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Maria M. H. Wang; Ben Bond-Lamberty; Alan J. Tepley; Jennifer C. McGarvey; Valentine Herrmann; David LeBauer; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira;AbstractForests play an influential role in the global carbon (C) cycle, storing roughly half of terrestrial C and annually exchanging with the atmosphere more than five times the carbon dioxide (CO2) emitted by anthropogenic activities. Yet, scaling up from field‐based measurements of forest C stocks and fluxes to understand global scale C cycling and its climate sensitivity remains an important challenge. Tens of thousands of forest C measurements have been made, but these data have yet to be integrated into a single database that makes them accessible for integrated analyses. Here we present an open‐access global Forest Carbon database (ForC) containing previously published records of field‐based measurements of ecosystem‐level C stocks and annual fluxes, along with disturbance history and methodological information. ForC expands upon the previously published tropical portion of this database, TropForC (https://doi.org/10.5061/dryad.t516f), now including 17,367 records (previously 3,568) representing 2,731 plots (previously 845) in 826 geographically distinct areas. The database covers all forested biogeographic and climate zones, represents forest stands of all ages, and currently includes data collected between 1934 and 2015. We expect that ForC will prove useful for macroecological analyses of forest C cycling, for evaluation of model predictions or remote sensing products, for quantifying the contribution of forests to the global C cycle, and for supporting international efforts to inventory forest carbon and greenhouse gas exchange. A dynamic version of ForC is maintained at on GitHub (https://GitHub.com/forc-db), and we encourage the research community to collaborate in updating, correcting, expanding, and utilizing this database. ForC is an open access database, and we encourage use of the data for scientific research and education purposes. Data may not be used for commercial purposes without written permission of the database PI. Any publications using ForC data should cite this publication and Anderson‐Teixeira et al. (2016a) (see Metadata S1). No other copyright or cost restrictions are associated with the use of this data set.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Maria M. H. Wang; Ben Bond-Lamberty; Alan J. Tepley; Jennifer C. McGarvey; Valentine Herrmann; David LeBauer; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira;AbstractForests play an influential role in the global carbon (C) cycle, storing roughly half of terrestrial C and annually exchanging with the atmosphere more than five times the carbon dioxide (CO2) emitted by anthropogenic activities. Yet, scaling up from field‐based measurements of forest C stocks and fluxes to understand global scale C cycling and its climate sensitivity remains an important challenge. Tens of thousands of forest C measurements have been made, but these data have yet to be integrated into a single database that makes them accessible for integrated analyses. Here we present an open‐access global Forest Carbon database (ForC) containing previously published records of field‐based measurements of ecosystem‐level C stocks and annual fluxes, along with disturbance history and methodological information. ForC expands upon the previously published tropical portion of this database, TropForC (https://doi.org/10.5061/dryad.t516f), now including 17,367 records (previously 3,568) representing 2,731 plots (previously 845) in 826 geographically distinct areas. The database covers all forested biogeographic and climate zones, represents forest stands of all ages, and currently includes data collected between 1934 and 2015. We expect that ForC will prove useful for macroecological analyses of forest C cycling, for evaluation of model predictions or remote sensing products, for quantifying the contribution of forests to the global C cycle, and for supporting international efforts to inventory forest carbon and greenhouse gas exchange. A dynamic version of ForC is maintained at on GitHub (https://GitHub.com/forc-db), and we encourage the research community to collaborate in updating, correcting, expanding, and utilizing this database. ForC is an open access database, and we encourage use of the data for scientific research and education purposes. Data may not be used for commercial purposes without written permission of the database PI. Any publications using ForC data should cite this publication and Anderson‐Teixeira et al. (2016a) (see Metadata S1). No other copyright or cost restrictions are associated with the use of this data set.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.2229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, Singapore, United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: C...NSF| Collaborative Research: Climate Change Impacts on Forest Biodiversity: Individual Risk to Subcontinental ImpactsDaniel J. Johnson; Jessica Needham; Chonggang Xu; Elias C. Massoud; Stuart J. Davies; Kristina J. Anderson-Teixeira; Sarayudh Bunyavejchewin; Jeffery Q. Chambers; Chia-Hao Chang-Yang; Jyh-Min Chiang; George B. Chuyong; Richard Condit; Susan Cordell; Christine Fletcher; Christian P. Giardina; Thomas W. Giambelluca; Nimal Gunatilleke; Savitri Gunatilleke; Chang-Fu Hsieh; Stephen Hubbell; Faith Inman-Narahari; Abdul Rahman Kassim; Masatoshi Katabuchi; David Kenfack; Creighton M. Litton; Shawn Lum; Mohizah Mohamad; Musalmah Nasardin; Perry S. Ong; Rebecca Ostertag; Lawren Sack; Nathan G. Swenson; I Fang Sun; Sylvester Tan; Duncan W. Thomas; Jill Thompson; Maria Natalia Umaña; Maria Uriarte; Renato Valencia; Sandra Yap; Jess Zimmerman; Nate G. McDowell; Sean M. McMahon;Survival rates of large trees determine forest biomass dynamics. Survival rates of small trees have been linked to mechanisms that maintain biodiversity across tropical forests. How species survival rates change with size offers insight into the links between biodiversity and ecosystem function across tropical forests. We tested patterns of size-dependent tree survival across the tropics using data from 1,781 species and over 2 million individuals to assess whether tropical forests can be characterized by size-dependent life-history survival strategies. We found that species were classifiable into four 'survival modes' that explain life-history variation that shapes carbon cycling and the relative abundance within forests. Frequently collected functional traits, such as wood density, leaf mass per area and seed mass, were not generally predictive of the survival modes of species. Mean annual temperature and cumulative water deficit predicted the proportion of biomass of survival modes, indicating important links between evolutionary strategies, climate and carbon cycling. The application of survival modes in demographic simulations predicted biomass change across forest sites. Our results reveal globally identifiable size-dependent survival strategies that differ across diverse systems in a consistent way. The abundance of survival modes and interaction with climate ultimately determine forest structure, carbon storage in biomass and future forest trajectories.
NERC Open Research A... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/8sv5v438Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0626-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/8sv5v438Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0626-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, Singapore, United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: C...NSF| Collaborative Research: Climate Change Impacts on Forest Biodiversity: Individual Risk to Subcontinental ImpactsDaniel J. Johnson; Jessica Needham; Chonggang Xu; Elias C. Massoud; Stuart J. Davies; Kristina J. Anderson-Teixeira; Sarayudh Bunyavejchewin; Jeffery Q. Chambers; Chia-Hao Chang-Yang; Jyh-Min Chiang; George B. Chuyong; Richard Condit; Susan Cordell; Christine Fletcher; Christian P. Giardina; Thomas W. Giambelluca; Nimal Gunatilleke; Savitri Gunatilleke; Chang-Fu Hsieh; Stephen Hubbell; Faith Inman-Narahari; Abdul Rahman Kassim; Masatoshi Katabuchi; David Kenfack; Creighton M. Litton; Shawn Lum; Mohizah Mohamad; Musalmah Nasardin; Perry S. Ong; Rebecca Ostertag; Lawren Sack; Nathan G. Swenson; I Fang Sun; Sylvester Tan; Duncan W. Thomas; Jill Thompson; Maria Natalia Umaña; Maria Uriarte; Renato Valencia; Sandra Yap; Jess Zimmerman; Nate G. McDowell; Sean M. McMahon;Survival rates of large trees determine forest biomass dynamics. Survival rates of small trees have been linked to mechanisms that maintain biodiversity across tropical forests. How species survival rates change with size offers insight into the links between biodiversity and ecosystem function across tropical forests. We tested patterns of size-dependent tree survival across the tropics using data from 1,781 species and over 2 million individuals to assess whether tropical forests can be characterized by size-dependent life-history survival strategies. We found that species were classifiable into four 'survival modes' that explain life-history variation that shapes carbon cycling and the relative abundance within forests. Frequently collected functional traits, such as wood density, leaf mass per area and seed mass, were not generally predictive of the survival modes of species. Mean annual temperature and cumulative water deficit predicted the proportion of biomass of survival modes, indicating important links between evolutionary strategies, climate and carbon cycling. The application of survival modes in demographic simulations predicted biomass change across forest sites. Our results reveal globally identifiable size-dependent survival strategies that differ across diverse systems in a consistent way. The abundance of survival modes and interaction with climate ultimately determine forest structure, carbon storage in biomass and future forest trajectories.
NERC Open Research A... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/8sv5v438Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0626-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/8sv5v438Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2018 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of CaliforniaDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-018-0626-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006Publisher:Wiley James F. Gillooly; James F. Gillooly; Kristina J. Anderson; James H. Brown; James H. Brown; Andrew P. Allen; Andrew P. Allen;pmid: 16706912
AbstractRates of ecosystem recovery following disturbance affect many ecological processes, including carbon cycling in the biosphere. Here, we present a model that predicts the temperature dependence of the biomass accumulation rate following disturbances in forests. Model predictions are derived based on allometric and biochemical principles that govern plant energetics and are tested using a global database of 91 studies of secondary succession compiled from the literature. The rate of biomass accumulation during secondary succession increases with average growing season temperature as predicted based on the biochemical kinetics of photosynthesis in chloroplasts. In addition, the rate of biomass accumulation is greater in angiosperm‐dominated communities than in gymnosperm‐dominated ones and greater in plantations than in naturally regenerating stands. By linking the temperature‐dependence of photosynthesis to the rate of whole‐ecosystem biomass accumulation during secondary succession, our model and results provide one example of how emergent, ecosystem‐level rate processes can be predicted based on the kinetics of individual metabolic rate.
Ecology Letters arrow_drop_down Ecology LettersArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2006.00914.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu86 citations 86 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecology Letters arrow_drop_down Ecology LettersArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2006.00914.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006Publisher:Wiley James F. Gillooly; James F. Gillooly; Kristina J. Anderson; James H. Brown; James H. Brown; Andrew P. Allen; Andrew P. Allen;pmid: 16706912
AbstractRates of ecosystem recovery following disturbance affect many ecological processes, including carbon cycling in the biosphere. Here, we present a model that predicts the temperature dependence of the biomass accumulation rate following disturbances in forests. Model predictions are derived based on allometric and biochemical principles that govern plant energetics and are tested using a global database of 91 studies of secondary succession compiled from the literature. The rate of biomass accumulation during secondary succession increases with average growing season temperature as predicted based on the biochemical kinetics of photosynthesis in chloroplasts. In addition, the rate of biomass accumulation is greater in angiosperm‐dominated communities than in gymnosperm‐dominated ones and greater in plantations than in naturally regenerating stands. By linking the temperature‐dependence of photosynthesis to the rate of whole‐ecosystem biomass accumulation during secondary succession, our model and results provide one example of how emergent, ecosystem‐level rate processes can be predicted based on the kinetics of individual metabolic rate.
Ecology Letters arrow_drop_down Ecology LettersArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2006.00914.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu86 citations 86 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecology Letters arrow_drop_down Ecology LettersArticle . 2006 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1461-0248.2006.00914.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United Kingdom, United Kingdom, United Kingdom, United Kingdom, Russian Federation, France, United Kingdom, United Kingdom, Germany, Netherlands, France, Italy, Netherlands, Italy, France, Italy, United Kingdom, United Kingdom, United KingdomPublisher:IOP Publishing Funded by:EC | PANTROP, EC | VERIFY, EC | T-FORCES +3 projectsEC| PANTROP ,EC| VERIFY ,EC| T-FORCES ,UKRI| Tropical Biomes in Transition ,UKRI| A Socio-Ecological Observatory for the Southern African Woodlands ,UKRI| SECO: Resolving the current and future carbon dynamics of the dry tropicsAuthors: Danaë M. A. Rozendaal; Daniela Requena Suárez; Véronique De Sy; Valerio Avitabile; +53 AuthorsDanaë M. A. Rozendaal; Daniela Requena Suárez; Véronique De Sy; Valerio Avitabile; Sarah Carter; Constant Yves Adou Yao; Esteban Álvarez-Dávila; Kristina J. Anderson‐Teixeira; Alejandro Araujo‐Murakami; Luzmila Arroyo; Benjamin Barca; Timothy R. Baker; Luca Birigazzi; Frans Bongers; Anne Branthomme; Roel Brienen; João M. B. Carreiras; Roberto Cazzolla Gatti; Susan C. Cook‐Patton; Mathieu Decuyper; Ben DeVries; Andrés Espejo; Ted R. Feldpausch; J Fox; Javier G. P. Gamarra; Bronson W. Griscom; Nancy L. Harris; Bruno Hérault; Eurídice N. Honorio Coronado; Inge Jonckheere; Eric Konan; Sara M. Leavitt; Simon L. Lewis; Jeremy Lindsell; Justin Kassi N'dja; Anny Estelle N'Guessan; Beatriz Schwantes Marimon; Edward T. A. Mitchard; A. Monteagudo; Alexandra Morel; Anssi Pekkarinen; Oliver L. Phillips; Lourens Poorter; Lan Qie; Ervan Rutishauser; Casey M. Ryan; Maurizio Santoro; Dos Santos Silayo; Plínio Sist; J. W. Ferry Slik; Bonaventure Sonké; Martin J. P. Sullivan; Gaia Vaglio Laurin; Emilio Vilanova; Maria M. H. Wang; Eliakimu Zahabu; Martin Herold;Abstract For monitoring and reporting forest carbon stocks and fluxes, many countries in the tropics and subtropics rely on default values of forest aboveground biomass (AGB) from the Intergovernmental Panel on Climate Change (IPCC) guidelines for National Greenhouse Gas (GHG) Inventories. Default IPCC forest AGB values originated from 2006, and are relatively crude estimates of average values per continent and ecological zone. The 2006 default values were based on limited plot data available at the time, methods for their derivation were not fully clear, and no distinction between successional stages was made. As part of the 2019 Refinement to the 2006 IPCC Guidelines for GHG Inventories, we updated the default AGB values for tropical and subtropical forests based on AGB data from >25 000 plots in natural forests and a global AGB map where no plot data were available. We calculated refined AGB default values per continent, ecological zone, and successional stage, and provided a measure of uncertainty. AGB in tropical and subtropical forests varies by an order of magnitude across continents, ecological zones, and successional stage. Our refined default values generally reflect the climatic gradients in the tropics, with more AGB in wetter areas. AGB is generally higher in old-growth than in secondary forests, and higher in older secondary (regrowth >20 years old and degraded/logged forests) than in young secondary forests (⩽20 years old). While refined default values for tropical old-growth forest are largely similar to the previous 2006 default values, the new default values are 4.0–7.7-fold lower for young secondary forests. Thus, the refined values will strongly alter estimated carbon stocks and fluxes, and emphasize the critical importance of old-growth forest conservation. We provide a reproducible approach to facilitate future refinements and encourage targeted efforts to establish permanent plots in areas with data gaps.
CORE arrow_drop_down COREArticle . 2022License: CC BYFull-Text: https://eprints.whiterose.ac.uk/182599/1/Rozendaal_2022_Environ._Res._Lett._17_014047.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2022License: CC BYFull-Text: https://eprints.whiterose.ac.uk/182599/1/Rozendaal_2022_Environ._Res._Lett._17_014047.pdfData sources: CORE (RIOXX-UK Aggregator)University of St Andrews: Digital Research RepositoryArticle . 2022License: CC BYFull-Text: https://hdl.handle.net/10023/24951Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10871/128940Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/117672Data sources: Bielefeld Academic Search Engine (BASE)Digital library (repository) of Tomsk State UniversityArticle . 2022Data sources: Digital library (repository) of Tomsk State Universitye-space at Manchester Metropolitan UniversityArticle . 2022Data sources: e-space at Manchester Metropolitan UniversityGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsSt Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research RepositoryEnvironmental Research LettersArticle . 2022 . Peer-reviewedData sources: European Union Open Data PortalUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac45b3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2022License: CC BYFull-Text: https://eprints.whiterose.ac.uk/182599/1/Rozendaal_2022_Environ._Res._Lett._17_014047.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2022License: CC BYFull-Text: https://eprints.whiterose.ac.uk/182599/1/Rozendaal_2022_Environ._Res._Lett._17_014047.pdfData sources: CORE (RIOXX-UK Aggregator)University of St Andrews: Digital Research RepositoryArticle . 2022License: CC BYFull-Text: https://hdl.handle.net/10023/24951Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10871/128940Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/117672Data sources: Bielefeld Academic Search Engine (BASE)Digital library (repository) of Tomsk State UniversityArticle . 2022Data sources: Digital library (repository) of Tomsk State Universitye-space at Manchester Metropolitan UniversityArticle . 2022Data sources: e-space at Manchester Metropolitan UniversityGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsSt Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research RepositoryEnvironmental Research LettersArticle . 2022 . Peer-reviewedData sources: European Union Open Data PortalUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac45b3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United Kingdom, United Kingdom, United Kingdom, United Kingdom, Russian Federation, France, United Kingdom, United Kingdom, Germany, Netherlands, France, Italy, Netherlands, Italy, France, Italy, United Kingdom, United Kingdom, United KingdomPublisher:IOP Publishing Funded by:EC | PANTROP, EC | VERIFY, EC | T-FORCES +3 projectsEC| PANTROP ,EC| VERIFY ,EC| T-FORCES ,UKRI| Tropical Biomes in Transition ,UKRI| A Socio-Ecological Observatory for the Southern African Woodlands ,UKRI| SECO: Resolving the current and future carbon dynamics of the dry tropicsAuthors: Danaë M. A. Rozendaal; Daniela Requena Suárez; Véronique De Sy; Valerio Avitabile; +53 AuthorsDanaë M. A. Rozendaal; Daniela Requena Suárez; Véronique De Sy; Valerio Avitabile; Sarah Carter; Constant Yves Adou Yao; Esteban Álvarez-Dávila; Kristina J. Anderson‐Teixeira; Alejandro Araujo‐Murakami; Luzmila Arroyo; Benjamin Barca; Timothy R. Baker; Luca Birigazzi; Frans Bongers; Anne Branthomme; Roel Brienen; João M. B. Carreiras; Roberto Cazzolla Gatti; Susan C. Cook‐Patton; Mathieu Decuyper; Ben DeVries; Andrés Espejo; Ted R. Feldpausch; J Fox; Javier G. P. Gamarra; Bronson W. Griscom; Nancy L. Harris; Bruno Hérault; Eurídice N. Honorio Coronado; Inge Jonckheere; Eric Konan; Sara M. Leavitt; Simon L. Lewis; Jeremy Lindsell; Justin Kassi N'dja; Anny Estelle N'Guessan; Beatriz Schwantes Marimon; Edward T. A. Mitchard; A. Monteagudo; Alexandra Morel; Anssi Pekkarinen; Oliver L. Phillips; Lourens Poorter; Lan Qie; Ervan Rutishauser; Casey M. Ryan; Maurizio Santoro; Dos Santos Silayo; Plínio Sist; J. W. Ferry Slik; Bonaventure Sonké; Martin J. P. Sullivan; Gaia Vaglio Laurin; Emilio Vilanova; Maria M. H. Wang; Eliakimu Zahabu; Martin Herold;Abstract For monitoring and reporting forest carbon stocks and fluxes, many countries in the tropics and subtropics rely on default values of forest aboveground biomass (AGB) from the Intergovernmental Panel on Climate Change (IPCC) guidelines for National Greenhouse Gas (GHG) Inventories. Default IPCC forest AGB values originated from 2006, and are relatively crude estimates of average values per continent and ecological zone. The 2006 default values were based on limited plot data available at the time, methods for their derivation were not fully clear, and no distinction between successional stages was made. As part of the 2019 Refinement to the 2006 IPCC Guidelines for GHG Inventories, we updated the default AGB values for tropical and subtropical forests based on AGB data from >25 000 plots in natural forests and a global AGB map where no plot data were available. We calculated refined AGB default values per continent, ecological zone, and successional stage, and provided a measure of uncertainty. AGB in tropical and subtropical forests varies by an order of magnitude across continents, ecological zones, and successional stage. Our refined default values generally reflect the climatic gradients in the tropics, with more AGB in wetter areas. AGB is generally higher in old-growth than in secondary forests, and higher in older secondary (regrowth >20 years old and degraded/logged forests) than in young secondary forests (⩽20 years old). While refined default values for tropical old-growth forest are largely similar to the previous 2006 default values, the new default values are 4.0–7.7-fold lower for young secondary forests. Thus, the refined values will strongly alter estimated carbon stocks and fluxes, and emphasize the critical importance of old-growth forest conservation. We provide a reproducible approach to facilitate future refinements and encourage targeted efforts to establish permanent plots in areas with data gaps.
CORE arrow_drop_down COREArticle . 2022License: CC BYFull-Text: https://eprints.whiterose.ac.uk/182599/1/Rozendaal_2022_Environ._Res._Lett._17_014047.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2022License: CC BYFull-Text: https://eprints.whiterose.ac.uk/182599/1/Rozendaal_2022_Environ._Res._Lett._17_014047.pdfData sources: CORE (RIOXX-UK Aggregator)University of St Andrews: Digital Research RepositoryArticle . 2022License: CC BYFull-Text: https://hdl.handle.net/10023/24951Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10871/128940Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/117672Data sources: Bielefeld Academic Search Engine (BASE)Digital library (repository) of Tomsk State UniversityArticle . 2022Data sources: Digital library (repository) of Tomsk State Universitye-space at Manchester Metropolitan UniversityArticle . 2022Data sources: e-space at Manchester Metropolitan UniversityGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsSt Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research RepositoryEnvironmental Research LettersArticle . 2022 . Peer-reviewedData sources: European Union Open Data PortalUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac45b3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2022License: CC BYFull-Text: https://eprints.whiterose.ac.uk/182599/1/Rozendaal_2022_Environ._Res._Lett._17_014047.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2022License: CC BYFull-Text: https://eprints.whiterose.ac.uk/182599/1/Rozendaal_2022_Environ._Res._Lett._17_014047.pdfData sources: CORE (RIOXX-UK Aggregator)University of St Andrews: Digital Research RepositoryArticle . 2022License: CC BYFull-Text: https://hdl.handle.net/10023/24951Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10871/128940Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/117672Data sources: Bielefeld Academic Search Engine (BASE)Digital library (repository) of Tomsk State UniversityArticle . 2022Data sources: Digital library (repository) of Tomsk State Universitye-space at Manchester Metropolitan UniversityArticle . 2022Data sources: e-space at Manchester Metropolitan UniversityGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsSt Andrews Research RepositoryArticle . 2022 . Peer-reviewedData sources: St Andrews Research RepositoryEnvironmental Research LettersArticle . 2022 . Peer-reviewedData sources: European Union Open Data PortalUniversità degli studi della Tuscia: Unitus DSpaceArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac45b3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Australia, United States, Netherlands, United States, FrancePublisher:Wiley Funded by:NSF | Collaborative Research: U...NSF| Collaborative Research: Understanding the potential for a climate change-driven critical transition from forest to chaparralCraig D. Allen; James A. Lutz; Neil Pederson; M. Ross Alexander; Cameron Dow; Cameron Dow; Mart Vlam; Valentine Herrmann; Christine R. Rollinson; Ellis Q. Margolis; Sarayudh Bunyavejchewin; Sean M. McMahon; Sean M. McMahon; Ryan Helcoski; Anastasia E. Sniderhan; Jakub Kašpar; Sabrina E. Russo; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira; Joseph D. Birch; Jennifer L. Baltzer; Stuart J. Davies; Camille Piponiot; Camille Piponiot; Raquel Alfaro-Sánchez; Pieter A. Zuidema; Alan J. Tepley; Alan J. Tepley; Pavel Šamonil; Erika Gonzalez-Akre; Paolo Cherubini; Paolo Cherubini; Ivana Vašíčková; Justin T. Maxwell; Bianca Gonzalez; Patrick J. Baker; Tala Awada;AbstractTree rings provide an invaluable long‐term record for understanding how climate and other drivers shape tree growth and forest productivity. However, conventional tree‐ring analysis methods were not designed to simultaneously test effects of climate, tree size, and other drivers on individual growth. This has limited the potential to test ecologically relevant hypotheses on tree growth sensitivity to environmental drivers and their interactions with tree size. Here, we develop and apply a new method to simultaneously model nonlinear effects of primary climate drivers, reconstructed tree diameter at breast height (DBH), and calendar year in generalized least squares models that account for the temporal autocorrelation inherent to each individual tree's growth. We analyze data from 3811 trees representing 40 species at 10 globally distributed sites, showing that precipitation, temperature, DBH, and calendar year have additively, and often interactively, influenced annual growth over the past 120 years. Growth responses were predominantly positive to precipitation (usually over ≥3‐month seasonal windows) and negative to temperature (usually maximum temperature, over ≤3‐month seasonal windows), with concave‐down responses in 63% of relationships. Climate sensitivity commonly varied with DBH (45% of cases tested), with larger trees usually more sensitive. Trends in ring width at small DBH were linked to the light environment under which trees established, but basal area or biomass increments consistently reached maxima at intermediate DBH. Accounting for climate and DBH, growth rate declined over time for 92% of species in secondary or disturbed stands, whereas growth trends were mixed in older forests. These trends were largely attributable to stand dynamics as cohorts and stands age, which remain challenging to disentangle from global change drivers. By providing a parsimonious approach for characterizing multiple interacting drivers of tree growth, our method reveals a more complete picture of the factors influencing growth than has previously been possible.
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/315826Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15934&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 79 citations 79 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/315826Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15934&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Australia, United States, Netherlands, United States, FrancePublisher:Wiley Funded by:NSF | Collaborative Research: U...NSF| Collaborative Research: Understanding the potential for a climate change-driven critical transition from forest to chaparralCraig D. Allen; James A. Lutz; Neil Pederson; M. Ross Alexander; Cameron Dow; Cameron Dow; Mart Vlam; Valentine Herrmann; Christine R. Rollinson; Ellis Q. Margolis; Sarayudh Bunyavejchewin; Sean M. McMahon; Sean M. McMahon; Ryan Helcoski; Anastasia E. Sniderhan; Jakub Kašpar; Sabrina E. Russo; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira; Joseph D. Birch; Jennifer L. Baltzer; Stuart J. Davies; Camille Piponiot; Camille Piponiot; Raquel Alfaro-Sánchez; Pieter A. Zuidema; Alan J. Tepley; Alan J. Tepley; Pavel Šamonil; Erika Gonzalez-Akre; Paolo Cherubini; Paolo Cherubini; Ivana Vašíčková; Justin T. Maxwell; Bianca Gonzalez; Patrick J. Baker; Tala Awada;AbstractTree rings provide an invaluable long‐term record for understanding how climate and other drivers shape tree growth and forest productivity. However, conventional tree‐ring analysis methods were not designed to simultaneously test effects of climate, tree size, and other drivers on individual growth. This has limited the potential to test ecologically relevant hypotheses on tree growth sensitivity to environmental drivers and their interactions with tree size. Here, we develop and apply a new method to simultaneously model nonlinear effects of primary climate drivers, reconstructed tree diameter at breast height (DBH), and calendar year in generalized least squares models that account for the temporal autocorrelation inherent to each individual tree's growth. We analyze data from 3811 trees representing 40 species at 10 globally distributed sites, showing that precipitation, temperature, DBH, and calendar year have additively, and often interactively, influenced annual growth over the past 120 years. Growth responses were predominantly positive to precipitation (usually over ≥3‐month seasonal windows) and negative to temperature (usually maximum temperature, over ≤3‐month seasonal windows), with concave‐down responses in 63% of relationships. Climate sensitivity commonly varied with DBH (45% of cases tested), with larger trees usually more sensitive. Trends in ring width at small DBH were linked to the light environment under which trees established, but basal area or biomass increments consistently reached maxima at intermediate DBH. Accounting for climate and DBH, growth rate declined over time for 92% of species in secondary or disturbed stands, whereas growth trends were mixed in older forests. These trends were largely attributable to stand dynamics as cohorts and stands age, which remain challenging to disentangle from global change drivers. By providing a parsimonious approach for characterizing multiple interacting drivers of tree growth, our method reveals a more complete picture of the factors influencing growth than has previously been possible.
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/315826Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15934&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 79 citations 79 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/315826Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15934&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Wiley Justin M. Mathias; Kenneth R. Smith; Kristin E. Lantz; Keanan T Allen; Marvin J. Wright; Afsoon Sabet; Kristina J. Anderson‐Teixeira; Randall S. Thomas;pmid: 36897273
AbstractTrees continuously regulate leaf physiology to acquire CO2 while simultaneously avoiding excessive water loss. The balance between these two processes, or water use efficiency (WUE), is fundamentally important to understanding changes in carbon uptake and transpiration from the leaf to the globe under environmental change. While increasing atmospheric CO2 (iCO2) is known to increase tree intrinsic water use efficiency (iWUE), less clear are the additional impacts of climate and acidic air pollution and how they vary by tree species. Here, we couple annually resolved long‐term records of tree‐ring carbon isotope signatures with leaf physiological measurements of Quercus rubra (Quru) and Liriodendron tulipifera (Litu) at four study locations spanning nearly 100 km in the eastern United States to reconstruct historical iWUE, net photosynthesis (Anet), and stomatal conductance to water (gs) since 1940. We first show 16%–25% increases in tree iWUE since the mid‐20th century, primarily driven by iCO2, but also document the individual and interactive effects of nitrogen (NOx) and sulfur (SO2) air pollution overwhelming climate. We find evidence for Quru leaf gas exchange being less tightly regulated than Litu through an analysis of isotope‐derived leaf internal CO2 (Ci), particularly in wetter, recent years. Modeled estimates of seasonally integrated Anet and gs revealed a 43%–50% stimulation of Anet was responsible for increasing iWUE in both tree species throughout 79%–86% of the chronologies with reductions in gs attributable to the remaining 14%–21%, building upon a growing body of literature documenting stimulated Anet overwhelming reductions in gs as a primary mechanism of increasing iWUE of trees. Finally, our results underscore the importance of considering air pollution, which remains a major environmental issue in many areas of the world, alongside climate in the interpretation of leaf physiology derived from tree rings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16673&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16673&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Wiley Justin M. Mathias; Kenneth R. Smith; Kristin E. Lantz; Keanan T Allen; Marvin J. Wright; Afsoon Sabet; Kristina J. Anderson‐Teixeira; Randall S. Thomas;pmid: 36897273
AbstractTrees continuously regulate leaf physiology to acquire CO2 while simultaneously avoiding excessive water loss. The balance between these two processes, or water use efficiency (WUE), is fundamentally important to understanding changes in carbon uptake and transpiration from the leaf to the globe under environmental change. While increasing atmospheric CO2 (iCO2) is known to increase tree intrinsic water use efficiency (iWUE), less clear are the additional impacts of climate and acidic air pollution and how they vary by tree species. Here, we couple annually resolved long‐term records of tree‐ring carbon isotope signatures with leaf physiological measurements of Quercus rubra (Quru) and Liriodendron tulipifera (Litu) at four study locations spanning nearly 100 km in the eastern United States to reconstruct historical iWUE, net photosynthesis (Anet), and stomatal conductance to water (gs) since 1940. We first show 16%–25% increases in tree iWUE since the mid‐20th century, primarily driven by iCO2, but also document the individual and interactive effects of nitrogen (NOx) and sulfur (SO2) air pollution overwhelming climate. We find evidence for Quru leaf gas exchange being less tightly regulated than Litu through an analysis of isotope‐derived leaf internal CO2 (Ci), particularly in wetter, recent years. Modeled estimates of seasonally integrated Anet and gs revealed a 43%–50% stimulation of Anet was responsible for increasing iWUE in both tree species throughout 79%–86% of the chronologies with reductions in gs attributable to the remaining 14%–21%, building upon a growing body of literature documenting stimulated Anet overwhelming reductions in gs as a primary mechanism of increasing iWUE of trees. Finally, our results underscore the importance of considering air pollution, which remains a major environmental issue in many areas of the world, alongside climate in the interpretation of leaf physiology derived from tree rings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16673&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16673&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United StatesPublisher:Wiley Funded by:NSF | Collaborative Research: T..., NSF | COLLABORATIVE RESEARCH: T...NSF| Collaborative Research: The other side of tropical forest drought: Do shallow water table regions of Amazonia act as large-scale hydrologic refugia from drought? ,NSF| COLLABORATIVE RESEARCH: THE CRITICAL IMPORTANCE OF DIVERSE LEAF "HAIRSTYLES": INTEGRATIVE QUANTIFICATION OF ANATOMY, FUNCTION, EVOLUTION AND ECOLOGY OF TRICHOMESNidhi Vinod; Martijn Slot; Ian R. McGregor; Elsa M. Ordway; Marielle N. Smith; Tyeen C. Taylor; Lawren Sack; Thomas N. Buckley; Kristina J. Anderson‐Teixeira;SummaryRising temperatures are influencing forests on many scales, with potentially strong variation vertically across forest strata. Using published research and new analyses, we evaluate how microclimate and leaf temperatures, traits, and gas exchange vary vertically in forests, shaping tree, and ecosystem ecology. In closed‐canopy forests, upper canopy leaves are exposed to the highest solar radiation and evaporative demand, which can elevate leaf temperature (Tleaf), particularly when transpirational cooling is curtailed by limited stomatal conductance. However, foliar traits also vary across height or light gradients, partially mitigating and protecting against the elevation of upper canopyTleaf. Leaf metabolism generally increases with height across the vertical gradient, yet differences in thermal sensitivity across the gradient appear modest. Scaling from leaves to trees, canopy trees have higher absolute metabolic capacity and growth, yet are more vulnerable to drought and damagingTleafthan their smaller counterparts, particularly under climate change. By contrast, understory trees experience fewer extreme highTleaf's but have fewer cooling mechanisms and thus may be strongly impacted by warming under some conditions, particularly when exposed to a harsher microenvironment through canopy disturbance. As the climate changes, integrating the patterns and mechanisms reviewed here into models will be critical to forecasting forest–climate feedback.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/7mw6g0t9Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaNew PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Michigan: Deep BlueArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 50 citations 50 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/7mw6g0t9Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaNew PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Michigan: Deep BlueArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United StatesPublisher:Wiley Funded by:NSF | Collaborative Research: T..., NSF | COLLABORATIVE RESEARCH: T...NSF| Collaborative Research: The other side of tropical forest drought: Do shallow water table regions of Amazonia act as large-scale hydrologic refugia from drought? ,NSF| COLLABORATIVE RESEARCH: THE CRITICAL IMPORTANCE OF DIVERSE LEAF "HAIRSTYLES": INTEGRATIVE QUANTIFICATION OF ANATOMY, FUNCTION, EVOLUTION AND ECOLOGY OF TRICHOMESNidhi Vinod; Martijn Slot; Ian R. McGregor; Elsa M. Ordway; Marielle N. Smith; Tyeen C. Taylor; Lawren Sack; Thomas N. Buckley; Kristina J. Anderson‐Teixeira;SummaryRising temperatures are influencing forests on many scales, with potentially strong variation vertically across forest strata. Using published research and new analyses, we evaluate how microclimate and leaf temperatures, traits, and gas exchange vary vertically in forests, shaping tree, and ecosystem ecology. In closed‐canopy forests, upper canopy leaves are exposed to the highest solar radiation and evaporative demand, which can elevate leaf temperature (Tleaf), particularly when transpirational cooling is curtailed by limited stomatal conductance. However, foliar traits also vary across height or light gradients, partially mitigating and protecting against the elevation of upper canopyTleaf. Leaf metabolism generally increases with height across the vertical gradient, yet differences in thermal sensitivity across the gradient appear modest. Scaling from leaves to trees, canopy trees have higher absolute metabolic capacity and growth, yet are more vulnerable to drought and damagingTleafthan their smaller counterparts, particularly under climate change. By contrast, understory trees experience fewer extreme highTleaf's but have fewer cooling mechanisms and thus may be strongly impacted by warming under some conditions, particularly when exposed to a harsher microenvironment through canopy disturbance. As the climate changes, integrating the patterns and mechanisms reviewed here into models will be critical to forecasting forest–climate feedback.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/7mw6g0t9Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaNew PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Michigan: Deep BlueArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 50 citations 50 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/7mw6g0t9Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaNew PhytologistArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Michigan: Deep BlueArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.18539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:IOP Publishing Ben Bond-Lamberty; Susan C. Cook-Patton; Maria M. H. Wang; Maria M. H. Wang; Helene C. Muller-Landau; Abigail E. Ferson; Abigail E. Ferson; Rebecca Banbury Morgan; Rebecca Banbury Morgan; Valentine Herrmann; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira;Abstract Forests are major components of the global carbon (C) cycle and thereby strongly influence atmospheric carbon dioxide (CO2) and climate. However, efforts to incorporate forests into climate models and CO2 accounting frameworks have been constrained by a lack of accessible, global-scale synthesis on how C cycling varies across forest types and stand ages. Here, we draw from the Global Forest Carbon Database, ForC, to provide a macroscopic overview of C cycling in the world’s forests, giving special attention to stand age-related variation. Specifically, we use 11 923 ForC records for 34 C cycle variables from 865 geographic locations to characterize ensemble C budgets for four broad forest types—tropical broadleaf evergreen, temperate broadleaf, temperate conifer, and boreal. We calculate means and standard deviations for both mature and regrowth (age < 100 years) forests and quantify trends with stand age in regrowth forests for all variables with sufficient data. C cycling rates generally decreased from tropical to temperate to boreal in both mature and regrowth forests, whereas C stocks showed less directional variation. Mature forest net ecosystem production did not differ significantly among biomes. The majority of flux variables, together with most live biomass pools, increased significantly with the logarithm of stand age. As climate change accelerates, understanding and managing the carbon dynamics of forests is critical to forecasting, mitigation, and adaptation. This comprehensive and synthetic global overview of C stocks and fluxes across biomes and stand ages contributes to these efforts.
CORE arrow_drop_down COREArticle . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/183959/1/Anderson-Teixeira_2021_Environ._Res._Lett._16_053009.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/183959/1/Anderson-Teixeira_2021_Environ._Res._Lett._16_053009.pdfData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abed01&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/183959/1/Anderson-Teixeira_2021_Environ._Res._Lett._16_053009.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/183959/1/Anderson-Teixeira_2021_Environ._Res._Lett._16_053009.pdfData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abed01&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:IOP Publishing Ben Bond-Lamberty; Susan C. Cook-Patton; Maria M. H. Wang; Maria M. H. Wang; Helene C. Muller-Landau; Abigail E. Ferson; Abigail E. Ferson; Rebecca Banbury Morgan; Rebecca Banbury Morgan; Valentine Herrmann; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira;Abstract Forests are major components of the global carbon (C) cycle and thereby strongly influence atmospheric carbon dioxide (CO2) and climate. However, efforts to incorporate forests into climate models and CO2 accounting frameworks have been constrained by a lack of accessible, global-scale synthesis on how C cycling varies across forest types and stand ages. Here, we draw from the Global Forest Carbon Database, ForC, to provide a macroscopic overview of C cycling in the world’s forests, giving special attention to stand age-related variation. Specifically, we use 11 923 ForC records for 34 C cycle variables from 865 geographic locations to characterize ensemble C budgets for four broad forest types—tropical broadleaf evergreen, temperate broadleaf, temperate conifer, and boreal. We calculate means and standard deviations for both mature and regrowth (age < 100 years) forests and quantify trends with stand age in regrowth forests for all variables with sufficient data. C cycling rates generally decreased from tropical to temperate to boreal in both mature and regrowth forests, whereas C stocks showed less directional variation. Mature forest net ecosystem production did not differ significantly among biomes. The majority of flux variables, together with most live biomass pools, increased significantly with the logarithm of stand age. As climate change accelerates, understanding and managing the carbon dynamics of forests is critical to forecasting, mitigation, and adaptation. This comprehensive and synthetic global overview of C stocks and fluxes across biomes and stand ages contributes to these efforts.
CORE arrow_drop_down COREArticle . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/183959/1/Anderson-Teixeira_2021_Environ._Res._Lett._16_053009.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/183959/1/Anderson-Teixeira_2021_Environ._Res._Lett._16_053009.pdfData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abed01&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/183959/1/Anderson-Teixeira_2021_Environ._Res._Lett._16_053009.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/183959/1/Anderson-Teixeira_2021_Environ._Res._Lett._16_053009.pdfData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abed01&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Authors: Ethan P. Belair; Ethan P. Belair; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira;doi: 10.1111/gcb.16008
pmid: 34846762
AbstractCalifornia's Cap‐and‐Trade Program sets a limit on the major sources of greenhouse gas emissions and allows a portion of excess emissions to be offset through purchase of credits for climate benefits accrued elsewhere. Badgley et al. (2021, Global Change Biology, https://doi.org/10.1111/gcb.15943) describe how the use of mean forest carbon stocks from ecological supersections can create perverse incentives for project developers, potentially leading to over‐crediting and nonadditional offsets. Carbon markets remain a valuable tool in combating climate change, but ensuring projects’ additionality is of critical importance to effective carbon mitigation. Badgley’s article should serve as a call to action to redouble efforts at integrating the latest carbon science into effective and timely policy solutions.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Authors: Ethan P. Belair; Ethan P. Belair; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira;doi: 10.1111/gcb.16008
pmid: 34846762
AbstractCalifornia's Cap‐and‐Trade Program sets a limit on the major sources of greenhouse gas emissions and allows a portion of excess emissions to be offset through purchase of credits for climate benefits accrued elsewhere. Badgley et al. (2021, Global Change Biology, https://doi.org/10.1111/gcb.15943) describe how the use of mean forest carbon stocks from ecological supersections can create perverse incentives for project developers, potentially leading to over‐crediting and nonadditional offsets. Carbon markets remain a valuable tool in combating climate change, but ensuring projects’ additionality is of critical importance to effective carbon mitigation. Badgley’s article should serve as a call to action to redouble efforts at integrating the latest carbon science into effective and timely policy solutions.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 France, United Kingdom, Netherlands, United Kingdom, United Kingdom, United Kingdom, United Kingdom, United Kingdom, United Kingdom, France, Netherlands, Germany, United Kingdom, France, United KingdomPublisher:Wiley Funded by:EC | VERIFY, EC | T-FORCES, UKRI | BIOmes of Brasil - Resili... +1 projectsEC| VERIFY ,EC| T-FORCES ,UKRI| BIOmes of Brasil - Resilience, rEcovery, and Diversity: BIO-RED ,UKRI| Tropical Biomes in TransitionEsteban Álvarez-Dávila; Bonaventure Sonké; Luzmila Arroyo; Ted R. Feldpausch; Martin J. P. Sullivan; Martin Herold; Susan C. Cook-Patton; Bronson W. Griscom; Sarah Carter; Nancy L. Harris; Alejandro Araujo-Murakami; Timothy R. Baker; Daniela Requena Suarez; Christopher Martius; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira; Lan Qie; Frans Bongers; Veronique De Sy; Oliver L. Phillips; Beatriz Schwantes Marimon; Maria M. H. Wang; Danaë M. A. Rozendaal; Ervan Rutishauser; Emilio Vilanova; Emilio Vilanova; Lourens Poorter; Sara M. Leavitt; Anny Estelle N'Guessan; Eurídice N. Honorio Coronado; Simon L. Lewis; Simon L. Lewis; Bruno Hérault; Plinio Sist; Justin Kassi N'dja; Roel Jacobus Wilhelmus Brienen; Abel Monteagudo Mendoza;pmid: 31310673
pmc: PMC6852081
handle: 20.500.12921/439 , 10871/38215 , 10088/98326 , 10568/112347 , 10023/24450
pmid: 31310673
pmc: PMC6852081
handle: 20.500.12921/439 , 10871/38215 , 10088/98326 , 10568/112347 , 10023/24450
AbstractAs countries advance in greenhouse gas (GHG) accounting for climate change mitigation, consistent estimates of aboveground net biomass change (∆AGB) are needed. Countries with limited forest monitoring capabilities in the tropics and subtropics rely on IPCC 2006 default ∆AGB rates, which are values per ecological zone, per continent. Similarly, research into forest biomass change at a large scale also makes use of these rates. IPCC 2006 default rates come from a handful of studies, provide no uncertainty indications and do not distinguish between older secondary forests and old‐growth forests. As part of the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, we incorporate ∆AGB data available from 2006 onwards, comprising 176 chronosequences in secondary forests and 536 permanent plots in old‐growth and managed/logged forests located in 42 countries in Africa, North and South America and Asia. We generated ∆AGB rate estimates for younger secondary forests (≤20 years), older secondary forests (>20 years and up to 100 years) and old‐growth forests, and accounted for uncertainties in our estimates. In tropical rainforests, for which data availability was the highest, our ∆AGB rate estimates ranged from 3.4 (Asia) to 7.6 (Africa) Mg ha−1 year−1 in younger secondary forests, from 2.3 (North and South America) to 3.5 (Africa) Mg ha−1 year−1 in older secondary forests, and 0.7 (Asia) to 1.3 (Africa) Mg ha−1 year−1 in old‐growth forests. We provide a rigorous and traceable refinement of the IPCC 2006 default rates in tropical and subtropical ecological zones, and identify which areas require more research on ∆AGB. In this respect, this study should be considered as an important step towards quantifying the role of tropical and subtropical forests as carbon sinks with higher accuracy; our new rates can be used for large‐scale GHG accounting by governmental bodies, nongovernmental organizations and in scientific research.
LAReferencia - Red F... arrow_drop_down LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2019License: CC BYCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/112347Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2021License: CC BYFull-Text: https://hdl.handle.net/10023/24450Data sources: Bielefeld Academic Search Engine (BASE)e-space at Manchester Metropolitan UniversityArticle . 2019Data sources: e-space at Manchester Metropolitan UniversityGFZ German Research Centre for GeosciencesArticle . 2019Data sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Lincoln: Lincoln RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 93 citations 93 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2019License: CC BYCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/112347Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2021License: CC BYFull-Text: https://hdl.handle.net/10023/24450Data sources: Bielefeld Academic Search Engine (BASE)e-space at Manchester Metropolitan UniversityArticle . 2019Data sources: e-space at Manchester Metropolitan UniversityGFZ German Research Centre for GeosciencesArticle . 2019Data sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Lincoln: Lincoln RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 France, United Kingdom, Netherlands, United Kingdom, United Kingdom, United Kingdom, United Kingdom, United Kingdom, United Kingdom, France, Netherlands, Germany, United Kingdom, France, United KingdomPublisher:Wiley Funded by:EC | VERIFY, EC | T-FORCES, UKRI | BIOmes of Brasil - Resili... +1 projectsEC| VERIFY ,EC| T-FORCES ,UKRI| BIOmes of Brasil - Resilience, rEcovery, and Diversity: BIO-RED ,UKRI| Tropical Biomes in TransitionEsteban Álvarez-Dávila; Bonaventure Sonké; Luzmila Arroyo; Ted R. Feldpausch; Martin J. P. Sullivan; Martin Herold; Susan C. Cook-Patton; Bronson W. Griscom; Sarah Carter; Nancy L. Harris; Alejandro Araujo-Murakami; Timothy R. Baker; Daniela Requena Suarez; Christopher Martius; Kristina J. Anderson-Teixeira; Kristina J. Anderson-Teixeira; Lan Qie; Frans Bongers; Veronique De Sy; Oliver L. Phillips; Beatriz Schwantes Marimon; Maria M. H. Wang; Danaë M. A. Rozendaal; Ervan Rutishauser; Emilio Vilanova; Emilio Vilanova; Lourens Poorter; Sara M. Leavitt; Anny Estelle N'Guessan; Eurídice N. Honorio Coronado; Simon L. Lewis; Simon L. Lewis; Bruno Hérault; Plinio Sist; Justin Kassi N'dja; Roel Jacobus Wilhelmus Brienen; Abel Monteagudo Mendoza;pmid: 31310673
pmc: PMC6852081
handle: 20.500.12921/439 , 10871/38215 , 10088/98326 , 10568/112347 , 10023/24450
pmid: 31310673
pmc: PMC6852081
handle: 20.500.12921/439 , 10871/38215 , 10088/98326 , 10568/112347 , 10023/24450
AbstractAs countries advance in greenhouse gas (GHG) accounting for climate change mitigation, consistent estimates of aboveground net biomass change (∆AGB) are needed. Countries with limited forest monitoring capabilities in the tropics and subtropics rely on IPCC 2006 default ∆AGB rates, which are values per ecological zone, per continent. Similarly, research into forest biomass change at a large scale also makes use of these rates. IPCC 2006 default rates come from a handful of studies, provide no uncertainty indications and do not distinguish between older secondary forests and old‐growth forests. As part of the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, we incorporate ∆AGB data available from 2006 onwards, comprising 176 chronosequences in secondary forests and 536 permanent plots in old‐growth and managed/logged forests located in 42 countries in Africa, North and South America and Asia. We generated ∆AGB rate estimates for younger secondary forests (≤20 years), older secondary forests (>20 years and up to 100 years) and old‐growth forests, and accounted for uncertainties in our estimates. In tropical rainforests, for which data availability was the highest, our ∆AGB rate estimates ranged from 3.4 (Asia) to 7.6 (Africa) Mg ha−1 year−1 in younger secondary forests, from 2.3 (North and South America) to 3.5 (Africa) Mg ha−1 year−1 in older secondary forests, and 0.7 (Asia) to 1.3 (Africa) Mg ha−1 year−1 in old‐growth forests. We provide a rigorous and traceable refinement of the IPCC 2006 default rates in tropical and subtropical ecological zones, and identify which areas require more research on ∆AGB. In this respect, this study should be considered as an important step towards quantifying the role of tropical and subtropical forests as carbon sinks with higher accuracy; our new rates can be used for large‐scale GHG accounting by governmental bodies, nongovernmental organizations and in scientific research.
LAReferencia - Red F... arrow_drop_down LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2019License: CC BYCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/112347Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2021License: CC BYFull-Text: https://hdl.handle.net/10023/24450Data sources: Bielefeld Academic Search Engine (BASE)e-space at Manchester Metropolitan UniversityArticle . 2019Data sources: e-space at Manchester Metropolitan UniversityGFZ German Research Centre for GeosciencesArticle . 2019Data sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Lincoln: Lincoln RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 93 citations 93 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2019License: CC BYCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/112347Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2021License: CC BYFull-Text: https://hdl.handle.net/10023/24450Data sources: Bielefeld Academic Search Engine (BASE)e-space at Manchester Metropolitan UniversityArticle . 2019Data sources: e-space at Manchester Metropolitan UniversityGFZ German Research Centre for GeosciencesArticle . 2019Data sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Lincoln: Lincoln RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu