- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:American Chemical Society (ACS) Ganesh Ram Shrestha; Justin Ellis; Justin Ellis; Yanju Chen; Yanju Chen; Rufus Edwards; Joseph Arineitwe; Pengfei Chen; Qianggong Zhang; Ryan F. Thompson; Cheryl L Weyant; Ashma Vaidya; Shichang Kang; Chaoliu Li; Tami C. Bond; Mahesh Yagnaraman;pmid: 30798588
Traditional biomass stoves are a major global contributor to emissions that impact climate change and health. This paper reports emission factors of particulate matter (PM2.5), carbon monoxide (CO), organic carbon (OC), black carbon (EC), optical absorption, and scattering from 46 South Asian, 48 Tibetan, and 4 Ugandan stoves. These measurements plus a literature review provide insight into the robustness of emission factors used in emission inventories. Tibetan dung stoves produced high average PM2.5 emission factors (23 and 43 gkg-1 for chimney and open stoves) with low average EC (0.3 and 0.7 gkg-1, respectively). Comparatively, PM2.5 from South Asian stoves (7 gkg-1) was in the range of previous measurements and near values used in inventories. EC emission factors varied between stoves and fuels ( p < 0.001), without corresponding differences in absorption; stoves that produced little EC, produced enough brown carbon to have about the same absorption as stoves with high EC emissions. In Tibetan dung stoves, for example, OC contributed over 20% of the absorption. Overall, EC emission factors were not correlated with PM2.5 and were constrained to low values, relative to PM2.5, over a wide range of combustion conditions. The average measured EC emission factor (1 gkg-1), was near current inventory estimates.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.8b05199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu49 citations 49 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.8b05199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Xiaobo He; Shaopeng Gao; Fangping Yan; Pengfei Chen; Zhaofu Hu; Shichang Kang; Chaoliu Li; Xiaofei Li; Yulan Zhang;pmid: 31791511
Carbonaceous matter has an important impact on glacial retreat in the Tibetan Plateau, further affecting the water resource supply. However, the related studies on carbonaceous matter are still scarce in Geladaindong (GLDD) region, the source of the Yangtze River. Therefore, the concentration, source and variations of carbonaceous matter at Ganglongjiama (GLJM) glacier in GLDD region were investigated during the melting period in 2017, which could deepen our understanding on carbonaceous matter contribution to glacier melting. The results showed that dissolved organic carbon (DOC) concentration of snowpit samples (283 ± 200 μg/L) was much lower than that of precipitation samples (624 ± 361 μg/L), indicating that large parts of DOC could be rapidly leached from the snowpit during the melting process. In contrast, refractory black carbon (rBC) concentration measured by Single Particle Soot Photometer of snowpit samples (4.27 ± 3.15 μg/L) was much higher than that of precipitation samples (0.97 ± 0.49 μg/L). Similarly, DOC with high mass absorption cross-section measured at 365 nm value was also likely to enrich in snowpit during the melting process. In addition, it was found that both rBC and DOC with high light-absorbing ability began to leach from the snowpit when melting process became stronger. Therefore, rBC and DOC with high light-absorbing ability exhibited similar behavior during the melting process. Based on relationship among DOC, rBC and K+ in precipitation, the main source of carbonaceous matter in GLJM glacier was biomass burning during the study period.
Journal of Environme... arrow_drop_down Journal of Environmental SciencesArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jes.2019.08.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental SciencesArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jes.2019.08.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Lekhendra Tripathee; Kirpa Ram; Pengfei Chen; Qianggong Zhang; Shichang Kang; Shichang Kang; Chaoliu Li; Junming Guo; Tao Pu; Arnico K. Panday; Maheswar Rupakheti; Xiaoxiang Wang;pmid: 32114124
This study presents a comprehensive analysis of organic carbon (OC), elemental carbon (EC), and particularly the light absorption characteristics of EC and water-soluble brown carbon (WS-BrC) in total suspended particles in the Kathmandu Valley from April 2013 to January 2018. The mean OC, EC, and water-soluble organic carbon (WSOC) concentrations were 34.8 ± 27.1, 9.9 ± 5.8, and 17.4 ± 12.5 μg m-3, respectively. A clear seasonal variation was observed for all carbonaceous components with higher concentrations occurring during colder months and lower concentrations in the monsoon season. The relatively low OC/EC ratio (3.6 ± 2.0) indicates fossil fuel combustion as the primary source of carbonaceous components. The optical attenuation (ATN) at 632 nm was significantly connected with EC loading (ECS) below 15 μg cm-2 but ceased as ECS increased, reflecting the increased influence of the shadowing effect. The derived average mass absorption cross-section of EC (MACEC) (7.0 ± 4.2 m2 g-1) is comparable to that of freshly emitted EC particles, further attesting that EC was mainly produced from local sources with minimal atmospheric aging processes. Relatively intensive coating with organic aerosols and/or salts (e.g., sulfate, nitrate) was probably the reason for the slightly higher MACEC during the monsoon season, whereas increased biomass burning was a major factor leading to lower MACEC in other seasons. The average MACWS-BrC at 365 nm was 1.4 ± 0.3 m2 g-1 with minimal seasonal variations. In contrast to MACEC, biomass burning was the main reason for a higher MACWS-BrC in the non-monsoon season. The relative light absorption contribution of WS-BrC to EC was 9.9% over the 300-700 nm wavelength range, with a slightly higher ratio (13.6%) in the pre-monsoon season. Therefore, both EC and WS-BrC should be considered in the study of optical properties and radiative forcing of carbonaceous aerosols in this region.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2020.114239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2020.114239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Huijun Zheng; Xin Wan; Shichang Kang; Pengfei Chen; Quanlian Li; Linda Maharjan; Junming Guo;pmid: 37913981
Organic aerosols have profound and far-reaching influences on the Earth's climate, ecosystems, environmental quality, and public health. Elucidating the precise composition and sources of these aerosols over the Tibetan Plateau, a region highly sensitive to climate change and vulnerable to ecosystems, is critically important. Sixteen organic molecular tracers in aerosols were quantified using solvent extraction-BSTFA derivatization, and GC/MS analysis at six sites over the Tibetan Plateau during 2014 and 2016. Average total tracer concentration was 32.5 ± 20.1 ng m-3. The highest levels of biomass burning tracers (anhydrosugars and aromatic acids) were found at southeastern Tibetan Plateau site Yulong (20.8 ± 21.3 ng m-3) followed by the western site Ngari (13.3 ± 10.6 ng m-3). Biomass burning tracers decreased from southern sites like Everest (9.50 ± 10.5 ng m-3) to northern aeras such as Laohugou (2.59 ± 2.19 ng m-3). Biomass burning tracers peaked in non-monsoon seasons while primary saccharides and sugar alcohols predominated during monsoon months. Using tracer-based methods, biomass burning contributed 0.4%-8.4% of organic carbon over the plateau, with higher non-monsoon contributions (3.6% ± 3.7%). Backward air mass trajectories and fire spots indicated South Asian biomass burning impacts on organic aerosols at western, southern, and southeastern Tibetan Plateau sites, particularly in non-monsoon periods. Fungal spores and plant debris comprised 0.6%-6.3% and 0.3%-1.2% of organic carbon respectively, with higher monsoon contributions (4.2% ± 4.7%) of fungal spores. Secondary organic carbon was estimated to contribute substantially (45.5%-73.5%) over the plateau but requires further investigation. These results provide insights into pollution mitigation and the assessments of climate and ecology changes for the Tibetan Plateau.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4547061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4547061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Zhaofu Hu; Mika Sillanpää; Pengfei Chen; Chaoliu Li; Zhiyong Wang; Fangping Yan; Shichang Kang; Shaopeng Gao; Yulan Zhang;pmid: 28502054
Carbonaceous aerosols over the Tibetan Plateau originate primarily from biomass burning and vehicle emissions (BB and VEs, respectively). The light absorption characteristics of these carbonaceous aerosols are closely correlated with the burning conditions and represent key factors that influence climate forcing. In this study, the light absorption characteristics of elemental carbon (EC) and water-soluble organic carbon (WSOC) in PM2.5 (fine particulate matter smaller than 2.5 μm) generated from BB and VEs were investigated over the Tibetan Plateau (TP). The results showed that the organic carbon (OC)/EC ratios from BB- and VE-sourced PM2.5 were 17.62 ± 10.19 and 1.19 ± 0.36, respectively. These values were higher than the ratios in other regions, which was primarily because of the diminished amount of oxygen over the TP. The mass absorption cross section of EC (MACEC) at 632 nm for the BB-sourced PM2.5 (6.10 ± 1.21 m2.g-1) was lower than that of the VE-sourced PM2.5 (8.10 ± 0.98 m2.g-1), indicating that the EC content of the BB-sourced PM2.5 was overestimated because of the high OC/EC ratio. The respective absorption per mass (α/ρ) values at 365 nm for the VE- and BB-sourced PM2.5 were 0.71 ± 0.17 m2.g-1 and 0.91 ± 0.18 m2.g-1. The α/ρ value of the VEs was loaded between that of gasoline and diesel emissions, indicating that the VE-sourced PM2.5 originated from both types of emissions. Because OC and WSOC accounts for most of the carbonaceous aerosols at remote area of the TP, the radiative forcing contributed by the WSOC should be high, and requires further investigation.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-017-9077-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-017-9077-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Quanlian Li; Yao Li; Ninglian Wang; Tanuj Shukla; Xiaobo Wu; Xiunan Yao; Shijin Wang; Xin Wan; Pengfei Chen; Huan Zhang; Baoshou Shen; Zhiwen Dong; Jingquan Wu;pmid: 38964642
Biomass burning play a key role in the global carbon cycle by altering the atmospheric composition, and affect regional and global climate. Despite its importance, a very few high-resolution records are available worldwide, especially for recent climate change. This study analyzes levoglucosan, a specific tracer of biomass burning emissions, in a 38-year ice core retrieved from the Shulehe Glacier No. 4, northeastern Tibetan Plateau. The levoglucosan concentration in the Shulehe Glacier No. 4 ice core ranged from 0.1 to 55 ng mL-1, with an average concentration of 8 ± 8 ng mL-1. The concentrations showed a decreasing trend from 2002 to 2018. Meanwhile, regional wildfire activities in Central Asian also exhibited a declining trend during the same period, suggesting the potential correspondence between levoglucosan concentration of the Shulehe Glacier No. 4 ice core and the fire activity of Central Asia. Furthermore, a positive correlation also exists between the levoglucosan concentration of the Shulehe Glacier No. 4 ice core and the wildfire counts in Central Asia from 2002 to 2018. While backward air mass trajectory analysis and fire spots data showed a higher distribution of fire counts in South Asia compared to Central Asia, but the dominance of westerly circulation in the northern TP throughout the year. Therefore, the levoglucosan in the Shulehe Glacier No. 4 provides clear evidence of Central Asian wildfire influence on Tibetan Plateau glaciers through westerlies. This highlights a great importance of ice core data for wildfire history reconstruction in the Tibetan Plateau Glacier regions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2024.124496&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2024.124496&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Zhaofu Hu; Shichang Kang; Chaoliu Li; Chao Zhang; Fangping Yan; Pengfei Chen; Duoji Danmuzhen;pmid: 39521170
Elemental carbon (EC), also known as black carbon, plays an important role in climate change. Accurately assessing EC concentration in aerosols remains challenging due to the overestimations caused by carbonates and organic carbon (OC) during thermal-optical measurement in the Tibetan Plateau (TP). This study evaluates the extent of EC overestimated by carbonates and OC at four remote sites (Nyalamu, Lulang, Everest and Ngari) in southern and western of the TP using different treatments. The average overestimation of EC concentration due to acid treatment was consistent across all sites (25.5 ± 2.4 %). After correction, the proportion of EC overestimated by carbonates were approximately 8.5 ± 7.3 %, 12.3 ± 6.9 %, 18.1 ± 11.8 % and 22.7 ± 13.3 %, respectively, revealing an increasing trend from humid to arid regions. Methanol-soluble OC (MSOC) concentrations were significantly correlated with the reduction of EC concentrations, indicating that the methanol extraction effectively mitigates EC overestimation. Seasonal variation of carbonaceous aerosol concentrations was significantly affected by sources from South Asia. Despite the variations in climate and aerosol sources, the average overestimations of measured EC concentration by carbonates and OC were similar at Nyalamu (49.4 ± 14.0 %), Lulang (47.8 ± 8.4 %), Everest (48.7 ± 15.9 %) and Ngari (49.3 ± 13.7 %) sites. Therefore, the actual EC concentrations were only about 51.2 ± 13.1 % of the original values. This estimation will significantly enhance the contribution of brown carbon (BrC) to radiative forcing relative to EC, highlighting a critical area for future research. Investigating the actual concentrations of EC in the TP provides critical data to support model simulation and validate model accuracy, further enhancing our understanding of EC's impacts on climate warming and glacier melting.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2024.125277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2024.125277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Maheswar Rupakheti; Junming Guo; Pengfei Chen; Lekhendra Tripathee; Dipesh Rupakheti; Chaoliu Li; Arnico K. Panday; Qianggong Zhang; Shichang Kang; Shichang Kang; Tao Pu;pmid: 31940147
Total suspended particles (TSP) were collected in Lumbini from April 2013 to March 2016 to better understand the characteristics of carbonaceous aerosol (CA) concentrations, compositions and sources and their light absorption properties in rural region of severe polluted Indo-Gangetic Plain (IGP). Extremely high TSP (203.9 ± 109.6 μg m-3), organic carbon (OC 32.1 ± 21.7 μg m-3), elemental carbon (EC 6.44 ± 3.17 μg m-3) concentrations were observed in Lumbini particularly during winter and post-monsoon seasons, reflecting the combined influences of emission sources and weather conditions. SO42- (7.34 ± 4.39 μg m-3) and Ca2+ (5.46 ± 5.20 μg m-3) were the most dominant anion and cation in TSP. These components were comparable to those observed in urban areas in South and East Asia but significantly higher than those in remote regions over the Himalayas and Tibetan Plateau, suggesting severe air pollution in the study region. Various combustion activities including industry, vehicle emission, and biomass burning are the main reasons for high pollutant concentrations. The variation of OC/EC ratio further suggested that biomass such as agro-residue burning contributed a lot for CA, particularly during the non-monsoon season. The average mass absorption cross-section of EC (MACEC) and water-soluble organic carbon (MACWSOC) were 7.58 ± 3.39 and 1.52 ± 0.41 m2 g-1, respectively, indicating that CA in Lumbini was mainly affected by local emissions. Increased biomass burning decreased MACEC; whereas, it could result in high MACWSOC during the non-monsoon season. Furthermore, dust is one important factor causing higher MACWSOC during the pre-monsoon season.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-020-07618-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-020-07618-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Lekhendra Tripathee; Pengfei Chen; Arnico K. Panday; Hewen Niu; Yulan Zhang; Zhenming Ji; Xin Wan; Chaoliu Li; Maheswar Rupakheti; Qianggong Zhang; Chaman Gul; Gang Li; Shichang Kang; Zhiyuan Cong; Junming Guo;pmid: 31302402
Carbonaceous aerosols (CAs) scatter and absorb incident solar radiation in the atmosphere, thereby influencing the regional climate and hydrological cycle, particularly in the Third Pole (TP). Here, we present the characteristics of CAs at 19 observation stations from the Atmospheric Pollution and Cryospheric Change network to obtain a deep understanding of pollutant status in the TP. The organic carbon (OC) and elemental carbon (EC) concentrations decreased noticeably inwards from outside to inland of the TP, consistent with their emission load and also affected by transport process and meteorological condition. Urban areas, such as Kathmandu, Karachi, and Mardan, exhibited extremely high OC and EC concentrations, with low and high values occurring in the monsoon and non-monsoon seasons, respectively. However, remote regions inland the TP (e.g., Nam Co and Ngari) demonstrated much lower OC and EC concentrations. Different seasonal variations were observed between the southern and northern parts of the TP, suggesting differences in the patterns of pollutant sources and in distance from the sources between the two regions. In addition to the influence of long-range transported pollutants from the Indo-Gangetic Plain (IGP), the TP was affected by local emissions (e.g., biomass burning). The OC/EC ratio also suggested that biomass burning was prevalent in the center TP, whereas the marginal sites (e.g., Jomsom, Dhunche, and Laohugou) were affected by fossil fuel combustion from the up-wind regions. The mass absorption cross-section of EC (MACEC) at 632 nm ranged from 6.56 to 14.7 m2 g-1, with an increasing trend from outside to inland of the TP. Urban areas had low MACEC values because such regions were mainly affected by local fresh emissions. In addition, large amount of brown carbon can decrease the MACEC values in cities of South Asia. Remote sites had high MACEC values because of the coating enhancement of aerosols. Influenced by emission, transport process, and weather condition, the CA concentrations and MACEC presented decreasing and increasing trends, respectively, from outside to inland of the TP.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2019.06.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2019.06.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Jin Dang; Chaoliu Li; Jihua Li; Andy Dang; Qianggong Zhang; Pengfei Chen; Shichang Kang; Derek Dunn-Rankin;doi: 10.3390/en12061089
Solid fuel cooking stoves have been used as primary energy sources for residential cooking and heating activities throughout human history. It has been estimated that domestic combustion of solid fuels makes a considerable contribution to global greenhouse gas (GHG) and pollutant emissions. The majority of data collected from simulated tests in laboratories does not accurately reflect the performance of stoves in actual use. This study characterizes in-field emissions of fine particulate matter (PM2.5), carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), and total non-methane hydrocarbons (TNMHC) from residential cooking events with various fuel and stove types from villages in two provinces in China (Tibet and Yunnan) in the Himalayan area. Emissions of PM2.5 and gas-phase pollutant concentrations were measured directly and corresponding emission factors calculated using the carbon balance approach. Real-time monitoring of indoor PM2.5, CO2, and CO concentrations was conducted simultaneously. Major factors responsible for emission variance among and between cooking stoves are discussed.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/6/1089/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12061089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/6/1089/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12061089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:American Chemical Society (ACS) Ganesh Ram Shrestha; Justin Ellis; Justin Ellis; Yanju Chen; Yanju Chen; Rufus Edwards; Joseph Arineitwe; Pengfei Chen; Qianggong Zhang; Ryan F. Thompson; Cheryl L Weyant; Ashma Vaidya; Shichang Kang; Chaoliu Li; Tami C. Bond; Mahesh Yagnaraman;pmid: 30798588
Traditional biomass stoves are a major global contributor to emissions that impact climate change and health. This paper reports emission factors of particulate matter (PM2.5), carbon monoxide (CO), organic carbon (OC), black carbon (EC), optical absorption, and scattering from 46 South Asian, 48 Tibetan, and 4 Ugandan stoves. These measurements plus a literature review provide insight into the robustness of emission factors used in emission inventories. Tibetan dung stoves produced high average PM2.5 emission factors (23 and 43 gkg-1 for chimney and open stoves) with low average EC (0.3 and 0.7 gkg-1, respectively). Comparatively, PM2.5 from South Asian stoves (7 gkg-1) was in the range of previous measurements and near values used in inventories. EC emission factors varied between stoves and fuels ( p < 0.001), without corresponding differences in absorption; stoves that produced little EC, produced enough brown carbon to have about the same absorption as stoves with high EC emissions. In Tibetan dung stoves, for example, OC contributed over 20% of the absorption. Overall, EC emission factors were not correlated with PM2.5 and were constrained to low values, relative to PM2.5, over a wide range of combustion conditions. The average measured EC emission factor (1 gkg-1), was near current inventory estimates.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.8b05199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu49 citations 49 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.8b05199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Xiaobo He; Shaopeng Gao; Fangping Yan; Pengfei Chen; Zhaofu Hu; Shichang Kang; Chaoliu Li; Xiaofei Li; Yulan Zhang;pmid: 31791511
Carbonaceous matter has an important impact on glacial retreat in the Tibetan Plateau, further affecting the water resource supply. However, the related studies on carbonaceous matter are still scarce in Geladaindong (GLDD) region, the source of the Yangtze River. Therefore, the concentration, source and variations of carbonaceous matter at Ganglongjiama (GLJM) glacier in GLDD region were investigated during the melting period in 2017, which could deepen our understanding on carbonaceous matter contribution to glacier melting. The results showed that dissolved organic carbon (DOC) concentration of snowpit samples (283 ± 200 μg/L) was much lower than that of precipitation samples (624 ± 361 μg/L), indicating that large parts of DOC could be rapidly leached from the snowpit during the melting process. In contrast, refractory black carbon (rBC) concentration measured by Single Particle Soot Photometer of snowpit samples (4.27 ± 3.15 μg/L) was much higher than that of precipitation samples (0.97 ± 0.49 μg/L). Similarly, DOC with high mass absorption cross-section measured at 365 nm value was also likely to enrich in snowpit during the melting process. In addition, it was found that both rBC and DOC with high light-absorbing ability began to leach from the snowpit when melting process became stronger. Therefore, rBC and DOC with high light-absorbing ability exhibited similar behavior during the melting process. Based on relationship among DOC, rBC and K+ in precipitation, the main source of carbonaceous matter in GLJM glacier was biomass burning during the study period.
Journal of Environme... arrow_drop_down Journal of Environmental SciencesArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jes.2019.08.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental SciencesArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jes.2019.08.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Lekhendra Tripathee; Kirpa Ram; Pengfei Chen; Qianggong Zhang; Shichang Kang; Shichang Kang; Chaoliu Li; Junming Guo; Tao Pu; Arnico K. Panday; Maheswar Rupakheti; Xiaoxiang Wang;pmid: 32114124
This study presents a comprehensive analysis of organic carbon (OC), elemental carbon (EC), and particularly the light absorption characteristics of EC and water-soluble brown carbon (WS-BrC) in total suspended particles in the Kathmandu Valley from April 2013 to January 2018. The mean OC, EC, and water-soluble organic carbon (WSOC) concentrations were 34.8 ± 27.1, 9.9 ± 5.8, and 17.4 ± 12.5 μg m-3, respectively. A clear seasonal variation was observed for all carbonaceous components with higher concentrations occurring during colder months and lower concentrations in the monsoon season. The relatively low OC/EC ratio (3.6 ± 2.0) indicates fossil fuel combustion as the primary source of carbonaceous components. The optical attenuation (ATN) at 632 nm was significantly connected with EC loading (ECS) below 15 μg cm-2 but ceased as ECS increased, reflecting the increased influence of the shadowing effect. The derived average mass absorption cross-section of EC (MACEC) (7.0 ± 4.2 m2 g-1) is comparable to that of freshly emitted EC particles, further attesting that EC was mainly produced from local sources with minimal atmospheric aging processes. Relatively intensive coating with organic aerosols and/or salts (e.g., sulfate, nitrate) was probably the reason for the slightly higher MACEC during the monsoon season, whereas increased biomass burning was a major factor leading to lower MACEC in other seasons. The average MACWS-BrC at 365 nm was 1.4 ± 0.3 m2 g-1 with minimal seasonal variations. In contrast to MACEC, biomass burning was the main reason for a higher MACWS-BrC in the non-monsoon season. The relative light absorption contribution of WS-BrC to EC was 9.9% over the 300-700 nm wavelength range, with a slightly higher ratio (13.6%) in the pre-monsoon season. Therefore, both EC and WS-BrC should be considered in the study of optical properties and radiative forcing of carbonaceous aerosols in this region.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2020.114239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2020.114239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Huijun Zheng; Xin Wan; Shichang Kang; Pengfei Chen; Quanlian Li; Linda Maharjan; Junming Guo;pmid: 37913981
Organic aerosols have profound and far-reaching influences on the Earth's climate, ecosystems, environmental quality, and public health. Elucidating the precise composition and sources of these aerosols over the Tibetan Plateau, a region highly sensitive to climate change and vulnerable to ecosystems, is critically important. Sixteen organic molecular tracers in aerosols were quantified using solvent extraction-BSTFA derivatization, and GC/MS analysis at six sites over the Tibetan Plateau during 2014 and 2016. Average total tracer concentration was 32.5 ± 20.1 ng m-3. The highest levels of biomass burning tracers (anhydrosugars and aromatic acids) were found at southeastern Tibetan Plateau site Yulong (20.8 ± 21.3 ng m-3) followed by the western site Ngari (13.3 ± 10.6 ng m-3). Biomass burning tracers decreased from southern sites like Everest (9.50 ± 10.5 ng m-3) to northern aeras such as Laohugou (2.59 ± 2.19 ng m-3). Biomass burning tracers peaked in non-monsoon seasons while primary saccharides and sugar alcohols predominated during monsoon months. Using tracer-based methods, biomass burning contributed 0.4%-8.4% of organic carbon over the plateau, with higher non-monsoon contributions (3.6% ± 3.7%). Backward air mass trajectories and fire spots indicated South Asian biomass burning impacts on organic aerosols at western, southern, and southeastern Tibetan Plateau sites, particularly in non-monsoon periods. Fungal spores and plant debris comprised 0.6%-6.3% and 0.3%-1.2% of organic carbon respectively, with higher monsoon contributions (4.2% ± 4.7%) of fungal spores. Secondary organic carbon was estimated to contribute substantially (45.5%-73.5%) over the plateau but requires further investigation. These results provide insights into pollution mitigation and the assessments of climate and ecology changes for the Tibetan Plateau.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4547061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4547061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Zhaofu Hu; Mika Sillanpää; Pengfei Chen; Chaoliu Li; Zhiyong Wang; Fangping Yan; Shichang Kang; Shaopeng Gao; Yulan Zhang;pmid: 28502054
Carbonaceous aerosols over the Tibetan Plateau originate primarily from biomass burning and vehicle emissions (BB and VEs, respectively). The light absorption characteristics of these carbonaceous aerosols are closely correlated with the burning conditions and represent key factors that influence climate forcing. In this study, the light absorption characteristics of elemental carbon (EC) and water-soluble organic carbon (WSOC) in PM2.5 (fine particulate matter smaller than 2.5 μm) generated from BB and VEs were investigated over the Tibetan Plateau (TP). The results showed that the organic carbon (OC)/EC ratios from BB- and VE-sourced PM2.5 were 17.62 ± 10.19 and 1.19 ± 0.36, respectively. These values were higher than the ratios in other regions, which was primarily because of the diminished amount of oxygen over the TP. The mass absorption cross section of EC (MACEC) at 632 nm for the BB-sourced PM2.5 (6.10 ± 1.21 m2.g-1) was lower than that of the VE-sourced PM2.5 (8.10 ± 0.98 m2.g-1), indicating that the EC content of the BB-sourced PM2.5 was overestimated because of the high OC/EC ratio. The respective absorption per mass (α/ρ) values at 365 nm for the VE- and BB-sourced PM2.5 were 0.71 ± 0.17 m2.g-1 and 0.91 ± 0.18 m2.g-1. The α/ρ value of the VEs was loaded between that of gasoline and diesel emissions, indicating that the VE-sourced PM2.5 originated from both types of emissions. Because OC and WSOC accounts for most of the carbonaceous aerosols at remote area of the TP, the radiative forcing contributed by the WSOC should be high, and requires further investigation.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-017-9077-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-017-9077-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Quanlian Li; Yao Li; Ninglian Wang; Tanuj Shukla; Xiaobo Wu; Xiunan Yao; Shijin Wang; Xin Wan; Pengfei Chen; Huan Zhang; Baoshou Shen; Zhiwen Dong; Jingquan Wu;pmid: 38964642
Biomass burning play a key role in the global carbon cycle by altering the atmospheric composition, and affect regional and global climate. Despite its importance, a very few high-resolution records are available worldwide, especially for recent climate change. This study analyzes levoglucosan, a specific tracer of biomass burning emissions, in a 38-year ice core retrieved from the Shulehe Glacier No. 4, northeastern Tibetan Plateau. The levoglucosan concentration in the Shulehe Glacier No. 4 ice core ranged from 0.1 to 55 ng mL-1, with an average concentration of 8 ± 8 ng mL-1. The concentrations showed a decreasing trend from 2002 to 2018. Meanwhile, regional wildfire activities in Central Asian also exhibited a declining trend during the same period, suggesting the potential correspondence between levoglucosan concentration of the Shulehe Glacier No. 4 ice core and the fire activity of Central Asia. Furthermore, a positive correlation also exists between the levoglucosan concentration of the Shulehe Glacier No. 4 ice core and the wildfire counts in Central Asia from 2002 to 2018. While backward air mass trajectory analysis and fire spots data showed a higher distribution of fire counts in South Asia compared to Central Asia, but the dominance of westerly circulation in the northern TP throughout the year. Therefore, the levoglucosan in the Shulehe Glacier No. 4 provides clear evidence of Central Asian wildfire influence on Tibetan Plateau glaciers through westerlies. This highlights a great importance of ice core data for wildfire history reconstruction in the Tibetan Plateau Glacier regions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2024.124496&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2024.124496&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Zhaofu Hu; Shichang Kang; Chaoliu Li; Chao Zhang; Fangping Yan; Pengfei Chen; Duoji Danmuzhen;pmid: 39521170
Elemental carbon (EC), also known as black carbon, plays an important role in climate change. Accurately assessing EC concentration in aerosols remains challenging due to the overestimations caused by carbonates and organic carbon (OC) during thermal-optical measurement in the Tibetan Plateau (TP). This study evaluates the extent of EC overestimated by carbonates and OC at four remote sites (Nyalamu, Lulang, Everest and Ngari) in southern and western of the TP using different treatments. The average overestimation of EC concentration due to acid treatment was consistent across all sites (25.5 ± 2.4 %). After correction, the proportion of EC overestimated by carbonates were approximately 8.5 ± 7.3 %, 12.3 ± 6.9 %, 18.1 ± 11.8 % and 22.7 ± 13.3 %, respectively, revealing an increasing trend from humid to arid regions. Methanol-soluble OC (MSOC) concentrations were significantly correlated with the reduction of EC concentrations, indicating that the methanol extraction effectively mitigates EC overestimation. Seasonal variation of carbonaceous aerosol concentrations was significantly affected by sources from South Asia. Despite the variations in climate and aerosol sources, the average overestimations of measured EC concentration by carbonates and OC were similar at Nyalamu (49.4 ± 14.0 %), Lulang (47.8 ± 8.4 %), Everest (48.7 ± 15.9 %) and Ngari (49.3 ± 13.7 %) sites. Therefore, the actual EC concentrations were only about 51.2 ± 13.1 % of the original values. This estimation will significantly enhance the contribution of brown carbon (BrC) to radiative forcing relative to EC, highlighting a critical area for future research. Investigating the actual concentrations of EC in the TP provides critical data to support model simulation and validate model accuracy, further enhancing our understanding of EC's impacts on climate warming and glacier melting.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2024.125277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2024.125277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Maheswar Rupakheti; Junming Guo; Pengfei Chen; Lekhendra Tripathee; Dipesh Rupakheti; Chaoliu Li; Arnico K. Panday; Qianggong Zhang; Shichang Kang; Shichang Kang; Tao Pu;pmid: 31940147
Total suspended particles (TSP) were collected in Lumbini from April 2013 to March 2016 to better understand the characteristics of carbonaceous aerosol (CA) concentrations, compositions and sources and their light absorption properties in rural region of severe polluted Indo-Gangetic Plain (IGP). Extremely high TSP (203.9 ± 109.6 μg m-3), organic carbon (OC 32.1 ± 21.7 μg m-3), elemental carbon (EC 6.44 ± 3.17 μg m-3) concentrations were observed in Lumbini particularly during winter and post-monsoon seasons, reflecting the combined influences of emission sources and weather conditions. SO42- (7.34 ± 4.39 μg m-3) and Ca2+ (5.46 ± 5.20 μg m-3) were the most dominant anion and cation in TSP. These components were comparable to those observed in urban areas in South and East Asia but significantly higher than those in remote regions over the Himalayas and Tibetan Plateau, suggesting severe air pollution in the study region. Various combustion activities including industry, vehicle emission, and biomass burning are the main reasons for high pollutant concentrations. The variation of OC/EC ratio further suggested that biomass such as agro-residue burning contributed a lot for CA, particularly during the non-monsoon season. The average mass absorption cross-section of EC (MACEC) and water-soluble organic carbon (MACWSOC) were 7.58 ± 3.39 and 1.52 ± 0.41 m2 g-1, respectively, indicating that CA in Lumbini was mainly affected by local emissions. Increased biomass burning decreased MACEC; whereas, it could result in high MACWSOC during the non-monsoon season. Furthermore, dust is one important factor causing higher MACWSOC during the pre-monsoon season.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-020-07618-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-020-07618-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Lekhendra Tripathee; Pengfei Chen; Arnico K. Panday; Hewen Niu; Yulan Zhang; Zhenming Ji; Xin Wan; Chaoliu Li; Maheswar Rupakheti; Qianggong Zhang; Chaman Gul; Gang Li; Shichang Kang; Zhiyuan Cong; Junming Guo;pmid: 31302402
Carbonaceous aerosols (CAs) scatter and absorb incident solar radiation in the atmosphere, thereby influencing the regional climate and hydrological cycle, particularly in the Third Pole (TP). Here, we present the characteristics of CAs at 19 observation stations from the Atmospheric Pollution and Cryospheric Change network to obtain a deep understanding of pollutant status in the TP. The organic carbon (OC) and elemental carbon (EC) concentrations decreased noticeably inwards from outside to inland of the TP, consistent with their emission load and also affected by transport process and meteorological condition. Urban areas, such as Kathmandu, Karachi, and Mardan, exhibited extremely high OC and EC concentrations, with low and high values occurring in the monsoon and non-monsoon seasons, respectively. However, remote regions inland the TP (e.g., Nam Co and Ngari) demonstrated much lower OC and EC concentrations. Different seasonal variations were observed between the southern and northern parts of the TP, suggesting differences in the patterns of pollutant sources and in distance from the sources between the two regions. In addition to the influence of long-range transported pollutants from the Indo-Gangetic Plain (IGP), the TP was affected by local emissions (e.g., biomass burning). The OC/EC ratio also suggested that biomass burning was prevalent in the center TP, whereas the marginal sites (e.g., Jomsom, Dhunche, and Laohugou) were affected by fossil fuel combustion from the up-wind regions. The mass absorption cross-section of EC (MACEC) at 632 nm ranged from 6.56 to 14.7 m2 g-1, with an increasing trend from outside to inland of the TP. Urban areas had low MACEC values because such regions were mainly affected by local fresh emissions. In addition, large amount of brown carbon can decrease the MACEC values in cities of South Asia. Remote sites had high MACEC values because of the coating enhancement of aerosols. Influenced by emission, transport process, and weather condition, the CA concentrations and MACEC presented decreasing and increasing trends, respectively, from outside to inland of the TP.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2019.06.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2019.06.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Jin Dang; Chaoliu Li; Jihua Li; Andy Dang; Qianggong Zhang; Pengfei Chen; Shichang Kang; Derek Dunn-Rankin;doi: 10.3390/en12061089
Solid fuel cooking stoves have been used as primary energy sources for residential cooking and heating activities throughout human history. It has been estimated that domestic combustion of solid fuels makes a considerable contribution to global greenhouse gas (GHG) and pollutant emissions. The majority of data collected from simulated tests in laboratories does not accurately reflect the performance of stoves in actual use. This study characterizes in-field emissions of fine particulate matter (PM2.5), carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), and total non-methane hydrocarbons (TNMHC) from residential cooking events with various fuel and stove types from villages in two provinces in China (Tibet and Yunnan) in the Himalayan area. Emissions of PM2.5 and gas-phase pollutant concentrations were measured directly and corresponding emission factors calculated using the carbon balance approach. Real-time monitoring of indoor PM2.5, CO2, and CO concentrations was conducted simultaneously. Major factors responsible for emission variance among and between cooking stoves are discussed.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/6/1089/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12061089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/6/1089/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12061089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu