- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Funder
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2006 ItalyPublisher:Elsevier BV FRASCARI, DARIO; PINELLI, DAVIDE; NOCENTINI, MASSIMO; ZANNONI, ARIANNA; FEDI, STEFANO; BALEANI, EMILIA; ZANNONI, DAVIDE; A. Farneti; A. Battistelli;The aerobic cometabolic biodegradation of a mixture of chlorinated aliphatic hydrocarbons (CAHs) including vinyl chloride (VC), cis- and trans-1,2-dichloroethylene (cis-DCE, trans-DCE), trichloroethylene (TCE), 1,1,2-trichloroethane (1,1,2-TCA) and 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA) was investigated at both 25 and 17 degrees C by means of bioaugmented and non-bioaugmented sediment-groundwater slurry microcosm tests. The goals of the study were (i) to study the long-term aerobic biodegradation of a CAH mixture including a high-chlorinated solvent (1,1,2,2-TeCA) generally considered non-biodegradable in aerobic conditions; (ii) to investigate the efficacy of bioaugmentation with two types of internal inocula obtained from the indigenous biomass of the studied site; (iii) to identify the CAH-degrading bacteria. VC, methane and propane were utilized as growth substrates. The non-bioaugmented microcosms were characterized, at 25 degrees C, by an average 18-day lag-time for the direct metabolism of VC (accompanied by the cometabolism of cis- and trans-DCE) and by long lag-times (36-264 days) for the onset of methane or propane utilization (associated with the cometabolism of the remaining CAHs). In the inoculated microcosms the lag-phases for the onset of growth substrate utilization and CAH cometabolism were significantly shorter (0-15 days at 25 degrees C). Biodegradation of the 6-CAH mixture was successfully continued for up to 410 days. The low-chlorinated solvents were characterized by higher depletion rates. The composition of the microbial consortium of a propane-utilizing microcosm was determined by 16s rDNA sequencing and phylotype analysis. To the best of our knowledge, this is the first study that documents the long-term aerobic biodegradation of 1,1,2,2-TeCA.
Journal of Hazardous... arrow_drop_down Journal of Hazardous MaterialsArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2006.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Hazardous... arrow_drop_down Journal of Hazardous MaterialsArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2006.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | MINOTAURUSEC| MINOTAURUSFRASCARI, DARIO; BUCCHI, GIACOMO; DORIA, FRANCESCO; ROSATO, ANTONELLA; TAVANAIE, NASRIN; Raffaele Salviulo; CIAVARELLI, ROBERTA; PINELLI, DAVIDE; FRARACCIO, SERENA; ZANAROLI, GIULIO; FAVA, FABIO;A procedure for the design of an aerobic cometabolic process for the on-site degradation of chlorinated solvents in a packed bed reactor was developed using groundwater from an aquifer contaminated by trichloroethylene (TCE) and 1,1,2,2-tetrachloroethane (TeCA). The work led to the selection of butane among five tested growth substrates, and to the development and characterization from the site's indigenous biomass of a suspended-cell consortium capable to degrade TCE (first order constant: 96 L gprotein(-1) day(-1) at 30 °C and 4.3 L gprotein(-1) day(-1) at 15 °C) with a 90 % mineralization of the organic chlorine. The consortium immobilization had strong effects on the butane and TCE degradation rates. The microbial community structure was slightly changed by a temperature shift from 30 to 15 °C, but remarkably affected by biomass adhesion. Given the higher TCE normalized degradation rate (0.59 day(-1) at 15 °C) and attached biomass concentration (0.13 gprotein Lbioreactor(-1) at 15 °C) attained, the porous ceramic carrier Biomax was selected as the best option for the packed bed reactor process. The low TeCA degradation rate exhibited by the developed consortium suggested the inclusion of a chemical pre-treatment based on the TeCA to TCE conversion via β-elimination, a very fast reaction at alkaline pH. To the best of the authors' knowledge, this represents the first attempt to develop a procedure for the development of a packed bed reactor process for the aerobic cometabolism of chlorinated solvents.
Biodegradation arrow_drop_down http://dx.doi.org/10.1007/s105...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10532-013-9664-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Biodegradation arrow_drop_down http://dx.doi.org/10.1007/s105...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10532-013-9664-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2006 ItalyPublisher:Springer Science and Business Media LLC FRASCARI, DARIO; PINELLI, DAVIDE; NOCENTINI, MASSIMO; FEDI, STEFANO; Y. Pii; ZANNONI, DAVIDE;The ability of a Rhodococcus aetherovorans strain, BCP1, to grow on butane and to degrade chloroform in the 0-633 microM range (0-75.5 mg l(-1)) via aerobic cometabolism was investigated by means of resting-cell assays. BCP1 degraded chloroform with a complete mineralization of the organic Cl. The resulting butane and chloroform maximum specific degradation rates were equal to 118 and 22 micromol mg(protein)(-1)day(-1), respectively. Butane inhibition on chloroform degradation was satisfactorily interpreted by means of a model of competitive inhibition, with an inhibition constant equal to 38 % of the estimated butane half-saturation constant, whereas chloroform (at 11 microM) did not inhibit butane utilization. Acetylene (1,720 microM) induced an almost complete inactivation of the degradation of both butane and chloroform, indicating that the studied cometabolic process is mediated by a monooxygenase enzyme. BCP1 proved capable of degrading vinyl chloride and 1,1,2-trichloroethane, but not 1,2-trans-dichloroethylene. BCP1 could grow on the intermediates of the most common butane metabolic pathways and on the aliphatic hydrocarbons from ethane to n-heptane. After growth on n-hexane, it was able to deplete chloroform (13 microM) with a degradation rate higher than that obtained, at the same chloroform concentration, after growth on butane.
Applied Microbiology... arrow_drop_down Applied Microbiology and BiotechnologyArticle . 2006 . Peer-reviewedLicense: Springer TDMData sources: CrossrefIRIS - Università degli Studi di VeronaArticle . 2006Data sources: IRIS - Università degli Studi di VeronaIRIS - Università degli Studi di VeronaConference object . 2006Data sources: IRIS - Università degli Studi di Veronaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00253-006-0433-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Microbiology... arrow_drop_down Applied Microbiology and BiotechnologyArticle . 2006 . Peer-reviewedLicense: Springer TDMData sources: CrossrefIRIS - Università degli Studi di VeronaArticle . 2006Data sources: IRIS - Università degli Studi di VeronaIRIS - Università degli Studi di VeronaConference object . 2006Data sources: IRIS - Università degli Studi di Veronaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00253-006-0433-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2006 ItalyPublisher:Elsevier BV FRASCARI, DARIO; PINELLI, DAVIDE; NOCENTINI, MASSIMO; ZANNONI, ARIANNA; FEDI, STEFANO; BALEANI, EMILIA; ZANNONI, DAVIDE; A. Farneti; A. Battistelli;The aerobic cometabolic biodegradation of a mixture of chlorinated aliphatic hydrocarbons (CAHs) including vinyl chloride (VC), cis- and trans-1,2-dichloroethylene (cis-DCE, trans-DCE), trichloroethylene (TCE), 1,1,2-trichloroethane (1,1,2-TCA) and 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA) was investigated at both 25 and 17 degrees C by means of bioaugmented and non-bioaugmented sediment-groundwater slurry microcosm tests. The goals of the study were (i) to study the long-term aerobic biodegradation of a CAH mixture including a high-chlorinated solvent (1,1,2,2-TeCA) generally considered non-biodegradable in aerobic conditions; (ii) to investigate the efficacy of bioaugmentation with two types of internal inocula obtained from the indigenous biomass of the studied site; (iii) to identify the CAH-degrading bacteria. VC, methane and propane were utilized as growth substrates. The non-bioaugmented microcosms were characterized, at 25 degrees C, by an average 18-day lag-time for the direct metabolism of VC (accompanied by the cometabolism of cis- and trans-DCE) and by long lag-times (36-264 days) for the onset of methane or propane utilization (associated with the cometabolism of the remaining CAHs). In the inoculated microcosms the lag-phases for the onset of growth substrate utilization and CAH cometabolism were significantly shorter (0-15 days at 25 degrees C). Biodegradation of the 6-CAH mixture was successfully continued for up to 410 days. The low-chlorinated solvents were characterized by higher depletion rates. The composition of the microbial consortium of a propane-utilizing microcosm was determined by 16s rDNA sequencing and phylotype analysis. To the best of our knowledge, this is the first study that documents the long-term aerobic biodegradation of 1,1,2,2-TeCA.
Journal of Hazardous... arrow_drop_down Journal of Hazardous MaterialsArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2006.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Hazardous... arrow_drop_down Journal of Hazardous MaterialsArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2006.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | MINOTAURUSEC| MINOTAURUSFRASCARI, DARIO; BUCCHI, GIACOMO; DORIA, FRANCESCO; ROSATO, ANTONELLA; TAVANAIE, NASRIN; Raffaele Salviulo; CIAVARELLI, ROBERTA; PINELLI, DAVIDE; FRARACCIO, SERENA; ZANAROLI, GIULIO; FAVA, FABIO;A procedure for the design of an aerobic cometabolic process for the on-site degradation of chlorinated solvents in a packed bed reactor was developed using groundwater from an aquifer contaminated by trichloroethylene (TCE) and 1,1,2,2-tetrachloroethane (TeCA). The work led to the selection of butane among five tested growth substrates, and to the development and characterization from the site's indigenous biomass of a suspended-cell consortium capable to degrade TCE (first order constant: 96 L gprotein(-1) day(-1) at 30 °C and 4.3 L gprotein(-1) day(-1) at 15 °C) with a 90 % mineralization of the organic chlorine. The consortium immobilization had strong effects on the butane and TCE degradation rates. The microbial community structure was slightly changed by a temperature shift from 30 to 15 °C, but remarkably affected by biomass adhesion. Given the higher TCE normalized degradation rate (0.59 day(-1) at 15 °C) and attached biomass concentration (0.13 gprotein Lbioreactor(-1) at 15 °C) attained, the porous ceramic carrier Biomax was selected as the best option for the packed bed reactor process. The low TeCA degradation rate exhibited by the developed consortium suggested the inclusion of a chemical pre-treatment based on the TeCA to TCE conversion via β-elimination, a very fast reaction at alkaline pH. To the best of the authors' knowledge, this represents the first attempt to develop a procedure for the development of a packed bed reactor process for the aerobic cometabolism of chlorinated solvents.
Biodegradation arrow_drop_down http://dx.doi.org/10.1007/s105...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10532-013-9664-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Biodegradation arrow_drop_down http://dx.doi.org/10.1007/s105...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10532-013-9664-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2006 ItalyPublisher:Springer Science and Business Media LLC FRASCARI, DARIO; PINELLI, DAVIDE; NOCENTINI, MASSIMO; FEDI, STEFANO; Y. Pii; ZANNONI, DAVIDE;The ability of a Rhodococcus aetherovorans strain, BCP1, to grow on butane and to degrade chloroform in the 0-633 microM range (0-75.5 mg l(-1)) via aerobic cometabolism was investigated by means of resting-cell assays. BCP1 degraded chloroform with a complete mineralization of the organic Cl. The resulting butane and chloroform maximum specific degradation rates were equal to 118 and 22 micromol mg(protein)(-1)day(-1), respectively. Butane inhibition on chloroform degradation was satisfactorily interpreted by means of a model of competitive inhibition, with an inhibition constant equal to 38 % of the estimated butane half-saturation constant, whereas chloroform (at 11 microM) did not inhibit butane utilization. Acetylene (1,720 microM) induced an almost complete inactivation of the degradation of both butane and chloroform, indicating that the studied cometabolic process is mediated by a monooxygenase enzyme. BCP1 proved capable of degrading vinyl chloride and 1,1,2-trichloroethane, but not 1,2-trans-dichloroethylene. BCP1 could grow on the intermediates of the most common butane metabolic pathways and on the aliphatic hydrocarbons from ethane to n-heptane. After growth on n-hexane, it was able to deplete chloroform (13 microM) with a degradation rate higher than that obtained, at the same chloroform concentration, after growth on butane.
Applied Microbiology... arrow_drop_down Applied Microbiology and BiotechnologyArticle . 2006 . Peer-reviewedLicense: Springer TDMData sources: CrossrefIRIS - Università degli Studi di VeronaArticle . 2006Data sources: IRIS - Università degli Studi di VeronaIRIS - Università degli Studi di VeronaConference object . 2006Data sources: IRIS - Università degli Studi di Veronaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00253-006-0433-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Microbiology... arrow_drop_down Applied Microbiology and BiotechnologyArticle . 2006 . Peer-reviewedLicense: Springer TDMData sources: CrossrefIRIS - Università degli Studi di VeronaArticle . 2006Data sources: IRIS - Università degli Studi di VeronaIRIS - Università degli Studi di VeronaConference object . 2006Data sources: IRIS - Università degli Studi di Veronaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00253-006-0433-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu