- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 France, France, France, France, France, France, France, United KingdomPublisher:Elsevier BV Authors: Jean-Michel Harmand; Kristell Hergoualc'h; Kristell Hergoualc'h; Eric Blanchart; +2 AuthorsJean-Michel Harmand; Kristell Hergoualc'h; Kristell Hergoualc'h; Eric Blanchart; Ute Skiba; Catherine Hénault;handle: 10568/95665
Agroforestry represents an opportunity to reduce CO2 concentrations in the atmosphere by increasing carbon (C) stocks in agricultural lands. Agroforestry practices may also promote mineral N fertilization and the use of N2-fixing legumes that favor the emission of non-CO2 greenhouse gases (GHG) (N2O and CH4). The present study evaluates the net GHG balance in two adjacent coffee plantations, both highly fertilized (250 kg N ha-1 year-1): a monoculture (CM) and a culture shaded by the N2-fixing legume tree species Inga densiflora (CIn). C stocks, soil N2O emissions and CH4 uptakes were measured during the first cycle of both plantations. During a 3-year period (6-9 years after the establishment of the systems), soil C in the upper 10 cm remained constant in the CIn plantation (+0.09 ± 0.58 Mg C ha-1 year-1) and decreased slightly but not significantly in the CM plantation (-0.43 ± 0.53 Mg C ha-1 year-1). Aboveground carbon stocks in the coffee monoculture and the agroforestry system amounted to 9.8 ± 0.4 and 25.2 ± 0.6 Mg C ha-1, respectively, at 7 years after establishment. C storage rate in the phytomass was more than twice as large in the CIn compared to the CM system (4.6 ± 0.1 and 2.0 ± 0.1 Mg C ha-1 year-1, respectively). Annual soil N2O emissions were 1.3 times larger in the CIn than in the CM plantation (5.8 ± 0.5 and 4.3 ± 0.3 kg N-N2O ha-1 year-1, respectively). The net GHG balance at the soil scale calculated from the changes in soil C stocks and N2O emissions, expressed in CO2 equivalent, was negative in both coffee plantations indicating that the soil was a net source of GHG. Nevertheless this balance was in favor of the agroforestry system. The net GHG balance at the plantation scale, which includes additionally C storage in the phytomass, was positive and about 4 times larger in the CIn (14.59 ± 2.20 Mg CO2 eq ha-1 year-1) than in the CM plantation (3.83 ± 1.98 Mg CO2 eq ha-1 year-1). Thus converting the coffee monoculture to the coffee agroforestry plantation shaded by the N2-fixing tree species I. densiflora would increase net atmospheric GHG removals by 10.76 ± 2.96 Mg CO2 eq ha-1 year-1 during the first cycle of 8-9 years.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/95665Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverAgriculture Ecosystems & EnvironmentArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefHAL - Université de Bourgogne (HAL-uB)Other literature type . 2012Data sources: HAL - Université de Bourgogne (HAL-uB)CIRAD: HAL (Agricultural Research for Development)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agee.2011.11.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 94 citations 94 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/95665Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverAgriculture Ecosystems & EnvironmentArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefHAL - Université de Bourgogne (HAL-uB)Other literature type . 2012Data sources: HAL - Université de Bourgogne (HAL-uB)CIRAD: HAL (Agricultural Research for Development)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agee.2011.11.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Elsevier BV Brown, Alison M.; Bass, Adrian M.; Skiba, Ute; MacDonald, John M.; Pickard, Amy E.;There is growing global concern that greenhouse gas (GHG) emissions from water bodies are increasing because of interactions between nutrient levels and climate warming. This paper investigates key land-cover, seasonal and hydrological controls of GHGs by comparison of the semi-natural, agricultural and urban environments in a detailed source-to-sea study of the River Clyde, Scotland. Riverine GHG concentrations were consistently oversaturated with respect to the atmosphere. High riverine concentrations of methane (CH4) were primarily associated with point source inflows from urban wastewater treatment, abandoned coal mines and lakes, with CH4-C concentrations between 0.1 - 44 µg l-1. Concentrations of carbon dioxide (CO2) and nitrous oxide (N2O) were mainly driven by nitrogen concentrations, dominated by diffuse agricultural inputs in the upper catchment and supplemented by point source inputs from urban wastewater in the lower urban catchment, with CO2-C concentrations between 0.1 - 2.6 mg l-1 and N2O-N concentrations between 0.3 - 3.4 µg l-1. A significant and disproportionate increase in all GHGs occurred in the lower urban riverine environment in the summer, compared to the semi-natural environment, where GHG concentrations were higher in winter. This increase and change in GHG seasonal patterns points to anthropogenic impacts on microbial communities. The loss of total dissolved carbon, to the estuary is approximately 48.4 ± 3.6 Gg C yr-1, with the annual inorganic carbon export approximately double that of organic carbon and four times that of CO2, with CH4 accounting for 0.03%, with the anthropogenic impact of disused coal mines accelerating DIC loss. The annual loss of total dissolved nitrogen to the estuary is approximately 4.03 ± 0.38 Gg N yr-1 of which N2O represents 0.06%. This study improves our understanding of riverine GHG generation and dynamics which can contribute to our knowledge of their release to the atmosphere. It identifies where action could support reductions in aquatic GHG generation and emission.
NERC Open Research A... arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/1893/35780Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2023.119969&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/1893/35780Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2023.119969&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2008 France, France, France, France, United Kingdom, France, FrancePublisher:Springer Science and Business Media LLC Jean-Michel Harmand; Ute Skiba; Kristell Hergoualc'h; Kristell Hergoualc'h; Kristell Hergoualc'h; Catherine Hénault;handle: 10568/20707
The objective of this study was to evaluate the effect of N fertilization and the presence of N2 fixing leguminous trees on soil fluxes of greenhouse gases. For a one year period, we measured soil fluxes of nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4), related soil parameters (temperature, water-filled pore space, mineral nitrogen content, N mineralization potential) and litterfall in two highly fertilized (250 kg N ha−1 year−1) coffee cultivation: a monoculture (CM) and a culture shaded by the N2 fixing legume species Inga densiflora (CIn). Nitrogen fertilizer addition significantly influenced N2O emissions with 84% of the annual N2O emitted during the post fertilization periods, and temporarily increased soil respiration and decreased CH4 uptakes. The higher annual N2O emissions from the shaded plantation (5.8 ± 0.3 kg N ha−1 year−1) when compared to that from the monoculture (4.3 ± 0.1 kg N ha−1 year−1) was related to the higher N input through litterfall (246 ± 16 kg N ha−1 year−1) and higher potential soil N mineralization rate (3.7 ± 0.2 mg N kg−1 d.w. d−1) in the shaded cultivation when compared to the monoculture (153 ± 6.8 kg N ha−1 year−1 and 2.2 ± 0.2 mg N kg−1 d.w. d−1). This confirms that the presence of N2 fixing shade trees can increase N2O emissions. Annual CO2 and CH4 fluxes of both systems were similar (8.4 ± 2.6 and 7.5 ± 2.3 t C-CO2 ha−1 year−1, −1.1 ± 1.5 and 3.3 ± 1.1 kg C-CH4 ha−1 year−1, respectively in the CIn and CM plantations) but, unexpectedly increased during the dry season.
Hyper Article en Lig... arrow_drop_down HAL - Université de Bourgogne (HAL-uB)Other literature type . 2008Data sources: HAL - Université de Bourgogne (HAL-uB)Institut National de la Recherche Agronomique: ProdINRAArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10533-008-9222-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down HAL - Université de Bourgogne (HAL-uB)Other literature type . 2008Data sources: HAL - Université de Bourgogne (HAL-uB)Institut National de la Recherche Agronomique: ProdINRAArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10533-008-9222-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1996 United KingdomPublisher:Elsevier BV Skiba, U; McTaggart, I. P.; Smith, K. A.; Hargreaves, K. J.; Fowler, D.;Soil N2O emissions will be the largest single source of N2O in the UK, when industrial emissions as a result of adipic and nitric acid production will stop later this year. Total annual soil N2O emissions for the UK are estimated at 16 kt N, of which agricultural soils are responsible for 19% of the total soil emissions and grazed grasslands (16 kt N2ON y−1) are the single largest source. Deciduous and coniferous woodlands accounted for 15% and unmanaged grassland and moorlands for 16% of the total annual UK soil emission. Fertiliser N and atmospheric deposition of N are the most important variables controlling the N2O emission rate, followed by temperature and soil moisture. These three variables need to be incorporated in future more detailed estimates of regional scale soil N2O emissions.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1996 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 1996Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(95)00337-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1996 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 1996Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(95)00337-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1996 Canada, United Kingdom, United KingdomPublisher:Elsevier BV Hargreaves, K. J.; Wienhold, F. G.; Klemedtsson, L.; Arah, J. R. M.; Beverland, I .J.; Fowler, D.; Galle, B.; Griffith, D. W. T.; Skiba, U.; Smith, K. A.; Welling, M.; Harris, G.W.;handle: 10315/4196
The spatial variability of N2O emission from soil makes extrapolation to the field scale very difficult using; conventional chamber techniques ( < 1 m2). Micrometeorological techniques, which integrate N2O fluxes over areas of 0.1 to 1 km2 were therefore developed and compared with chamber methods over arable cropland. Measurements of N2O emission from an unfertilised organic soil (reclaimed from the sea in 1879) were made over a 10 d period at Lammefjord, Denmark. Flux-gradient and conditional sampling techniques were applied using two tunable diode laser spectrometers (TDLs), a Fourier transform infra-red spectrometer (FTIR) and a gas chromatograph (GC). Eddy covariance measurements were also made by the TDLs. Over the 10 d campaign approximately 5 d of continuous fluxes by the different methods were, obtained. Fluxes determined by eddy covariance were in reasonable agreement, showing a mean flux of 269 μg N m2 h−1. Flux-gradient techniques measured a mean flux of 226 μg N m−2 h−1. The mean flux measured by conditional sampling was 379 μg N m−2 h−1. The maximum annual emission of N2O from this soil system was estimated to be 23.5 kg N ha−1.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/1352-2310(95)00468-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/1352-2310(95)00468-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Germany, Finland, United Kingdom, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | eLTER PLUSEC| eLTER PLUSKevin Bishop; Thomas Dirnböck; Martin Forsius; Jaana Bäck; Nathalie Cools; Eugenio Díaz-Pinés; Jan Dick; Veronika Gaube; Lauren Gillespie; Lars Högbom; Hjalmar Laudon; Michael Mirtl; Nikolaos P. Nikolaidis; Christian Poppe Terán; U. Skiba; Harry Vereecken; Holger Villwock; James Weldon; Christoph Wohner; Syed Ashraful Alam;doi: 10.1007/s13280-023-01930-4 , 10.34734/fzj-2024-02381 , 10.60692/tt21e-yqn52 , 10.60692/w8x4b-1ea69
pmid: 37725249
pmc: PMC10562320
handle: 10138/566498
doi: 10.1007/s13280-023-01930-4 , 10.34734/fzj-2024-02381 , 10.60692/tt21e-yqn52 , 10.60692/w8x4b-1ea69
pmid: 37725249
pmc: PMC10562320
handle: 10138/566498
AbstractIntegrated long-term, in-situ observations are needed to document ongoing environmental change, to “ground-truth” remote sensing and model outputs and to predict future Earth system behaviour. The scientific and societal value of in-situ observations increases with site representativeness, temporal duration, number of parameters measured and comparability within and across sites. Research Infrastructures (RIs) can support harmonised, cross-site data collection, curation and publication. Integrating RI networks through site co-location and standardised observation methods can help answers three questions about the terrestrial carbon sink: (i) What are present and future carbon sequestration rates in northern European forests? (ii) How are these rates controlled? (iii) Why do the observed patterns exist? Here, we present a conceptual model for RI co-location and highlight potential insights into the terrestrial carbon sink achievable when long-term in-situ Earth observation sites participate in multiple RI networks (e.g., ICOS and eLTER). Finally, we offer recommendations to promote RI co-location.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-023-01930-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-023-01930-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2008 United KingdomPublisher:International peat society Sheppard, L. J.; Leith, I. D.; Field, C.; van Dijk, N.; Rung, M.; Skiba, U.;Enhanced reactive nitrogen deposition may compromise the sustainability and functioning of bogs, with respect to carbon sequestration and greenhouse gas production. Since 2002, three N forms have been applied to an ombrotrophic bog growing Calluna, Sphagnum capillifolium and Eriophorum vaginatum in order to test this. Significant changes in species cover and soil chemistry, especially in response to elevated ammonia concentrations, have been recorded. Ammonia deposition has also increased nitrous oxide emissions, while the same N dose as ammonium or nitrate had a far smaller effect. Methane emissions were increased by nitrate additions, although fluxes were equally responsive to water table and temperature. The significance of N form, and ’natural’ drivers, is discussed.
NERC Open Research A... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::d7436ee0bff79850fac9de30179dfe27&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::d7436ee0bff79850fac9de30179dfe27&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:IOP Publishing S Medinets; S White; N Cowan; J Drewer; J Dick; M Jones; C Andrews; D Harvey; U Skiba;Abstract Soil emissions of NO and N2O from typical land uses across Lowland and Highland Scotland were simulated under climate change conditions, during a short-term laboratory study. All locations investigated were significant sources of N2O (range: 157–277 µg N2O–N m−2 h−1) and low-to-moderate sources of NO emissions (range: 0.4–30.5 µg NO–N m−2 h−1), with a general tendency to decrease with altitude and increase with fertiliser and atmospheric N inputs. Simulated climate warming and extreme events (drought, intensive rainfall) increased soil NO pulses and N2O emissions from both natural and managed ecosystems in the following order: natural Highlands < natural Lowlands < grazed grasslands < natural moorland receiving high NH3 deposition rates. Largest NO emission rates were observed from natural moorlands exposed to high NH3 deposition rates. Although soil NO emissions were much smaller (6–660 times) than those of N2O, their impact on air quality is likely to increase as combustion sources of NO x are declining as a result of successful mitigation. This study provides evidence of high N emission rates from natural ecosystems and calls for urgent action to improve existing national and intergovernmental inventories for NO and N2O, which at present do not fully account for emissions from natural soils receiving no direct anthropogenic N inputs.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abf06e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abf06e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Review 2018 Belgium, Australia, Denmark, Germany, Germany, Finland, Italy, Spain, Germany, Belgium, United States, United Kingdom, Italy, Germany, France, Finland, Italy, Germany, ItalyPublisher:Walter de Gruyter GmbH Publicly fundedFunded by:UKRI | RootDetect: Remote Detect..., SNSF | ICOS-CH: Integrated Carbo...UKRI| RootDetect: Remote Detection and Precision Management of Root Health ,SNSF| ICOS-CH: Integrated Carbon Observation System in SwitzerlandFranz, Daniela; Acosta, Manuel; Altimir, Núria; Arriga, Nicola; Arrouays, Dominique; Aubinet, Marc; Aurela, Mika; Ayres, Edward; Lopez-Ballesteros, Ana; Barbaste, Mireille; Berveiller, Daniel; Biraud, Sébastien; Boukir, Hakima; Brown, Timothy; Brümmer, Christian; Buchmann, Nina; Burba, George; Carrara, Arnaud; Cescatti, Allessandro; Ceschia, Eric; Clement, Robert; Cremonese, Edoardo; Crill, Patrick; Darenova, Eva; Dengel, Sigrid; D'Odorico, Petra; Filippa, Gianluca; Fleck, Stefan; Fratini, Gerardo; Fuss, Roland; Gielen, Bert; Gogo, Sébastien; Grace, John; Graf, Alexander; Grelle, Achim; Gross, Patrick; Grünwald, Thomas; Haapanala, Sami; Hehn, Markus; Heinesch, Bernard; Heiskanen, Jouni; Herbst, Mathias; Herschlein, Christine; Hörtnagl, Lukas; Hufkens, Koen; Ibrom, Andreas; Jolivet, Claudy; Joly, Lilian; Jones, Michael; Kiese, Ralf; Klemedtsson, Leif; Kljun, Natascha; Klumpp, Katja; Kolari, Pasi; Kolle, Olaf; Kowalski, Andrew; Kutsch, Werner; Laurila, Tuomas; De Ligne, Anne; Linder, Sune; Lindroth, Anders; Lohila, Annalea; Longdoz, Bernhard; Mammarella, Ivan; Manise, Tanguy; Maraňón Jiménez, Sara; Matteucci, Giorgio; Mauder, Matthias; Meier, Philip; Merbold, Lutz; Mereu, Simone; Metzger, Stefan; Migliavacca, Mirco; Mölder, Meelis; Montagnani, Leonardo; Moureaux, Christine; Nelson, David; Nemitz, Eiko; Nicolini, Giacomo; Nilsson, Mats B.; Op de Beeck, Maarten; Osborne, Bruce; Ottosson Löfvenius, Mikaell; Pavelka, Marian; Peichl, Matthias; Peltola, Olli; Pihlatie, Mari; Pitacco, Andrea; Pokorný, Radek; Pumpanen, Jukka; Ratié, Céline; Rebmann, Corinna; Roland, Marilyn; Sabbatini, Simone; Saby, Nicolas P.A.; Saunders, Matthew; Schmid, Hans Peter; Schrumpf, Marion; Sedlak, Pavel; Serrano Ortiz, Penelope; Siebicke, Lukas; Šigut, Ladislav; Silvennoinen, Hanna; Simioni, Guillaume; Skiba, Ute; Sonnentag, Oliver; Soudani, Kamel; Soulé, Patrice; Steinbrecher, Rainer; Tallec, Tiphaine; Thimonier, Anne; Tuittila, Eeva-Stiina; Tuovinen, Juha-Pekka; Vestin, Patrik; Vincent, Gaëlle; Vincke, Caroline; Vitale, Domenico; Waldner, Peter; Weslien, Per; Wingate, Lisa; Wohlfahrt, Georg; Zahniser, Mark; Vesala, Timo;handle: 20.500.14243/397267 , 11388/220856 , 2078.1/208494 , 10138/296509 , 10067/1562530151162165141 , 11573/1665165 , 10568/99055 , 1885/159557
Abstract Research infrastructures play a key role in launching a new generation of integrated long-term, geographically distributed observation programmes designed to monitor climate change, better understand its impacts on global ecosystems, and evaluate possible mitigation and adaptation strategies. The pan-European Integrated Carbon Observation System combines carbon and greenhouse gas (GHG; CO2, CH4, N2O, H2O) observations within the atmosphere, terrestrial ecosystems and oceans. High-precision measurements are obtained using standardised methodologies, are centrally processed and openly available in a traceable and verifiable fashion in combination with detailed metadata. The Integrated Carbon Observation System ecosystem station network aims to sample climate and land-cover variability across Europe. In addition to GHG flux measurements, a large set of complementary data (including management practices, vegetation and soil characteristics) is collected to support the interpretation, spatial upscaling and modelling of observed ecosystem carbon and GHG dynamics. The applied sampling design was developed and formulated in protocols by the scientific community, representing a trade-off between an ideal dataset and practical feasibility. The use of open-access, high-quality and multi-level data products by different user communities is crucial for the Integrated Carbon Observation System in order to achieve its scientific potential and societal value.
NERC Open Research A... arrow_drop_down Hyper Article en LigneArticle . 2018License: CC BY NC NDFull-Text: https://hal.inrae.fr/hal-02625808/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BY NC NDFull-Text: https://hal.inrae.fr/hal-02625808/documentCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/99055Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/2r50p6sdData sources: Bielefeld Academic Search Engine (BASE)UEF eRepository (University of Eastern Finland)Article . 2019License: CC BY NC NDFull-Text: http://dx.doi.org/10.1515/intag-2017-0039Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/159557Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018License: CC BY NC NDFull-Text: https://hal.inrae.fr/hal-02625808Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2018Data sources: Online Research Database In TechnologyDiposit Digital de Documents de la UABArticle . 2018License: CC BY NC NDData sources: Diposit Digital de Documents de la UABHELDA - Digital Repository of the University of HelsinkiReview . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiInstitutional Repository Universiteit AntwerpenArticle . 2018Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Göttingen Research Online PublicationsArticle . 2020Data sources: Göttingen Research Online PublicationseScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/intag-2017-0039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 64 citations 64 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Hyper Article en LigneArticle . 2018License: CC BY NC NDFull-Text: https://hal.inrae.fr/hal-02625808/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BY NC NDFull-Text: https://hal.inrae.fr/hal-02625808/documentCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/99055Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/2r50p6sdData sources: Bielefeld Academic Search Engine (BASE)UEF eRepository (University of Eastern Finland)Article . 2019License: CC BY NC NDFull-Text: http://dx.doi.org/10.1515/intag-2017-0039Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/159557Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018License: CC BY NC NDFull-Text: https://hal.inrae.fr/hal-02625808Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2018Data sources: Online Research Database In TechnologyDiposit Digital de Documents de la UABArticle . 2018License: CC BY NC NDData sources: Diposit Digital de Documents de la UABHELDA - Digital Repository of the University of HelsinkiReview . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiInstitutional Repository Universiteit AntwerpenArticle . 2018Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Göttingen Research Online PublicationsArticle . 2020Data sources: Göttingen Research Online PublicationseScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/intag-2017-0039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 United KingdomPublisher:Elsevier BV Funded by:UKRI | UK - China Virtual Joint ...UKRI| UK - China Virtual Joint Centre for Improved Nitrogen Agronomy (CINAG)Cowan, N.; Helfter, C.; Langford, B.; Coyle, M.; Levy, P.; Moxley, J.; Simmons, I.; Leeson, S.; Nemitz, E.; Skiba, U.;Fluxes of carbon monoxide (CO) were measured using a fast-response quantum cascade laser absorption spectrometer and the eddy covariance method at a long-term intensively grazed grassland in southern Scotland. Measurements lasted 20 months from April 2016 to November 2017, during which normal agricultural activities continued. Observed fluxes followed a regular diurnal cycle, peaking at midday and returning to values near zero during the night, with occasional uptake observed. CO fluxes correlated well with the meteorological variables of solar radiation, soil temperature and soil moisture content. Using a general additive model (GAM) we were able to gap fill CO fluxes and estimate annual fluxes of 0.38 ± 0.046 and 0.35 ± 0.045 g C m-2 y-1g C m-2 y-1 for 2016 and 2017, respectively. If the CO fluxes reported in this study are representative of UK grasslands, then national annual emissions could be expected to be in the order of 61.91 (54.3-69.5) Gg, which equates to 3.8% (3.4-4.3%) of the current national inventory total.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2018.09.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2018.09.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 France, France, France, France, France, France, France, United KingdomPublisher:Elsevier BV Authors: Jean-Michel Harmand; Kristell Hergoualc'h; Kristell Hergoualc'h; Eric Blanchart; +2 AuthorsJean-Michel Harmand; Kristell Hergoualc'h; Kristell Hergoualc'h; Eric Blanchart; Ute Skiba; Catherine Hénault;handle: 10568/95665
Agroforestry represents an opportunity to reduce CO2 concentrations in the atmosphere by increasing carbon (C) stocks in agricultural lands. Agroforestry practices may also promote mineral N fertilization and the use of N2-fixing legumes that favor the emission of non-CO2 greenhouse gases (GHG) (N2O and CH4). The present study evaluates the net GHG balance in two adjacent coffee plantations, both highly fertilized (250 kg N ha-1 year-1): a monoculture (CM) and a culture shaded by the N2-fixing legume tree species Inga densiflora (CIn). C stocks, soil N2O emissions and CH4 uptakes were measured during the first cycle of both plantations. During a 3-year period (6-9 years after the establishment of the systems), soil C in the upper 10 cm remained constant in the CIn plantation (+0.09 ± 0.58 Mg C ha-1 year-1) and decreased slightly but not significantly in the CM plantation (-0.43 ± 0.53 Mg C ha-1 year-1). Aboveground carbon stocks in the coffee monoculture and the agroforestry system amounted to 9.8 ± 0.4 and 25.2 ± 0.6 Mg C ha-1, respectively, at 7 years after establishment. C storage rate in the phytomass was more than twice as large in the CIn compared to the CM system (4.6 ± 0.1 and 2.0 ± 0.1 Mg C ha-1 year-1, respectively). Annual soil N2O emissions were 1.3 times larger in the CIn than in the CM plantation (5.8 ± 0.5 and 4.3 ± 0.3 kg N-N2O ha-1 year-1, respectively). The net GHG balance at the soil scale calculated from the changes in soil C stocks and N2O emissions, expressed in CO2 equivalent, was negative in both coffee plantations indicating that the soil was a net source of GHG. Nevertheless this balance was in favor of the agroforestry system. The net GHG balance at the plantation scale, which includes additionally C storage in the phytomass, was positive and about 4 times larger in the CIn (14.59 ± 2.20 Mg CO2 eq ha-1 year-1) than in the CM plantation (3.83 ± 1.98 Mg CO2 eq ha-1 year-1). Thus converting the coffee monoculture to the coffee agroforestry plantation shaded by the N2-fixing tree species I. densiflora would increase net atmospheric GHG removals by 10.76 ± 2.96 Mg CO2 eq ha-1 year-1 during the first cycle of 8-9 years.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/95665Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverAgriculture Ecosystems & EnvironmentArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefHAL - Université de Bourgogne (HAL-uB)Other literature type . 2012Data sources: HAL - Université de Bourgogne (HAL-uB)CIRAD: HAL (Agricultural Research for Development)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agee.2011.11.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 94 citations 94 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/95665Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverAgriculture Ecosystems & EnvironmentArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefHAL - Université de Bourgogne (HAL-uB)Other literature type . 2012Data sources: HAL - Université de Bourgogne (HAL-uB)CIRAD: HAL (Agricultural Research for Development)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agee.2011.11.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Elsevier BV Brown, Alison M.; Bass, Adrian M.; Skiba, Ute; MacDonald, John M.; Pickard, Amy E.;There is growing global concern that greenhouse gas (GHG) emissions from water bodies are increasing because of interactions between nutrient levels and climate warming. This paper investigates key land-cover, seasonal and hydrological controls of GHGs by comparison of the semi-natural, agricultural and urban environments in a detailed source-to-sea study of the River Clyde, Scotland. Riverine GHG concentrations were consistently oversaturated with respect to the atmosphere. High riverine concentrations of methane (CH4) were primarily associated with point source inflows from urban wastewater treatment, abandoned coal mines and lakes, with CH4-C concentrations between 0.1 - 44 µg l-1. Concentrations of carbon dioxide (CO2) and nitrous oxide (N2O) were mainly driven by nitrogen concentrations, dominated by diffuse agricultural inputs in the upper catchment and supplemented by point source inputs from urban wastewater in the lower urban catchment, with CO2-C concentrations between 0.1 - 2.6 mg l-1 and N2O-N concentrations between 0.3 - 3.4 µg l-1. A significant and disproportionate increase in all GHGs occurred in the lower urban riverine environment in the summer, compared to the semi-natural environment, where GHG concentrations were higher in winter. This increase and change in GHG seasonal patterns points to anthropogenic impacts on microbial communities. The loss of total dissolved carbon, to the estuary is approximately 48.4 ± 3.6 Gg C yr-1, with the annual inorganic carbon export approximately double that of organic carbon and four times that of CO2, with CH4 accounting for 0.03%, with the anthropogenic impact of disused coal mines accelerating DIC loss. The annual loss of total dissolved nitrogen to the estuary is approximately 4.03 ± 0.38 Gg N yr-1 of which N2O represents 0.06%. This study improves our understanding of riverine GHG generation and dynamics which can contribute to our knowledge of their release to the atmosphere. It identifies where action could support reductions in aquatic GHG generation and emission.
NERC Open Research A... arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/1893/35780Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2023.119969&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2023License: CC BYFull-Text: http://hdl.handle.net/1893/35780Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2023.119969&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2008 France, France, France, France, United Kingdom, France, FrancePublisher:Springer Science and Business Media LLC Jean-Michel Harmand; Ute Skiba; Kristell Hergoualc'h; Kristell Hergoualc'h; Kristell Hergoualc'h; Catherine Hénault;handle: 10568/20707
The objective of this study was to evaluate the effect of N fertilization and the presence of N2 fixing leguminous trees on soil fluxes of greenhouse gases. For a one year period, we measured soil fluxes of nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4), related soil parameters (temperature, water-filled pore space, mineral nitrogen content, N mineralization potential) and litterfall in two highly fertilized (250 kg N ha−1 year−1) coffee cultivation: a monoculture (CM) and a culture shaded by the N2 fixing legume species Inga densiflora (CIn). Nitrogen fertilizer addition significantly influenced N2O emissions with 84% of the annual N2O emitted during the post fertilization periods, and temporarily increased soil respiration and decreased CH4 uptakes. The higher annual N2O emissions from the shaded plantation (5.8 ± 0.3 kg N ha−1 year−1) when compared to that from the monoculture (4.3 ± 0.1 kg N ha−1 year−1) was related to the higher N input through litterfall (246 ± 16 kg N ha−1 year−1) and higher potential soil N mineralization rate (3.7 ± 0.2 mg N kg−1 d.w. d−1) in the shaded cultivation when compared to the monoculture (153 ± 6.8 kg N ha−1 year−1 and 2.2 ± 0.2 mg N kg−1 d.w. d−1). This confirms that the presence of N2 fixing shade trees can increase N2O emissions. Annual CO2 and CH4 fluxes of both systems were similar (8.4 ± 2.6 and 7.5 ± 2.3 t C-CO2 ha−1 year−1, −1.1 ± 1.5 and 3.3 ± 1.1 kg C-CH4 ha−1 year−1, respectively in the CIn and CM plantations) but, unexpectedly increased during the dry season.
Hyper Article en Lig... arrow_drop_down HAL - Université de Bourgogne (HAL-uB)Other literature type . 2008Data sources: HAL - Université de Bourgogne (HAL-uB)Institut National de la Recherche Agronomique: ProdINRAArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10533-008-9222-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down HAL - Université de Bourgogne (HAL-uB)Other literature type . 2008Data sources: HAL - Université de Bourgogne (HAL-uB)Institut National de la Recherche Agronomique: ProdINRAArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10533-008-9222-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1996 United KingdomPublisher:Elsevier BV Skiba, U; McTaggart, I. P.; Smith, K. A.; Hargreaves, K. J.; Fowler, D.;Soil N2O emissions will be the largest single source of N2O in the UK, when industrial emissions as a result of adipic and nitric acid production will stop later this year. Total annual soil N2O emissions for the UK are estimated at 16 kt N, of which agricultural soils are responsible for 19% of the total soil emissions and grazed grasslands (16 kt N2ON y−1) are the single largest source. Deciduous and coniferous woodlands accounted for 15% and unmanaged grassland and moorlands for 16% of the total annual UK soil emission. Fertiliser N and atmospheric deposition of N are the most important variables controlling the N2O emission rate, followed by temperature and soil moisture. These three variables need to be incorporated in future more detailed estimates of regional scale soil N2O emissions.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1996 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 1996Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(95)00337-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1996 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 1996Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(95)00337-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1996 Canada, United Kingdom, United KingdomPublisher:Elsevier BV Hargreaves, K. J.; Wienhold, F. G.; Klemedtsson, L.; Arah, J. R. M.; Beverland, I .J.; Fowler, D.; Galle, B.; Griffith, D. W. T.; Skiba, U.; Smith, K. A.; Welling, M.; Harris, G.W.;handle: 10315/4196
The spatial variability of N2O emission from soil makes extrapolation to the field scale very difficult using; conventional chamber techniques ( < 1 m2). Micrometeorological techniques, which integrate N2O fluxes over areas of 0.1 to 1 km2 were therefore developed and compared with chamber methods over arable cropland. Measurements of N2O emission from an unfertilised organic soil (reclaimed from the sea in 1879) were made over a 10 d period at Lammefjord, Denmark. Flux-gradient and conditional sampling techniques were applied using two tunable diode laser spectrometers (TDLs), a Fourier transform infra-red spectrometer (FTIR) and a gas chromatograph (GC). Eddy covariance measurements were also made by the TDLs. Over the 10 d campaign approximately 5 d of continuous fluxes by the different methods were, obtained. Fluxes determined by eddy covariance were in reasonable agreement, showing a mean flux of 269 μg N m2 h−1. Flux-gradient techniques measured a mean flux of 226 μg N m−2 h−1. The mean flux measured by conditional sampling was 379 μg N m−2 h−1. The maximum annual emission of N2O from this soil system was estimated to be 23.5 kg N ha−1.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/1352-2310(95)00468-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/1352-2310(95)00468-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Germany, Finland, United Kingdom, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | eLTER PLUSEC| eLTER PLUSKevin Bishop; Thomas Dirnböck; Martin Forsius; Jaana Bäck; Nathalie Cools; Eugenio Díaz-Pinés; Jan Dick; Veronika Gaube; Lauren Gillespie; Lars Högbom; Hjalmar Laudon; Michael Mirtl; Nikolaos P. Nikolaidis; Christian Poppe Terán; U. Skiba; Harry Vereecken; Holger Villwock; James Weldon; Christoph Wohner; Syed Ashraful Alam;doi: 10.1007/s13280-023-01930-4 , 10.34734/fzj-2024-02381 , 10.60692/tt21e-yqn52 , 10.60692/w8x4b-1ea69
pmid: 37725249
pmc: PMC10562320
handle: 10138/566498
doi: 10.1007/s13280-023-01930-4 , 10.34734/fzj-2024-02381 , 10.60692/tt21e-yqn52 , 10.60692/w8x4b-1ea69
pmid: 37725249
pmc: PMC10562320
handle: 10138/566498
AbstractIntegrated long-term, in-situ observations are needed to document ongoing environmental change, to “ground-truth” remote sensing and model outputs and to predict future Earth system behaviour. The scientific and societal value of in-situ observations increases with site representativeness, temporal duration, number of parameters measured and comparability within and across sites. Research Infrastructures (RIs) can support harmonised, cross-site data collection, curation and publication. Integrating RI networks through site co-location and standardised observation methods can help answers three questions about the terrestrial carbon sink: (i) What are present and future carbon sequestration rates in northern European forests? (ii) How are these rates controlled? (iii) Why do the observed patterns exist? Here, we present a conceptual model for RI co-location and highlight potential insights into the terrestrial carbon sink achievable when long-term in-situ Earth observation sites participate in multiple RI networks (e.g., ICOS and eLTER). Finally, we offer recommendations to promote RI co-location.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-023-01930-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2023 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-023-01930-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2008 United KingdomPublisher:International peat society Sheppard, L. J.; Leith, I. D.; Field, C.; van Dijk, N.; Rung, M.; Skiba, U.;Enhanced reactive nitrogen deposition may compromise the sustainability and functioning of bogs, with respect to carbon sequestration and greenhouse gas production. Since 2002, three N forms have been applied to an ombrotrophic bog growing Calluna, Sphagnum capillifolium and Eriophorum vaginatum in order to test this. Significant changes in species cover and soil chemistry, especially in response to elevated ammonia concentrations, have been recorded. Ammonia deposition has also increased nitrous oxide emissions, while the same N dose as ammonium or nitrate had a far smaller effect. Methane emissions were increased by nitrate additions, although fluxes were equally responsive to water table and temperature. The significance of N form, and ’natural’ drivers, is discussed.
NERC Open Research A... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::d7436ee0bff79850fac9de30179dfe27&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::d7436ee0bff79850fac9de30179dfe27&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:IOP Publishing S Medinets; S White; N Cowan; J Drewer; J Dick; M Jones; C Andrews; D Harvey; U Skiba;Abstract Soil emissions of NO and N2O from typical land uses across Lowland and Highland Scotland were simulated under climate change conditions, during a short-term laboratory study. All locations investigated were significant sources of N2O (range: 157–277 µg N2O–N m−2 h−1) and low-to-moderate sources of NO emissions (range: 0.4–30.5 µg NO–N m−2 h−1), with a general tendency to decrease with altitude and increase with fertiliser and atmospheric N inputs. Simulated climate warming and extreme events (drought, intensive rainfall) increased soil NO pulses and N2O emissions from both natural and managed ecosystems in the following order: natural Highlands < natural Lowlands < grazed grasslands < natural moorland receiving high NH3 deposition rates. Largest NO emission rates were observed from natural moorlands exposed to high NH3 deposition rates. Although soil NO emissions were much smaller (6–660 times) than those of N2O, their impact on air quality is likely to increase as combustion sources of NO x are declining as a result of successful mitigation. This study provides evidence of high N emission rates from natural ecosystems and calls for urgent action to improve existing national and intergovernmental inventories for NO and N2O, which at present do not fully account for emissions from natural soils receiving no direct anthropogenic N inputs.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abf06e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abf06e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Review 2018 Belgium, Australia, Denmark, Germany, Germany, Finland, Italy, Spain, Germany, Belgium, United States, United Kingdom, Italy, Germany, France, Finland, Italy, Germany, ItalyPublisher:Walter de Gruyter GmbH Publicly fundedFunded by:UKRI | RootDetect: Remote Detect..., SNSF | ICOS-CH: Integrated Carbo...UKRI| RootDetect: Remote Detection and Precision Management of Root Health ,SNSF| ICOS-CH: Integrated Carbon Observation System in SwitzerlandFranz, Daniela; Acosta, Manuel; Altimir, Núria; Arriga, Nicola; Arrouays, Dominique; Aubinet, Marc; Aurela, Mika; Ayres, Edward; Lopez-Ballesteros, Ana; Barbaste, Mireille; Berveiller, Daniel; Biraud, Sébastien; Boukir, Hakima; Brown, Timothy; Brümmer, Christian; Buchmann, Nina; Burba, George; Carrara, Arnaud; Cescatti, Allessandro; Ceschia, Eric; Clement, Robert; Cremonese, Edoardo; Crill, Patrick; Darenova, Eva; Dengel, Sigrid; D'Odorico, Petra; Filippa, Gianluca; Fleck, Stefan; Fratini, Gerardo; Fuss, Roland; Gielen, Bert; Gogo, Sébastien; Grace, John; Graf, Alexander; Grelle, Achim; Gross, Patrick; Grünwald, Thomas; Haapanala, Sami; Hehn, Markus; Heinesch, Bernard; Heiskanen, Jouni; Herbst, Mathias; Herschlein, Christine; Hörtnagl, Lukas; Hufkens, Koen; Ibrom, Andreas; Jolivet, Claudy; Joly, Lilian; Jones, Michael; Kiese, Ralf; Klemedtsson, Leif; Kljun, Natascha; Klumpp, Katja; Kolari, Pasi; Kolle, Olaf; Kowalski, Andrew; Kutsch, Werner; Laurila, Tuomas; De Ligne, Anne; Linder, Sune; Lindroth, Anders; Lohila, Annalea; Longdoz, Bernhard; Mammarella, Ivan; Manise, Tanguy; Maraňón Jiménez, Sara; Matteucci, Giorgio; Mauder, Matthias; Meier, Philip; Merbold, Lutz; Mereu, Simone; Metzger, Stefan; Migliavacca, Mirco; Mölder, Meelis; Montagnani, Leonardo; Moureaux, Christine; Nelson, David; Nemitz, Eiko; Nicolini, Giacomo; Nilsson, Mats B.; Op de Beeck, Maarten; Osborne, Bruce; Ottosson Löfvenius, Mikaell; Pavelka, Marian; Peichl, Matthias; Peltola, Olli; Pihlatie, Mari; Pitacco, Andrea; Pokorný, Radek; Pumpanen, Jukka; Ratié, Céline; Rebmann, Corinna; Roland, Marilyn; Sabbatini, Simone; Saby, Nicolas P.A.; Saunders, Matthew; Schmid, Hans Peter; Schrumpf, Marion; Sedlak, Pavel; Serrano Ortiz, Penelope; Siebicke, Lukas; Šigut, Ladislav; Silvennoinen, Hanna; Simioni, Guillaume; Skiba, Ute; Sonnentag, Oliver; Soudani, Kamel; Soulé, Patrice; Steinbrecher, Rainer; Tallec, Tiphaine; Thimonier, Anne; Tuittila, Eeva-Stiina; Tuovinen, Juha-Pekka; Vestin, Patrik; Vincent, Gaëlle; Vincke, Caroline; Vitale, Domenico; Waldner, Peter; Weslien, Per; Wingate, Lisa; Wohlfahrt, Georg; Zahniser, Mark; Vesala, Timo;handle: 20.500.14243/397267 , 11388/220856 , 2078.1/208494 , 10138/296509 , 10067/1562530151162165141 , 11573/1665165 , 10568/99055 , 1885/159557
Abstract Research infrastructures play a key role in launching a new generation of integrated long-term, geographically distributed observation programmes designed to monitor climate change, better understand its impacts on global ecosystems, and evaluate possible mitigation and adaptation strategies. The pan-European Integrated Carbon Observation System combines carbon and greenhouse gas (GHG; CO2, CH4, N2O, H2O) observations within the atmosphere, terrestrial ecosystems and oceans. High-precision measurements are obtained using standardised methodologies, are centrally processed and openly available in a traceable and verifiable fashion in combination with detailed metadata. The Integrated Carbon Observation System ecosystem station network aims to sample climate and land-cover variability across Europe. In addition to GHG flux measurements, a large set of complementary data (including management practices, vegetation and soil characteristics) is collected to support the interpretation, spatial upscaling and modelling of observed ecosystem carbon and GHG dynamics. The applied sampling design was developed and formulated in protocols by the scientific community, representing a trade-off between an ideal dataset and practical feasibility. The use of open-access, high-quality and multi-level data products by different user communities is crucial for the Integrated Carbon Observation System in order to achieve its scientific potential and societal value.
NERC Open Research A... arrow_drop_down Hyper Article en LigneArticle . 2018License: CC BY NC NDFull-Text: https://hal.inrae.fr/hal-02625808/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BY NC NDFull-Text: https://hal.inrae.fr/hal-02625808/documentCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/99055Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/2r50p6sdData sources: Bielefeld Academic Search Engine (BASE)UEF eRepository (University of Eastern Finland)Article . 2019License: CC BY NC NDFull-Text: http://dx.doi.org/10.1515/intag-2017-0039Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/159557Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018License: CC BY NC NDFull-Text: https://hal.inrae.fr/hal-02625808Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2018Data sources: Online Research Database In TechnologyDiposit Digital de Documents de la UABArticle . 2018License: CC BY NC NDData sources: Diposit Digital de Documents de la UABHELDA - Digital Repository of the University of HelsinkiReview . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiInstitutional Repository Universiteit AntwerpenArticle . 2018Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Göttingen Research Online PublicationsArticle . 2020Data sources: Göttingen Research Online PublicationseScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/intag-2017-0039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 64 citations 64 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Hyper Article en LigneArticle . 2018License: CC BY NC NDFull-Text: https://hal.inrae.fr/hal-02625808/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BY NC NDFull-Text: https://hal.inrae.fr/hal-02625808/documentCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/99055Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/2r50p6sdData sources: Bielefeld Academic Search Engine (BASE)UEF eRepository (University of Eastern Finland)Article . 2019License: CC BY NC NDFull-Text: http://dx.doi.org/10.1515/intag-2017-0039Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/159557Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018License: CC BY NC NDFull-Text: https://hal.inrae.fr/hal-02625808Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2018Data sources: Online Research Database In TechnologyDiposit Digital de Documents de la UABArticle . 2018License: CC BY NC NDData sources: Diposit Digital de Documents de la UABHELDA - Digital Repository of the University of HelsinkiReview . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiInstitutional Repository Universiteit AntwerpenArticle . 2018Data sources: Institutional Repository Universiteit AntwerpenInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Göttingen Research Online PublicationsArticle . 2020Data sources: Göttingen Research Online PublicationseScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/intag-2017-0039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 United KingdomPublisher:Elsevier BV Funded by:UKRI | UK - China Virtual Joint ...UKRI| UK - China Virtual Joint Centre for Improved Nitrogen Agronomy (CINAG)Cowan, N.; Helfter, C.; Langford, B.; Coyle, M.; Levy, P.; Moxley, J.; Simmons, I.; Leeson, S.; Nemitz, E.; Skiba, U.;Fluxes of carbon monoxide (CO) were measured using a fast-response quantum cascade laser absorption spectrometer and the eddy covariance method at a long-term intensively grazed grassland in southern Scotland. Measurements lasted 20 months from April 2016 to November 2017, during which normal agricultural activities continued. Observed fluxes followed a regular diurnal cycle, peaking at midday and returning to values near zero during the night, with occasional uptake observed. CO fluxes correlated well with the meteorological variables of solar radiation, soil temperature and soil moisture content. Using a general additive model (GAM) we were able to gap fill CO fluxes and estimate annual fluxes of 0.38 ± 0.046 and 0.35 ± 0.045 g C m-2 y-1g C m-2 y-1 for 2016 and 2017, respectively. If the CO fluxes reported in this study are representative of UK grasslands, then national annual emissions could be expected to be in the order of 61.91 (54.3-69.5) Gg, which equates to 3.8% (3.4-4.3%) of the current national inventory total.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2018.09.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2018.09.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu