- home
- Advanced Search
Filters
Clear AllYear range
-chevron_right GOField of Science
Country
Source
Organization
- Energy Research
- 2. Zero hunger
- 11. Sustainability
- Energy Research
- 2. Zero hunger
- 11. Sustainability
description Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Elsevier BV Authors: Harris, Z.M.; Spake, R.; Taylor, G.;AbstractA systematic review and meta-analysis were used to assess the current state of knowledge and quantify the effects of land use change (LUC) to second generation (2G), non-food bioenergy crops on soil organic carbon (SOC) and greenhouse gas (GHG) emissions of relevance to temperate zone agriculture. Following analysis from 138 original studies, transitions from arable to short rotation coppice (SRC, poplar or willow) or perennial grasses (mostly Miscanthus or switchgrass) resulted in increased SOC (+5.0 ± 7.8% and +25.7 ± 6.7% respectively). Transitions from grassland to SRC were broadly neutral (+3.7 ± 14.6%), whilst grassland to perennial grass transitions and forest to SRC both showed a decrease in SOC (−10.9 ± 4.3% and −11.4 ± 23.4% respectively). There were insufficient paired data to conduct a strict meta-analysis for GHG emissions but summary figures of general trends in GHGs from 188 original studies revealed increased and decreased soil CO2 emissions following transition from forests and arable to perennial grasses. We demonstrate that significant knowledge gaps exist surrounding the effects of land use change to bioenergy on greenhouse gas balance, particularly for CH4. There is also large uncertainty in quantifying transitions from grasslands and transitions to short rotation forestry. A striking finding of this review is the lack of empirical studies that are available to validate modelled data. Given that models are extensively use in the development of bioenergy LCA and sustainability criteria, this is an area where further long-term data sets are required.
e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2015.05.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 135 citations 135 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 8visibility views 8 download downloads 34 Powered bymore_vert e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2015.05.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 United KingdomPublisher:Elsevier BV Funded by:EC | ENERGYPOPLAREC| ENERGYPOPLARAuthors: Gail Taylor; Gail Taylor;The UK has a significant biomass resource, estimated at an annual 20 million tonnes, but only a fraction of this is captured effectively for energy, contributing approximately 4.1% of the UK's heat and electricity production (Department for Environment, Food and Rural Affairs, 2007a. UK Biomass Strategy: http://www.defra.gov.uk/Environment/climatechange/uk/energy/renewablefuel/pdf/ukbiomassstrategy-0507.pdf (accessed 24 May 2008)). Much biomass combustion technology may be considered as mature, although bottlenecks in the quality and quantity of feedstock are apparent, and further fundamental research is required to increase crop yield in a sustainable manner, with low-chemical inputs to ensure efficient energy balance. In the short term, it could be useful for the UK to focus on developing a limited number of bioenergy chains, linked to combined heat and power microgeneration and the use of bioenergy for community and public sector projects. This should be linked to a joined-up policy and regulatory framework. A clear strategy for land management is also required, since many competing uses for land will emerge in the coming decades, including food production, nature conservation, carbon sequestration, urbanisation and other forms of renewable energy use. This finite resource must be managed effectively. In the long-term future, considerable excitement exists about the possibility of new bioscience technologies harnessed to improve photosynthetic gains for bioenergy, including the use of synthetic biology. It may be possible to produce the designer energy plant whose outputs would include high-quality chemical and liquid biofuels. Gasification of biomass also requires further technology development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2008.09.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2008.09.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2016 United KingdomPublisher:Elsevier BV Miao Guo; Goetz M. Richter; Robert A. Holland; Felix Eigenbrod; Gail Taylor; Nilay Shah;handle: 10044/1/29471
AbstractThis study presents a multi-objective optimisation model that is configured to account for a range of interrelated or conflicting questions with regard to the introduction of bioenergy systems. A spatial-temporal mixed integer linear programming model ETI-BVCM (Energy Technologies Institute – Bioenergy Value Chain Model) (ETI, 2015b; Newton-Cross, 2015; Samsatli et al., 2015) was adopted and extended to incorporate resource-competing systems and effects on ecosystem services brought about by the land-use transitions in response to increasing bioenergy penetration over five decades. The extended model functionality allows exploration of the effects of constraining ecosystem services impacts on other system-wide performance measures such as cost or greenhouse gas emissions. The users can therefore constrain the overall model by metric indicators which quantify the changes of ecosystem services due to land use transitions. The model provides a decision-making tool for optimal design of bioenergy value chains supporting an economically and land-use efficient and environmentally sustainable UK energy system while still delivering multiple ecosystem services.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/29471Data sources: Bielefeld Academic Search Engine (BASE)Computers & Chemical EngineeringArticle . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefKing's College, London: Research PortalArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compchemeng.2016.02.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/29471Data sources: Bielefeld Academic Search Engine (BASE)Computers & Chemical EngineeringArticle . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefKing's College, London: Research PortalArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compchemeng.2016.02.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 United KingdomPublisher:Elsevier BV Funded by:EC | ENERGYPOPLAREC| ENERGYPOPLARAuthors: Taylor, Gail;Abstract Liquid fuels can be made by refining a range of biomass materials, including oil-rich and sugar-rich crops such as oil-seed rape and sugar beet, biomass that consists mainly of plant cell walls (second generation lignocellulosics), macro- and micro-alga, or material that would now be discarded as waste. This can include animal bi-products as well as waste wood and other resources. In the medium-term, plant cell (lignocellulosic) material is likely to be favoured as the feedstock for biorefineries because of its availability. The UK may make use of a number of these options because of its complex agricultural landscape. There are now a range of targets for biofuel use in the UK, although their environmental effects are disputed. The technology of refining these materials is well known. Possible outputs include biodiesel and bioethanol, both of which can be used as transport fuel. Other potential products include hydrogen, polymers and a wide range of value-added chemicals, making this technology important in a post-petrochemical world. Biorefineries could use cogeneration to produce electricity. The paper identifies a range of research and development priorities which must be met if this opportunity is to be exploited fully.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2008.09.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 155 citations 155 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2008.09.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2016 United KingdomPublisher:Elsevier BV Kevin M. Hiscock; John Barrett; Nicola Beaumont; Pete Smith; Ricardo Torres; Amy Thomas; Tina Blaber-Wegg; Eleni Papathanasopoulou; Emma Hinton; Robert C. D. Tickner; Melanie C. Austen; P Cazenave; Tara Hooper; Eleanor Carter-Silk; Eleanor Carter-Silk; Gareth Brown; Felix Eigenbrod; Andrew A. Lovett; Robert A. Holland; Gail Taylor; Kate Scott;handle: 2164/6103
© 2016 The Authors. Meeting the world's energy demand is a major challenge for society over the coming century. To identify the most sustainable energy pathways to meet this demand, analysis of energy systems on which policy is based must move beyond the current primary focus on carbon to include a broad range of ecosystem services on which human well-being depends. Incorporation of a broad set of ecosystem services into the design of energy policy will differentiates between energy technology options to identify policy options that reconcile national and international obligations to address climate change and the loss of biodiversity and ecosystem services. In this paper we consider our current understanding of the implications of energy systems for ecosystem services and identify key elements of an assessment. Analysis must consider the full life cycle of energy systems, the territorial and international footprint, use a consistent ecosystem service framework that incorporates the value of both market and non-market goods, and consider the spatial and temporal dynamics of both the energy and environmental system. While significant methodological challenges exist, the approach we detail can provide the holistic view of energy and ecosystem services interactions required to inform the future of global energy policy.
Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2016License: CC BYData sources: CORE (RIOXX-UK Aggregator)Aberdeen University Research Archive (AURA)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/2164/6103Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2016.01.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2016License: CC BYData sources: CORE (RIOXX-UK Aggregator)Aberdeen University Research Archive (AURA)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/2164/6103Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2016.01.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:Wiley Wang, Shifeng; Hastings, Astley; Wang, Sicong; Sunnenberg, Gilla; Tallis, Matthew J.; Casella, Eric; Taylor, Simon; Alexander, Peter; Cisowska, Iwona; Lovett, Andrew; Taylor, Gail; Firth, Steven; Moran, Dominic; Morison, James; Smith, Pete;doi: 10.1111/gcbb.12123
AbstractThe paper presents a model system, which consists of a partial equilibrium model and process‐based terrestrial biogeochemistry models, to determine the optimal distributions of both Miscanthus (Miscanthus × giganteus) and short rotation coppice willow (SRC) (Salix. viminalis L. x S. viminalis var Joruun) in Great Britain (GB), as well as their potential contribution to meet heat and electricity demand in GB. Results show that the potential contribution of Miscanthus and SRC to heat and electricity demand is significant. Without considering farm‐scale economic constraints, Miscanthus and SRC could generate, in an economically competitive way compared with other energy generation costs, 224 800 GWh yr−1 heat and 112 500 GWh yr−1 electricity, with 8 Mha of available land under Miscanthus and SRC, accounting for 66% of total heat demand and 62% of total electricity demand respectively. Given the pattern of heat and electricity demand, and the relative yields of Miscanthus and SRC in different parts of GB, Miscanthus is mainly favoured in the Midlands and areas in the South of GB, whereas SRC is favoured in Scotland, the Midlands and areas in the South of GB.
GCB Bioenergy arrow_drop_down GCB BioenergyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Portsmouth: Portsmouth Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 77 Powered bymore_vert GCB Bioenergy arrow_drop_down GCB BioenergyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Portsmouth: Portsmouth Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United States, United Kingdom, Netherlands, ItalyPublisher:Wiley Funded by:UKRI | Maximising carbon harvest..., UKRI | Towards targeted breeding..., UKRI | A population genomics app... +8 projectsUKRI| Maximising carbon harvest from perennial crops ,UKRI| Towards targeted breeding of a European SRC willow crop for diverse environments and future climates (BREDNET-SRC) ,UKRI| A population genomics approach to accelerating the domestication of the energy grass Miscanthus ,EC| WATBIO ,EC| OPTIMISC ,EC| GRACE ,UKRI| Integrating carbon systems ,UKRI| TPM - Tailoring Plant Metabolism - Work package 2 (WP2) - Designer Willows: high value phenolic glycosides for health and industry ,UKRI| Accelerating breeding for biomass yield in short rotation coppice willow by exploiting knowledge of shoot development in Arabidopsis ,UKRI| 15AGRITECHCAT4: MUST: Miscanthus Upscaling Technology ,UKRI| The BBSRC Sustainable Bioenergy Centre (BSBEC): Perennial Bioenergy Crops ProgrammeLin Huang; Antonella Iurato; Gerald A. Tuskan; Iain Donnison; Gail Taylor; Richard Flavell; Do-Soon Kim; Kankshita Swaminathan; Reza Shafiei; Jianxiu Liu; Susan Dalton; Jon P. McCalmont; Erik J. Sacks; Christopher Lyndon Davey; Luisa M. Trindade; Xiaoli Jin; Ronald S. Zalesny; Salvatore Luciano Cosentino; Danilo Scordia; W. J. Macalpine; Kai Uwe Schwarz; Elaine Jensen; Catherine Bastien; Zhiyong Chen; Tsai Wen Hsu; John Clifton-Brown; Sebastian Bopper; Junqin Zong; Michal Mos; Uffe Jørgensen; Antoine Harfouche; Lindsay V. Clark; Huw Jones; Bernard G. McMahon; Joerg Greef; Gancho T. Slavov; Ian Shield; Andres F. Torres; Oene Dolstra; Chris Ashman; Anatolii Sandu; Chang Yeon Yu; Danny Awty-Carroll; Iris Lewandowski; Anneli Adler; Anneli Adler; Timothy J. Tschaplinski; Paul Robson; Andreas Kiesel; Giovanni Scalici; Toshihiko Yamada; Maryse Brancourt-Hulmel; Vasile Botnari; Lawrence B. Smart; Steve J. Hanley; Magnus Hertzberg; Astley Hastings; Michael D. Casler; Donal Murphy-Bokern; Brian J. Stanton;AbstractGenetic improvement through breeding is one of the key approaches to increasing biomass supply. This paper documents the breeding progress to date for four perennial biomass crops (PBCs) that have high output–input energy ratios: namely Panicum virgatum (switchgrass), species of the genera Miscanthus (miscanthus), Salix (willow) and Populus (poplar). For each crop, we report on the size of germplasm collections, the efforts to date to phenotype and genotype, the diversity available for breeding and on the scale of breeding work as indicated by number of attempted crosses. We also report on the development of faster and more precise breeding using molecular breeding techniques. Poplar is the model tree for genetic studies and is furthest ahead in terms of biological knowledge and genetic resources. Linkage maps, transgenesis and genome editing methods are now being used in commercially focused poplar breeding. These are in development in switchgrass, miscanthus and willow generating large genetic and phenotypic data sets requiring concomitant efforts in informatics to create summaries that can be accessed and used by practical breeders. Cultivars of switchgrass and miscanthus can be seed‐based synthetic populations, semihybrids or clones. Willow and poplar cultivars are commercially deployed as clones. At local and regional level, the most advanced cultivars in each crop are at technology readiness levels which could be scaled to planting rates of thousands of hectares per year in about 5 years with existing commercial developers. Investment in further development of better cultivars is subject to current market failure and the long breeding cycles. We conclude that sustained public investment in breeding plays a key role in delivering future mass‐scale deployment of PBCs.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02627642/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02627642/documentAberdeen University Research Archive (AURA)Article . 2019License: CC BYFull-Text: http://hdl.handle.net/2164/11339Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12566&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 118 citations 118 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 22visibility views 22 download downloads 33 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02627642/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02627642/documentAberdeen University Research Archive (AURA)Article . 2019License: CC BYFull-Text: http://hdl.handle.net/2164/11339Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12566&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Elsevier BV Gemma Delafield; Greg S. Smith; Brett Day; Robert A. Holland; Caspar Donnison; Astley Hastings; Gail Taylor; Nathan Owen; Andrew Lovett;Pathways to decarbonisation are commonly explored by government and industry through the use of energy system models. However, such models rarely consider where new energy infrastructure might be located. This is problematic as the spatial context of new renewable energy infrastructure will determine, in part, the environmental, social, and technical impacts of the energy transition. This paper presents the ADVENT-NEV model which brings together innovations in energy and natural capital modelling to identify the optimal locations of multiple renewable energy technologies at a national scale and high spatial resolution. Using Great Britain as a case study, the results show how the spatial distribution of renewable energy technologies changes when a natural capital approach is taken. In particular, the least-cost locations for onshore wind farms and bioenergy crops are highly influenced by the value of carbon sequestration, or emissions associated with their land use change. Siting using a natural capital approach produced appreciable ecosystem service benefits, such that the overall welfare gain to society was estimated at nearly £25 B. Overall, this paper demonstrates that understanding the geospatial context of the energy transition is essential to identifying which renewable energy pathways are consistent with decarbonisation and environmental objectives.
e-Prints Soton arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United Kingdom, United StatesPublisher:Wiley Funded by:UKRI | ADVENT (ADdressing Valuat...UKRI| ADVENT (ADdressing Valuation of Energy and Nature Together)Astley Hastings; Gail Taylor; Gail Taylor; Lindsay-Marie Armstrong; Robert A. Holland; Caspar Donnison; Caspar Donnison; Felix Eigenbrod;doi: 10.1111/gcbb.12695
handle: 2164/14848
AbstractBioenergy with Carbon Capture and Storage (BECCS) features heavily in the energy scenarios designed to meet the Paris Agreement targets, but the models used to generate these scenarios do not address environmental and social implications of BECCS at the regional scale. We integrate ecosystem service values into a land‐use optimization tool to determine the favourability of six potential UK locations for a 500 MW BECCS power plant operating on local biomass resources. Annually, each BECCS plant requires 2.33 Mt of biomass and generates 2.99 Mt CO2of negative emissions and 3.72 TWh of electricity. We make three important discoveries: (a) the impacts of BECCS on ecosystem services are spatially discrete, with the most favourable locations for UK BECCS identified at Drax and Easington, where net annual welfare values (from the basket of ecosystems services quantified) of £39 and £25 million were generated, respectively, with notably lower annual welfare values at Barrow (−£6 million) and Thames (£2 million); (b) larger BECCS deployment beyond 500 MW reduces net social welfare values, with a 1 GW BECCS plant at Drax generating a net annual welfare value of £19 million (a 50% decline compared with the 500 MW deployment), and a welfare loss at all other sites; (c) BECCS can be deployed to generate net welfare gains, but trade‐offs and co‐benefits between ecosystem services are highly site and context specific, and these landscape‐scale, site‐specific impacts should be central to future BECCS policy developments. For the United Kingdom, meeting the Paris Agreement targets through reliance on BECCS requires over 1 GW at each of the six locations considered here and is likely, therefore, to result in a significant welfare loss. This implies that an increased number of smaller BECCS deployments will be needed to ensure a win–win for energy, negative emissions and ecosystem services.
e-Prints Soton arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/2164/14848Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12695&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 33visibility views 33 download downloads 92 Powered bymore_vert e-Prints Soton arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/2164/14848Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12695&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2010 United KingdomPublisher:Informa UK Limited Authors: Aylott, Matthew J.; Casella, Eric; Farrall, Kate; Taylor, Gail;doi: 10.4155/bfs.10.30
Background: Biomass has been identified as an important source of renewable energy. However, growing demand for dedicated energy crops could lead to conflicts with food production and ecosystem services. This study uses a geographic information systems-embedded modeling approach to assess the spatial supply of short-rotation coppice, taking into account social, economic and environmental constraints. Results: Results suggest that 7.5 million tons of biomass (from short-rotation coppice) is realistically available in England. Such production would require 0.8 million ha and could be grown almost entirely on poor quality marginal lands. Conclusion: We therefore conclude that short-rotation coppice energy crops have the potential to play an important role in meeting UK renewable energy targets without compromising environmental sustainability or food production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4155/bfs.10.30&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4155/bfs.10.30&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Elsevier BV Authors: Harris, Z.M.; Spake, R.; Taylor, G.;AbstractA systematic review and meta-analysis were used to assess the current state of knowledge and quantify the effects of land use change (LUC) to second generation (2G), non-food bioenergy crops on soil organic carbon (SOC) and greenhouse gas (GHG) emissions of relevance to temperate zone agriculture. Following analysis from 138 original studies, transitions from arable to short rotation coppice (SRC, poplar or willow) or perennial grasses (mostly Miscanthus or switchgrass) resulted in increased SOC (+5.0 ± 7.8% and +25.7 ± 6.7% respectively). Transitions from grassland to SRC were broadly neutral (+3.7 ± 14.6%), whilst grassland to perennial grass transitions and forest to SRC both showed a decrease in SOC (−10.9 ± 4.3% and −11.4 ± 23.4% respectively). There were insufficient paired data to conduct a strict meta-analysis for GHG emissions but summary figures of general trends in GHGs from 188 original studies revealed increased and decreased soil CO2 emissions following transition from forests and arable to perennial grasses. We demonstrate that significant knowledge gaps exist surrounding the effects of land use change to bioenergy on greenhouse gas balance, particularly for CH4. There is also large uncertainty in quantifying transitions from grasslands and transitions to short rotation forestry. A striking finding of this review is the lack of empirical studies that are available to validate modelled data. Given that models are extensively use in the development of bioenergy LCA and sustainability criteria, this is an area where further long-term data sets are required.
e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2015.05.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 135 citations 135 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 8visibility views 8 download downloads 34 Powered bymore_vert e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2015.05.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 United KingdomPublisher:Elsevier BV Funded by:EC | ENERGYPOPLAREC| ENERGYPOPLARAuthors: Gail Taylor; Gail Taylor;The UK has a significant biomass resource, estimated at an annual 20 million tonnes, but only a fraction of this is captured effectively for energy, contributing approximately 4.1% of the UK's heat and electricity production (Department for Environment, Food and Rural Affairs, 2007a. UK Biomass Strategy: http://www.defra.gov.uk/Environment/climatechange/uk/energy/renewablefuel/pdf/ukbiomassstrategy-0507.pdf (accessed 24 May 2008)). Much biomass combustion technology may be considered as mature, although bottlenecks in the quality and quantity of feedstock are apparent, and further fundamental research is required to increase crop yield in a sustainable manner, with low-chemical inputs to ensure efficient energy balance. In the short term, it could be useful for the UK to focus on developing a limited number of bioenergy chains, linked to combined heat and power microgeneration and the use of bioenergy for community and public sector projects. This should be linked to a joined-up policy and regulatory framework. A clear strategy for land management is also required, since many competing uses for land will emerge in the coming decades, including food production, nature conservation, carbon sequestration, urbanisation and other forms of renewable energy use. This finite resource must be managed effectively. In the long-term future, considerable excitement exists about the possibility of new bioscience technologies harnessed to improve photosynthetic gains for bioenergy, including the use of synthetic biology. It may be possible to produce the designer energy plant whose outputs would include high-quality chemical and liquid biofuels. Gasification of biomass also requires further technology development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2008.09.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2008.09.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2016 United KingdomPublisher:Elsevier BV Miao Guo; Goetz M. Richter; Robert A. Holland; Felix Eigenbrod; Gail Taylor; Nilay Shah;handle: 10044/1/29471
AbstractThis study presents a multi-objective optimisation model that is configured to account for a range of interrelated or conflicting questions with regard to the introduction of bioenergy systems. A spatial-temporal mixed integer linear programming model ETI-BVCM (Energy Technologies Institute – Bioenergy Value Chain Model) (ETI, 2015b; Newton-Cross, 2015; Samsatli et al., 2015) was adopted and extended to incorporate resource-competing systems and effects on ecosystem services brought about by the land-use transitions in response to increasing bioenergy penetration over five decades. The extended model functionality allows exploration of the effects of constraining ecosystem services impacts on other system-wide performance measures such as cost or greenhouse gas emissions. The users can therefore constrain the overall model by metric indicators which quantify the changes of ecosystem services due to land use transitions. The model provides a decision-making tool for optimal design of bioenergy value chains supporting an economically and land-use efficient and environmentally sustainable UK energy system while still delivering multiple ecosystem services.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/29471Data sources: Bielefeld Academic Search Engine (BASE)Computers & Chemical EngineeringArticle . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefKing's College, London: Research PortalArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compchemeng.2016.02.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/29471Data sources: Bielefeld Academic Search Engine (BASE)Computers & Chemical EngineeringArticle . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefKing's College, London: Research PortalArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compchemeng.2016.02.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 United KingdomPublisher:Elsevier BV Funded by:EC | ENERGYPOPLAREC| ENERGYPOPLARAuthors: Taylor, Gail;Abstract Liquid fuels can be made by refining a range of biomass materials, including oil-rich and sugar-rich crops such as oil-seed rape and sugar beet, biomass that consists mainly of plant cell walls (second generation lignocellulosics), macro- and micro-alga, or material that would now be discarded as waste. This can include animal bi-products as well as waste wood and other resources. In the medium-term, plant cell (lignocellulosic) material is likely to be favoured as the feedstock for biorefineries because of its availability. The UK may make use of a number of these options because of its complex agricultural landscape. There are now a range of targets for biofuel use in the UK, although their environmental effects are disputed. The technology of refining these materials is well known. Possible outputs include biodiesel and bioethanol, both of which can be used as transport fuel. Other potential products include hydrogen, polymers and a wide range of value-added chemicals, making this technology important in a post-petrochemical world. Biorefineries could use cogeneration to produce electricity. The paper identifies a range of research and development priorities which must be met if this opportunity is to be exploited fully.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2008.09.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 155 citations 155 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2008.09.069&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2016 United KingdomPublisher:Elsevier BV Kevin M. Hiscock; John Barrett; Nicola Beaumont; Pete Smith; Ricardo Torres; Amy Thomas; Tina Blaber-Wegg; Eleni Papathanasopoulou; Emma Hinton; Robert C. D. Tickner; Melanie C. Austen; P Cazenave; Tara Hooper; Eleanor Carter-Silk; Eleanor Carter-Silk; Gareth Brown; Felix Eigenbrod; Andrew A. Lovett; Robert A. Holland; Gail Taylor; Kate Scott;handle: 2164/6103
© 2016 The Authors. Meeting the world's energy demand is a major challenge for society over the coming century. To identify the most sustainable energy pathways to meet this demand, analysis of energy systems on which policy is based must move beyond the current primary focus on carbon to include a broad range of ecosystem services on which human well-being depends. Incorporation of a broad set of ecosystem services into the design of energy policy will differentiates between energy technology options to identify policy options that reconcile national and international obligations to address climate change and the loss of biodiversity and ecosystem services. In this paper we consider our current understanding of the implications of energy systems for ecosystem services and identify key elements of an assessment. Analysis must consider the full life cycle of energy systems, the territorial and international footprint, use a consistent ecosystem service framework that incorporates the value of both market and non-market goods, and consider the spatial and temporal dynamics of both the energy and environmental system. While significant methodological challenges exist, the approach we detail can provide the holistic view of energy and ecosystem services interactions required to inform the future of global energy policy.
Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2016License: CC BYData sources: CORE (RIOXX-UK Aggregator)Aberdeen University Research Archive (AURA)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/2164/6103Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2016.01.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2016License: CC BYData sources: CORE (RIOXX-UK Aggregator)Aberdeen University Research Archive (AURA)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/2164/6103Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2016.01.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:Wiley Wang, Shifeng; Hastings, Astley; Wang, Sicong; Sunnenberg, Gilla; Tallis, Matthew J.; Casella, Eric; Taylor, Simon; Alexander, Peter; Cisowska, Iwona; Lovett, Andrew; Taylor, Gail; Firth, Steven; Moran, Dominic; Morison, James; Smith, Pete;doi: 10.1111/gcbb.12123
AbstractThe paper presents a model system, which consists of a partial equilibrium model and process‐based terrestrial biogeochemistry models, to determine the optimal distributions of both Miscanthus (Miscanthus × giganteus) and short rotation coppice willow (SRC) (Salix. viminalis L. x S. viminalis var Joruun) in Great Britain (GB), as well as their potential contribution to meet heat and electricity demand in GB. Results show that the potential contribution of Miscanthus and SRC to heat and electricity demand is significant. Without considering farm‐scale economic constraints, Miscanthus and SRC could generate, in an economically competitive way compared with other energy generation costs, 224 800 GWh yr−1 heat and 112 500 GWh yr−1 electricity, with 8 Mha of available land under Miscanthus and SRC, accounting for 66% of total heat demand and 62% of total electricity demand respectively. Given the pattern of heat and electricity demand, and the relative yields of Miscanthus and SRC in different parts of GB, Miscanthus is mainly favoured in the Midlands and areas in the South of GB, whereas SRC is favoured in Scotland, the Midlands and areas in the South of GB.
GCB Bioenergy arrow_drop_down GCB BioenergyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Portsmouth: Portsmouth Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 77 Powered bymore_vert GCB Bioenergy arrow_drop_down GCB BioenergyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Portsmouth: Portsmouth Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United States, United Kingdom, Netherlands, ItalyPublisher:Wiley Funded by:UKRI | Maximising carbon harvest..., UKRI | Towards targeted breeding..., UKRI | A population genomics app... +8 projectsUKRI| Maximising carbon harvest from perennial crops ,UKRI| Towards targeted breeding of a European SRC willow crop for diverse environments and future climates (BREDNET-SRC) ,UKRI| A population genomics approach to accelerating the domestication of the energy grass Miscanthus ,EC| WATBIO ,EC| OPTIMISC ,EC| GRACE ,UKRI| Integrating carbon systems ,UKRI| TPM - Tailoring Plant Metabolism - Work package 2 (WP2) - Designer Willows: high value phenolic glycosides for health and industry ,UKRI| Accelerating breeding for biomass yield in short rotation coppice willow by exploiting knowledge of shoot development in Arabidopsis ,UKRI| 15AGRITECHCAT4: MUST: Miscanthus Upscaling Technology ,UKRI| The BBSRC Sustainable Bioenergy Centre (BSBEC): Perennial Bioenergy Crops ProgrammeLin Huang; Antonella Iurato; Gerald A. Tuskan; Iain Donnison; Gail Taylor; Richard Flavell; Do-Soon Kim; Kankshita Swaminathan; Reza Shafiei; Jianxiu Liu; Susan Dalton; Jon P. McCalmont; Erik J. Sacks; Christopher Lyndon Davey; Luisa M. Trindade; Xiaoli Jin; Ronald S. Zalesny; Salvatore Luciano Cosentino; Danilo Scordia; W. J. Macalpine; Kai Uwe Schwarz; Elaine Jensen; Catherine Bastien; Zhiyong Chen; Tsai Wen Hsu; John Clifton-Brown; Sebastian Bopper; Junqin Zong; Michal Mos; Uffe Jørgensen; Antoine Harfouche; Lindsay V. Clark; Huw Jones; Bernard G. McMahon; Joerg Greef; Gancho T. Slavov; Ian Shield; Andres F. Torres; Oene Dolstra; Chris Ashman; Anatolii Sandu; Chang Yeon Yu; Danny Awty-Carroll; Iris Lewandowski; Anneli Adler; Anneli Adler; Timothy J. Tschaplinski; Paul Robson; Andreas Kiesel; Giovanni Scalici; Toshihiko Yamada; Maryse Brancourt-Hulmel; Vasile Botnari; Lawrence B. Smart; Steve J. Hanley; Magnus Hertzberg; Astley Hastings; Michael D. Casler; Donal Murphy-Bokern; Brian J. Stanton;AbstractGenetic improvement through breeding is one of the key approaches to increasing biomass supply. This paper documents the breeding progress to date for four perennial biomass crops (PBCs) that have high output–input energy ratios: namely Panicum virgatum (switchgrass), species of the genera Miscanthus (miscanthus), Salix (willow) and Populus (poplar). For each crop, we report on the size of germplasm collections, the efforts to date to phenotype and genotype, the diversity available for breeding and on the scale of breeding work as indicated by number of attempted crosses. We also report on the development of faster and more precise breeding using molecular breeding techniques. Poplar is the model tree for genetic studies and is furthest ahead in terms of biological knowledge and genetic resources. Linkage maps, transgenesis and genome editing methods are now being used in commercially focused poplar breeding. These are in development in switchgrass, miscanthus and willow generating large genetic and phenotypic data sets requiring concomitant efforts in informatics to create summaries that can be accessed and used by practical breeders. Cultivars of switchgrass and miscanthus can be seed‐based synthetic populations, semihybrids or clones. Willow and poplar cultivars are commercially deployed as clones. At local and regional level, the most advanced cultivars in each crop are at technology readiness levels which could be scaled to planting rates of thousands of hectares per year in about 5 years with existing commercial developers. Investment in further development of better cultivars is subject to current market failure and the long breeding cycles. We conclude that sustained public investment in breeding plays a key role in delivering future mass‐scale deployment of PBCs.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02627642/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02627642/documentAberdeen University Research Archive (AURA)Article . 2019License: CC BYFull-Text: http://hdl.handle.net/2164/11339Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12566&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 118 citations 118 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 22visibility views 22 download downloads 33 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02627642/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02627642/documentAberdeen University Research Archive (AURA)Article . 2019License: CC BYFull-Text: http://hdl.handle.net/2164/11339Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12566&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Elsevier BV Gemma Delafield; Greg S. Smith; Brett Day; Robert A. Holland; Caspar Donnison; Astley Hastings; Gail Taylor; Nathan Owen; Andrew Lovett;Pathways to decarbonisation are commonly explored by government and industry through the use of energy system models. However, such models rarely consider where new energy infrastructure might be located. This is problematic as the spatial context of new renewable energy infrastructure will determine, in part, the environmental, social, and technical impacts of the energy transition. This paper presents the ADVENT-NEV model which brings together innovations in energy and natural capital modelling to identify the optimal locations of multiple renewable energy technologies at a national scale and high spatial resolution. Using Great Britain as a case study, the results show how the spatial distribution of renewable energy technologies changes when a natural capital approach is taken. In particular, the least-cost locations for onshore wind farms and bioenergy crops are highly influenced by the value of carbon sequestration, or emissions associated with their land use change. Siting using a natural capital approach produced appreciable ecosystem service benefits, such that the overall welfare gain to society was estimated at nearly £25 B. Overall, this paper demonstrates that understanding the geospatial context of the energy transition is essential to identifying which renewable energy pathways are consistent with decarbonisation and environmental objectives.
e-Prints Soton arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United Kingdom, United StatesPublisher:Wiley Funded by:UKRI | ADVENT (ADdressing Valuat...UKRI| ADVENT (ADdressing Valuation of Energy and Nature Together)Astley Hastings; Gail Taylor; Gail Taylor; Lindsay-Marie Armstrong; Robert A. Holland; Caspar Donnison; Caspar Donnison; Felix Eigenbrod;doi: 10.1111/gcbb.12695
handle: 2164/14848
AbstractBioenergy with Carbon Capture and Storage (BECCS) features heavily in the energy scenarios designed to meet the Paris Agreement targets, but the models used to generate these scenarios do not address environmental and social implications of BECCS at the regional scale. We integrate ecosystem service values into a land‐use optimization tool to determine the favourability of six potential UK locations for a 500 MW BECCS power plant operating on local biomass resources. Annually, each BECCS plant requires 2.33 Mt of biomass and generates 2.99 Mt CO2of negative emissions and 3.72 TWh of electricity. We make three important discoveries: (a) the impacts of BECCS on ecosystem services are spatially discrete, with the most favourable locations for UK BECCS identified at Drax and Easington, where net annual welfare values (from the basket of ecosystems services quantified) of £39 and £25 million were generated, respectively, with notably lower annual welfare values at Barrow (−£6 million) and Thames (£2 million); (b) larger BECCS deployment beyond 500 MW reduces net social welfare values, with a 1 GW BECCS plant at Drax generating a net annual welfare value of £19 million (a 50% decline compared with the 500 MW deployment), and a welfare loss at all other sites; (c) BECCS can be deployed to generate net welfare gains, but trade‐offs and co‐benefits between ecosystem services are highly site and context specific, and these landscape‐scale, site‐specific impacts should be central to future BECCS policy developments. For the United Kingdom, meeting the Paris Agreement targets through reliance on BECCS requires over 1 GW at each of the six locations considered here and is likely, therefore, to result in a significant welfare loss. This implies that an increased number of smaller BECCS deployments will be needed to ensure a win–win for energy, negative emissions and ecosystem services.
e-Prints Soton arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/2164/14848Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12695&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 33visibility views 33 download downloads 92 Powered bymore_vert e-Prints Soton arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/2164/14848Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12695&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2010 United KingdomPublisher:Informa UK Limited Authors: Aylott, Matthew J.; Casella, Eric; Farrall, Kate; Taylor, Gail;doi: 10.4155/bfs.10.30
Background: Biomass has been identified as an important source of renewable energy. However, growing demand for dedicated energy crops could lead to conflicts with food production and ecosystem services. This study uses a geographic information systems-embedded modeling approach to assess the spatial supply of short-rotation coppice, taking into account social, economic and environmental constraints. Results: Results suggest that 7.5 million tons of biomass (from short-rotation coppice) is realistically available in England. Such production would require 0.8 million ha and could be grown almost entirely on poor quality marginal lands. Conclusion: We therefore conclude that short-rotation coppice energy crops have the potential to play an important role in meeting UK renewable energy targets without compromising environmental sustainability or food production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4155/bfs.10.30&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4155/bfs.10.30&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu