- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Funder
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:MDPI AG Funded by:EC | RealTideEC| RealTideMarilou Jourdain de Thieulloy; Mairi Dorward; Chris Old; Roman Gabl; Thomas Davey; David M. Ingram; Brian G. Sellar;Harnessing the energy of tidal currents has huge potential as a source of clean renewable energy. To do so in a reliable and cost effective way, it is critical to understand the interaction between tidal turbines, waves, and turbulent currents in the ocean. Scaled testing in a tank test provides a controlled, realistic, and highly reproducible down-scaled open ocean environment, and it is a key step in gaining this understanding. Knowledge of the hydrodynamic conditions during tests is critical and measurements at multiple locations are required to accurately characterise spatially varying flow in test tank facilities. The paper presents a laboratory technique using an acoustic velocimetry instrument, the range over-which measurements are acquired being more akin to open water applications. This enables almost simultaneous multi-point measurements of uni-directional velocity along a horizontal profile. Velocity measurements have been obtained from a horizontally mounted Single Beam Acoustic Doppler (SB-ADP) profiler deployed in the FloWave Ocean Energy Research Facility at the University of Edinburgh. These measurements have been statistically compared with point measurements obtained while using a co-located Acoustic Doppler Velocimeter (ADV). Measurements were made with both instruments under flow velocities varying from 0.6 ms−1 to 1.2 ms−1, showing that flow higher than 1 ms−1 was more suitable. Using a SB-ADP has shown the advantage of gaining 54 simultaneous measurement points of uni-directional velocity, covering a significant area with a total distance of 10 m of the test-tank, at a measurement frequency of 16 Hz. Of those measurement points, 41 were compared with co-located ADV measurements covering 8 m of the profile for a tank nominal flow velocity of 0.8 ms−1, and four distributed locations were chosen to to carry out the study at 0.6 ms−1, 1.0 ms−1, and 1.2 ms−1. The comparison with the ADV measurement showed a 2% relative bias on average.
Sensors arrow_drop_down SensorsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1424-8220/20/14/3881/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s20143881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1424-8220/20/14/3881/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s20143881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2020Publisher:MDPI AG Funded by:EC | RealTideEC| RealTideMarilou Jourdain de Thieulloy; Mairi Dorward; Chris Old; Roman Gabl; Thomas Davey; David M. Ingram; Brian G. Sellar;doi: 10.3390/data5030061
Acoustic Doppler Profilers (ADPs) are routinely used to measure flow velocity in the ocean, enabling multi-points measurement along a profile while Acoustic Doppler Velocimeters (ADVs) are laboratory instruments that provide very precise point velocity measurement. The experimental set-up allows laboratory comparison of measurement from these two instruments. Simultaneous multi-point measurements of velocity along the horizontal tank profile from Single-Beam Acoustic Doppler Profiler (SB-ADP) were compared against multiple co-located point measurements from an ADV. Measurements were performed in the FloWave Ocean Energy Research Facility at the University of Edinburgh at flow velocities between 0.6 ms − 1 and 1.2 ms − 1 . This paper describes the data; the analysis of the inter-instrument comparison is presented in an associated Sensors paper by the same authors. This data-set contains (a) time series of raw SB-ADP uni-directional velocity measurements along a 10 m tank profile binned into 54 measurements cells and (b) ADV point measurements of three-directional velocity time series recorded in beam coordinates at selected locations along the profile. Associated with the data are instrument generated quality data, metadata and user-derived quality flags. An analysis of the quality of SB-ADP data along the profile is presented. This data-set provides multiple contemporaneous velocity measurements along the tank profile, relevant for correlation statistics, length-scale calculations and validation of numerical models simulating flow hydrodynamics in circular test facilities.
Data arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/5/3/61/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data5030061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 5 Powered bymore_vert Data arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/5/3/61/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data5030061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:MDPI AG Funded by:EC | RealTideEC| RealTideMarilou Jourdain de Thieulloy; Mairi Dorward; Chris Old; Roman Gabl; Thomas Davey; David M. Ingram; Brian G. Sellar;Harnessing the energy of tidal currents has huge potential as a source of clean renewable energy. To do so in a reliable and cost effective way, it is critical to understand the interaction between tidal turbines, waves, and turbulent currents in the ocean. Scaled testing in a tank test provides a controlled, realistic, and highly reproducible down-scaled open ocean environment, and it is a key step in gaining this understanding. Knowledge of the hydrodynamic conditions during tests is critical and measurements at multiple locations are required to accurately characterise spatially varying flow in test tank facilities. The paper presents a laboratory technique using an acoustic velocimetry instrument, the range over-which measurements are acquired being more akin to open water applications. This enables almost simultaneous multi-point measurements of uni-directional velocity along a horizontal profile. Velocity measurements have been obtained from a horizontally mounted Single Beam Acoustic Doppler (SB-ADP) profiler deployed in the FloWave Ocean Energy Research Facility at the University of Edinburgh. These measurements have been statistically compared with point measurements obtained while using a co-located Acoustic Doppler Velocimeter (ADV). Measurements were made with both instruments under flow velocities varying from 0.6 ms−1 to 1.2 ms−1, showing that flow higher than 1 ms−1 was more suitable. Using a SB-ADP has shown the advantage of gaining 54 simultaneous measurement points of uni-directional velocity, covering a significant area with a total distance of 10 m of the test-tank, at a measurement frequency of 16 Hz. Of those measurement points, 41 were compared with co-located ADV measurements covering 8 m of the profile for a tank nominal flow velocity of 0.8 ms−1, and four distributed locations were chosen to to carry out the study at 0.6 ms−1, 1.0 ms−1, and 1.2 ms−1. The comparison with the ADV measurement showed a 2% relative bias on average.
Sensors arrow_drop_down SensorsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1424-8220/20/14/3881/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s20143881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sensors arrow_drop_down SensorsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1424-8220/20/14/3881/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s20143881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2020Publisher:MDPI AG Funded by:EC | RealTideEC| RealTideMarilou Jourdain de Thieulloy; Mairi Dorward; Chris Old; Roman Gabl; Thomas Davey; David M. Ingram; Brian G. Sellar;doi: 10.3390/data5030061
Acoustic Doppler Profilers (ADPs) are routinely used to measure flow velocity in the ocean, enabling multi-points measurement along a profile while Acoustic Doppler Velocimeters (ADVs) are laboratory instruments that provide very precise point velocity measurement. The experimental set-up allows laboratory comparison of measurement from these two instruments. Simultaneous multi-point measurements of velocity along the horizontal tank profile from Single-Beam Acoustic Doppler Profiler (SB-ADP) were compared against multiple co-located point measurements from an ADV. Measurements were performed in the FloWave Ocean Energy Research Facility at the University of Edinburgh at flow velocities between 0.6 ms − 1 and 1.2 ms − 1 . This paper describes the data; the analysis of the inter-instrument comparison is presented in an associated Sensors paper by the same authors. This data-set contains (a) time series of raw SB-ADP uni-directional velocity measurements along a 10 m tank profile binned into 54 measurements cells and (b) ADV point measurements of three-directional velocity time series recorded in beam coordinates at selected locations along the profile. Associated with the data are instrument generated quality data, metadata and user-derived quality flags. An analysis of the quality of SB-ADP data along the profile is presented. This data-set provides multiple contemporaneous velocity measurements along the tank profile, relevant for correlation statistics, length-scale calculations and validation of numerical models simulating flow hydrodynamics in circular test facilities.
Data arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/5/3/61/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data5030061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 5 Powered bymore_vert Data arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/5/3/61/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data5030061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu